1
|
Babar TK, Glare TR, Hampton JG, Hurst MRH, Narciso J. Biochemical characterisation and production kinetics of high molecular-weight (HMW) putative antibacterial proteins of insect pathogenic Brevibacillus laterosporus isolates. BMC Microbiol 2024; 24:259. [PMID: 38997685 PMCID: PMC11245835 DOI: 10.1186/s12866-024-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/16/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Bacterial genomes often encode structures similar to phage capsids (encapsulins) and phage tails which can be induced spontaneously or using genotoxic compounds such as mitomycin C. These high molecular-weight (HMW) putative antibacterial proteins (ABPs) are used against the competitive strains under natural environment. Previously, it was unknown whether these HMW putative ABPs originating from the insect pathogenic Gram-positive, spore-forming bacterium Brevibacillus laterosporus (Bl) isolates (1821L, 1951) are spontaneously induced during the growth and pose a detrimental effect on their own survival. Furthermore, no prior work has been undertaken to determine their biochemical characteristics. RESULTS Using a soft agar overlay method with polyethylene glycol precipitation, a narrow spectrum of bioactivity was found from the precipitated lysate of Bl 1951. Electron micrographs of mitomycin C- induced filtrates showed structures similar to phage capsids and contractile tails. Bioactivity assays of cell free supernatants (CFS) extracted during the growth of Bl 1821L and Bl 1951 suggested spontaneous induction of these HMW putative ABPs with an autocidal activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of spontaneously induced putative ABPs showed appearance of ~ 30 kDa and ~ 48 kDa bands of varying intensity across all the time intervals during the bacterial growth except in the initial hours. Statistically, spontaneously induced HMW putative ABPs of Bl 1951 exhibited a significant decrease in the number of viable cells of its producer strain after 18 h of growth in liquid. In addition, a significant change in pH and prominent bioactivity of the CFS of this particular time period was noted. Biochemically, the filtered supernatant derived from either Bl 1821L or Bl 1951 maintained bioactivity over a wide range of pH and temperature. CONCLUSION This study reports the spontaneous induction of HMW putative ABPs (bacteriocins) of Bl 1821L and Bl 1951 isolates during the course of growth with potential autocidal activity which is critically important during production as a potential biopesticide. A narrow spectrum of putative antibacterial activity of Bl 1951 precipitate was found. The stability of HMW putative ABPs of Bl 1821L and Bl 1951 over a wide range of pH and temperature can be useful in expanding the potential of this useful bacterium beyond the insecticidal value.
Collapse
Affiliation(s)
- Tauseef K Babar
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand.
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Travis R Glare
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - John G Hampton
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - Mark R H Hurst
- Resilient agriculture, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Josefina Narciso
- Bioprotection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
2
|
Hishinuma T, Tada T, Tohya M, Shintani M, Suzuki M, Shimojima M, Kirikae T. Plasmids Harboring a Tandem Duplicate of blaVIM-24 in Carbapenem-Resistant ST1816 Pseudomonas aeruginosa in Japan. Microb Drug Resist 2023; 29:10-17. [PMID: 36378829 DOI: 10.1089/mdr.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to clarify the biological and clinical significance of a tandem duplicate of blaVIM-24 in Pseudomonas aeruginosa ST1816 isolates. Thirteen ST1816 isolates carrying a plasmid harboring blaVIMs were obtained from two medical settings in Japan between 2016 and 2019. Complete sequencing revealed that, of the 13 plasmids, four had a tandem duplicate of blaVIM-24. These four plasmids harbored a replicon, a relaxase gene, and T4SS genes belonging to IncP-9, MOBF, and MPFT, respectively. All four plasmids transferred to PAO1 by filter mating. Cefepime marginally affected the growth of PAO1, carrying a pUCP19 harboring the tandem duplicate. Western blotting analysis showed that the relative intensity of VIM-24 metallo-β-lactamase produced by a PAO1 transformant containing a tandem duplicate was 2.6-fold higher than that produced by a PAO1 transformant containing a single copy. These results suggest that the tandem duplicate of blaVIM-24 in plasmids may confer resistance against cefepime, enabling P. aeruginosa ST1816 strains to proliferate in hospitals in Japan.
Collapse
Affiliation(s)
- Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mari Tohya
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Sheng DH, Wang YX, Qiu M, Zhao JY, Yue XJ, Li YZ. Functional Division Between the RecA1 and RecA2 Proteins in Myxococcus xanthus. Front Microbiol 2020; 11:140. [PMID: 32117159 PMCID: PMC7029660 DOI: 10.3389/fmicb.2020.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Myxococcus xanthus DK1622 has two RecA genes, recA1 (MXAN_1441) and recA2 (MXAN_1388), with unknown functional differentiation. Herein, we showed that both recA genes were induced by ultraviolet (UV) irradiation but that the induction of recA1 was more delayed than that of recA2. Deletion of recA1 did not affect the growth but significantly decreased the UV-radiation survival, homologous recombination (HR) ability, and induction of LexA-dependent SOS genes. In contrast, the deletion of recA2 markedly prolonged the lag phase of bacterial growth and increased the sensitivity to DNA damage caused by hydrogen peroxide but did not change the UV-radiation resistance or SOS gene inducibility. Protein activity analysis demonstrated that RecA1, but not RecA2, catalyzed DNA strand exchange (DSE) and LexA autocleavage in vitro. Transcriptomic analysis indicated that RecA2 has evolved mainly to regulate gene expression for cellular transportation and antioxidation. This is the first report of functional divergence of duplicated bacterial recA genes. The results highlight the evolutionary strategy of M. xanthus cells for DNA HR and genome sophistication.
Collapse
Affiliation(s)
- Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yi-Xue Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Miao Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jin-Yi Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa. J Bacteriol 2014; 196:3351-9. [PMID: 25022851 DOI: 10.1128/jb.01889-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.
Collapse
|
5
|
Ghequire MGK, De Mot R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 2014; 38:523-68. [PMID: 24923764 DOI: 10.1111/1574-6976.12079] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/26/2022] Open
Abstract
Members of the Pseudomonas genus produce diverse secondary metabolites affecting other bacteria, fungi or predating nematodes and protozoa but are also equipped with the capacity to secrete different types of ribosomally encoded toxic peptides and proteins, ranging from small microcins to large tailocins. Studies with the human pathogen Pseudomonas aeruginosa have revealed that effector proteins of type VI secretion systems are part of the antibacterial armamentarium deployed by pseudomonads. A novel class of antibacterial proteins with structural similarity to plant lectins was discovered by studying antagonism among plant-associated Pseudomonas strains. A genomic perspective on pseudomonad bacteriocinogeny shows that the modular architecture of S pyocins of P. aeruginosa is retained in a large diversified group of bacteriocins, most of which target DNA or RNA. Similar modularity is present in as yet poorly characterized Rhs (recombination hot spot) proteins and CDI (contact-dependent inhibition) proteins. Well-delimited domains for receptor recognition or cytotoxicity enable the design of chimeric toxins with novel functionalities, which has been applied successfully for S and R pyocins. Little is known regarding how these antibacterials are released and ultimately reach their targets. Other remaining issues concern the identification of environmental triggers activating these systems and assessment of their ecological impact in niches populated by pseudomonads.
Collapse
|
6
|
Abstract
Pyocins are produced by more than 90% of Pseudomonas aeruginosa strains and each strain may synthesise several pyocins. The pyocin genes are located on the P. aeruginosa chromosome and their activities are inducible by mutagenic agents such as mitomycin C. Three types of pyocins are described. (i). R-type pyocins resemble non-flexible and contractile tails of bacteriophages. They provoke a depolarisation of the cytoplasmic membrane in relation with pore formation. (ii). F-type pyocins also resemble phage tails, but with a flexible and non-contractile rod-like structure. (iii). S-type pyocins are colicin-like, protease-sensitive proteins. They are constituted of two components. The large component carries the killing activity (DNase activity for pyocins S1, S2, S3, AP41; tRNase for pyocin S4; channel-forming activity for pyocin S5). It interacts with the small component (immunity protein). The synthesis of pyocins starts when a mutagen increases the expression of the recA gene and activates the RecA protein, which cleaves the repressor PrtR, liberating the expression of the protein activator gene prtN. R and F-pyocins are derived from an ancestral gene, with similarities to the P2 phage family and the lambda phage family, respectively. The killing domains of S1, S2, AP41 pyocins show a close evolutionary relationship with E2 group colicins, S4 pyocin with colicin E5, and S5 pyocin with colicins Ia, and Ib.
Collapse
Affiliation(s)
- Yvon Michel-Briand
- Department of Bacteriology, Faculty of Medicine, Jean Minjoz Hospital, boulevard Fleming, 25030, Besançon, France.
| | | |
Collapse
|
7
|
Chervyakova D, Kagansky A, Petukhov M, Lanzov V. [L29M] substitution in the interface of subunit-subunit interactions enhances Escherichia coli RecA protein properties important for its recombinogenic activity. J Mol Biol 2001; 314:923-35. [PMID: 11734008 DOI: 10.1006/jmbi.2001.5170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic analysis of RecA protein chimeras and their ancestors, RecAEc (from Escherichia coli) and RecAPa (Pseudomonas aeruginosa) had allowed us to place these proteins with respect to their recombinogenic activities in the following order: RecAPa>RecAX21>RecAX20=RecAEc. While RecAX20 differs from RecAEc in five amino acid residues with two substitutions ([S25A] and [I26V]) at the interface of subunit interactions in the RecA polymer, RecAX20 and RecAX21 differ only by a single substitution [L29M] present at the interface. Here, we present an analysis of the biochemical properties considered important for the recombinogenic activity of all four RecA proteins. While RecAX20 was very similar to RecAEc by all activities analysed, RecAX21 differed from RecAEc in several respects. These differences included an increased affinity for double-stranded DNA, a more active displacement of SSB protein from single-stranded DNA (ssDNA), a decreased end-dependent RecAX21 protein dissociation from a presynaptic complex, and a greater accumulation of intermediate products relative to the final product in the strand-exchange reaction. RecAPa was more tolerant than RecAX21 only to the end-dependent RecA protein dissociation. In addition, RecAPa was more resistant to temperature and salt concentrations in its ability to form a presynaptic RecAPa::ATP::ssDNA filament. Calculations of conformational energy revealed that the [L29M] substitution in RecAX21 polymer caused an increase in its flexibility. This led us to conclude that even a small change in the flexibility of the RecA presynaptic complex could profoundly affect its recombinogenic properties.
Collapse
Affiliation(s)
- D Chervyakova
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg, 188300, Russia
| | | | | | | |
Collapse
|
8
|
Bakhlanova IV, Ogawa T, Lanzov VA. Recombinogenic activity of chimeric recA genes (Pseudomonas aeruginosa/Escherichia coli): a search for RecA protein regions responsible for this activity. Genetics 2001; 159:7-15. [PMID: 11560883 PMCID: PMC1461784 DOI: 10.1093/genetics/159.1.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the background of weak, if any, constitutive SOS function, RecA from Pseudomonas aeruginosa (RecAPa) shows a higher frequency of recombination exchange (FRE) per DNA unit length as compared to RecA from Escherichia coli (RecAEc). To understand the molecular basis for this observation and to determine which regions of the RecAPa polypeptide are responsible for this unusual activity, we analyzed recAX chimeras between the recAEc and recAPa genes. We chose 31 previously described recombination- and repair-proficient recAX hybrids and determined their FRE calculated from linkage frequency data and constitutive SOS function expression as measured by using the lacZ gene under control of an SOS-regulated promoter. Relative to recAEc, the FRE of recAPa was 6.5 times greater; the relative alterations of FRE for recAX genes varied from approximately 0.6 to 9.0. No quantitative correlation between the FRE increase and constitutive SOS function was observed. Single ([L29M] or [I102D]), double ([G136N, V142I]), and multiple substitutions in related pairs of chimeric RecAX proteins significantly altered their relative FRE values. The residue content of three separate regions within the N-terminal and central but not the C-terminal protein domains within the RecA molecule also influenced the FRE values. Critical amino acids in these regions were located close to previously identified sequences that comprise the two surfaces for subunit interactions in the RecA polymer. We suggest that the intensity of the interactions between the subunits is a key factor in determining the FRE promoted by RecA in vivo.
Collapse
Affiliation(s)
- I V Bakhlanova
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg 188300, Russia
| | | | | |
Collapse
|
9
|
Silby MW, Mahanty HK. The importance of recA mutant strains for the study of antifungal genes in Pseudomonas aureofaciens PA147-2. Can J Microbiol 2000; 46:744-8. [PMID: 10941522 DOI: 10.1139/w00-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aureofaciens PA147-2 shows antifungal activity toward a variety of plant pathogenic fungi. We have been investigating the molecular mechanisms underlying the fungal inhibition, and during these studies it was observed that the use of pLAFR3-based cosmids for in trans complementation of mutants lacking antifungal activity is hindered by cosmid instability. It was hypothesised that the cosmid stability could be improved by inactivation of recA. The recA gene of PA147-2 was cloned and shown to complement recA mutants of E. coli, restoring RecA-dependent functions when expressed in trans. Two recA mutants of PA147-2 were constructed. Both of these mutants show sensitivity to DNA damage. Cosmid pPS2122 restores antifungal activity to a mutant by allele exchange, but is unstable in trans. The stability of pPS2122 is shown to be improved in a recA mutant of PA147-2 with respect to the wild type.
Collapse
Affiliation(s)
- M W Silby
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
10
|
Vierling S, Weber T, Wohlleben W, Muth G. Transcriptional and mutational analyses of the Streptomyces lividans recX gene and its interference with RecA activity. J Bacteriol 2000; 182:4005-11. [PMID: 10869079 PMCID: PMC94586 DOI: 10.1128/jb.182.14.4005-4011.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the 20,922-Da RecX protein and its interference with RecA activity were analyzed in Streptomyces lividans. The recX gene is located 220 bp downstream of recA. Transcriptional analysis by reverse transcriptase PCR demonstrated that recX and recA constitute an operon. While recA was transcribed at a basal level even under noninducing conditions, a recA-recX cotranscript was only detectable after induction of recA following DNA damage. The recA-recX cotranscript was less abundant than the recA transcript alone. The recX gene was inactivated by gene replacement. The resulting mutant had a clearly diminished colony size, but was not impaired in recombination activity, genetic instability, and resistance against UV irradiation. Expression of an extra copy of the S. lividans recA gene under control of the thiostrepton-inducible tipA promoter was lethal to the recX mutant, demonstrating that RecX is required to overcome the toxic effects of recA overexpression. Since inactivation of the recX gene did not influence transcription of recA, the putative function of the RecX protein might be the downregulation of RecA activity by interaction with the RecA protein or filament.
Collapse
Affiliation(s)
- S Vierling
- Mikrobiologie/Biotechnologie, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
11
|
Liu YT, Chen CG, Chao DC, Lee F, Liao CL, Sytwu HK, Chou CF, Ji DD. Sequence analysis of theGluconobacter oxydansRecA protein and construction of arecA-deficient mutant. Can J Microbiol 1999. [DOI: 10.1139/w99-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deduced amino acid sequence of Gluconobacter oxydans RecA protein shows 75.2, 69.4, and 66.2% homology with those from Aquaspirillum magnetotacticum, Escherichia coli, andPseudomonas aeruginosa, respectively. The amino acid residues essential for function of the recombinase, protease, and ATPase in E. coli recA protein are conserved in G. oxydans. Of 24 amino acid residues believed to be the ATP binding domain of E. coli RecA, 17 are found to be identical in G. oxydans RecA. Interestingly, nucleotide sequence alignment between the SOS box of G. orphans recA gene and those from different microorganisms revealed that all the DNA sequences examined have dyad symmetry that can form a stem-loop structure. A G. oxydans recA-deficient mutant (LCC96) was created by allelic exchange using the cloned recA gene that had been insertionally inactivated by a kanamycin-resistance cassette. Such replacement of the wild-type recA with a kanamycin resistance gene in the chromosome was further verified by Southern hybridization. Phenotypically, the recA-deficient mutant is significantly more sensitive to UV irradiation than the wild-type strain, suggesting that the recA gene of G. oxydans ATCC9324 plays a role in repairing DNA damage caused by UV irradiation. Moreover, the mutant strain is much more plasmid transformable than its parent strain, illustrating that G. oxydans LCC96 could be used as a host to take up the recombinant plasmid for gene manipulation.Key words: Gluconobacter orphans, recA gene, DNA repair, recA mutant, SOS box.
Collapse
|
12
|
Liu YT, Chao DC, Lee F, Chen CG, Ji DD. Molecular characterization ofGluconobacter oxydans recAgene and its inhibitory effect on the function of the host wild-typerecAgene. Can J Microbiol 1998. [DOI: 10.1139/w97-140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A DNA fragment containing the recA gene of Gluconobacter oxydans was isolated and further characterized for its nucleotide sequence and ability to functionally complement various recA mutations. When expressed in an Escherichia coli recA host, the G. oxydans recA protein could efficiently function in homologous recombination and DNA damage repair. The recA gene's nucleotide sequence analysis revealed a protein of 344 amino acids with a molecular mass of 38 kDa. We observed an E. coli-like LexA repressor-binding site in the G. oxydans recA gene promoter region, suggesting that a LexA-like mediated response system may exist in G. oxydans. The expression of G. oxydans recA in E. coli RR1, a recA+strain, surprisingly caused a remarkable reduction of the host wild-type recA gene function, whereas the expression of both Serratia marcescens recA and Pseudomonas aeruginosa recA gene caused only a slight inhibitory effect on function of the host wild-typerecA gene product. Compared with the E. coli RecA protein, the identity of the amino acid sequence of G. oxydans RecA protein is much lower than those RecA proteins of both S. marcescens and Pseudomonas aeruginosa. This result suggests that the expression of another wild-type RecA could interfere with host wild-type recA gene's function, and the extent of such an interference is possibly correlated to the identity of the amino acid sequence between the two classes of RecA protein.Key words: Gluconobacter oxydans, recA gene, recombination, SOS function, interference.
Collapse
|
13
|
Namsaraev EA, Baitin D, Bakhlanova IV, Alexseyev AA, Ogawa H, Lanzov VA. Biochemical basis of hyper-recombinogenic activity of Pseudomonas aeruginosa RecA protein in Escherichia coli cells. Mol Microbiol 1998; 27:727-38. [PMID: 9515699 DOI: 10.1046/j.1365-2958.1998.00718.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The replacement of Escherichia coli recA gene (recA[Ec]) with the Pseudomonas aeruginosa recA(Pa) gene in Escherichia coli cells results in constitutive hyper-recombination (high frequency of recombination exchanges per unit length of DNA) in the absence of constitutive SOS response. To understand the biochemical basis of this unusual in vivo phenotype, we compared in vitro the recombination properties of RecA(Pa) protein with those of RecA(Ec) protein. Consistent with hyper-recombination activity, RecA(Pa) protein appeared to be more proficient both in joint molecule formation, producing extensive DNA networks in strand exchange reaction, and in competition with single-stranded DNA binding (SSB) protein for single-stranded DNA (ssDNA) binding sites. The RecA(Pa) protein showed in vitro a normal ability for cleavage of the E. coli LexA repressor (a basic step in SOS regulon derepression) both in the absence and in the presence (i.e. even under suboptimal conditions for RecA(Ec) protein) of SSB protein. However, unlike other hyper-recombinogenic proteins, such as RecA441 and RecA730, RecA(Pa) protein displaced insufficient SSB protein from ssDNA at low magnesium concentration to induce the SOS response constitutively. In searching for particular characteristics of RecA(Pa) in comparison with RecA(Ec), RecA441 and RecA803 proteins, RecA(Pa) showed unusually high abilities: to be resistant to the displacement by SSB protein from poly(dT); to stabilize a ternary complex RecA::ATP::ssDNA to high salt concentrations; and to be much more rapid in both the nucleation of double-stranded DNA (dsDNA) and the steady-state rate of dsDNA-dependent ATP hydrolysis at pH7.5. We hypothesized that the high affinity of RecA(Pa) protein for ssDNA, and especially dsDNA, is the factor that directs the ternary complex to bind secondary DNA to initiate additional acts of recombination instead of to bind LexA repressor to induce constitutive SOS response.
Collapse
Affiliation(s)
- E A Namsaraev
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St Petersburg
| | | | | | | | | | | |
Collapse
|
14
|
Hishida T, Iwasaki H, Ishioka K, Shinagawa H. Molecular analysis of the Pseudomonas aeruginosa genes, ruvA, ruvB and ruvC, involved in processing of homologous recombination intermediates. Gene X 1996; 182:63-70. [PMID: 8982068 DOI: 10.1016/s0378-1119(96)00474-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Escherichia coli, the products of the ruvA, ruvB and ruvC genes are all involved in the processing of recombination intermediates (Holliday structures) into recombinant molecules. We cloned a 9.4-kb DNA fragment from Pscudomonas aeruginosa PAO1 in a plasmid by functional complementation of the UV sensitivity of an E. coli strain with ruvABC deleted. In P. aeruginosa, the ruv region seemed to form a non-SOS regulated single operon consisting of orf26-ruvC-ruvA-ruvB, while in this region of E. coli, ruvA and ruvB form an SOS-regulated operon, orf26 and ruvC form a non-SOS operon, and these two operons are split by orf23. The deduced amino acid sequences of P. aeruginosa RuvA, RuvB and RuvC proteins were 55, 72 and 55% identical to those of the corresponding E. coli Ruv proteins. The individual ruv genes of P. aeruginosa complemented the corresponding single ruv mutations of E. coli, suggesting that the P. aeruginosa Ruv proteins can interact functionally with their E. coli Ruv partners in forming heterologous complexes. The sequence alignments of the Ruv proteins were extended by incorporation of data about the putative ruv genes obtained from data banks, and the RuvB sequences were conspicuously more conserved than the RuvA and RuvC sequences.
Collapse
Affiliation(s)
- T Hishida
- Department of Molecular Microbiology, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
The uvrB gene of Pseudomonas aeruginosa has been isolated from a genomic library by complementation of an Escherichia coli uvrB mutant. The complete nucleotide sequence of P. aeruginosa uvrB consists of 2,013 bp, encoding a polypeptide of 670 amino acids. A P. aeruginosa SOS consensus region, which functions as a binding site for the LexA repressor molecule, is not present in the upstream region of the uvrB gene isolated. By transcriptional fusions with a reporter gene, it has been demonstrated that, contrary to what happens with the homologous gene of E. coli, the P. aeruginosa uvrB gene is not DNA damage inducible. Nevertheless, the UvrB protein must be functional in P. aeruginosa cells because a uvrB-defective mutant is extremely sensitive to UV radiation.
Collapse
Affiliation(s)
- E Rivera
- Department of Genetics and Microbiology, Autonomous University of Barcelona Bellaterra, Spain
| | | | | |
Collapse
|
16
|
Kidambi SP, Booth MG, Kokjohn TA, Miller RV. recA-dependence of the response of Pseudomonas aeruginosa to UVA and UVB irradiation. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):1033-1040. [PMID: 8936329 DOI: 10.1099/00221287-142-4-1033] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The responses of the autochthonous soil and aquatic organism, Pseudomonas aeruginosa to UV radiation wavelengths (UVA, 320-400 nm, and UVB, 280-320 nm) has been investigated in this study. P. aeruginosa recA mutants were found to be more sensitive to both UVA and UVB radiation than were their isogenic RecA+ parents. Introduction of a low-copy-number plasmid containing the cloned wild-type P. aeruginosa recA gene restored UVA and UVB resistance to recA mutants. The concentration of RecA protein increased twofold 120 min after exposure to either UVA or UVB radiation, suggesting induction of expression of the recA gene by these wavelengths. In this study, we found that a functional RecA protein is required for activation of D3 prophage in lysogenic cells following exposure to UVB radiation. Prophage were not induced by exposure of their hosts to UVA radiation. Induction of damage-inducible (din) genes in response to UVA or UVB irradiation was also shown to be RecA dependent. These data indicate that the recA gene plays a role in the response of P. aeruginosa to exposure to wavelengths of UV radiation found in the solar spectrum.
Collapse
Affiliation(s)
- Saranga P Kidambi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Melissa G Booth
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tyler A Kokjohn
- The School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Robert V Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
17
|
Xanthomonas campestris as a host for the production of recombinantPseudomonas aeruginosa lipase. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf01569917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Eisen JA. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 1995; 41:1105-23. [PMID: 8587109 PMCID: PMC3188426 DOI: 10.1007/bf00173192] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The evolution of the RecA protein was analyzed using molecular phylogenetic techniques. Phylogenetic trees of all currently available complete RecA proteins were inferred using multiple maximum parsimony and distance matrix methods. Comparison and analysis of the trees reveal that the inferred relationships among these proteins are highly robust. The RecA trees show consistent subdivisions corresponding to many of the major bacterial groups found in trees of other molecules including the alpha, beta, gamma, delta, epsilon proteobacteria, cyanobacteria, high-GC gram-positives, and the Deinococcus-Thermus group. However, there are interesting differences between the RecA trees and these other trees. For example, in all the RecA trees the proteins from gram-positive species are not monophyletic. In addition, the RecAs of the cyanobacteria consistently group with those of the high-GC gram-positives. To evaluate possible causes and implications of these and other differences phylogenetic trees were generated for small-subunit rRNA sequences from the same (or closely related) species as represented in the RecA analysis. The trees of the two molecules using these equivalent species-sets are highly congruent and have similar resolving power for close, medium, and deep branches in the history of bacteria. The implications of the particular similarities and differences between the trees are discussed. Some of the features that make RecA useful for molecular systematics and for studies of protein evolution are also discussed.
Collapse
Affiliation(s)
- J A Eisen
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| |
Collapse
|
19
|
Schmitt W, Odenbreit S, Heuermann D, Haas R. Cloning of the Helicobacter pylori recA gene and functional characterization of its product. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:563-72. [PMID: 7476856 DOI: 10.1007/bf02423452] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned a recA homolog from Helicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to the Campylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus sigma 70 promoter sequence was found upstream of recA. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream of recA. Compared to the wild-type strains, isogenic H. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinant H. pylori RecA protein produced in Escherichia coli strain GC6 (recA-) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein in H. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of the H. pylori mutant using the cloned recA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA in H. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced in E. coli, giving rise to a smaller but inactive protein.
Collapse
Affiliation(s)
- W Schmitt
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
20
|
Zaitsev E, Alexseyev A, Lanzov V, Satin L, Clark AJ. Nucleotide sequence between recA and alaSp in E. coli K12 and the sequence change in four recA mutations. Mutat Res 1994; 323:173-7. [PMID: 7512687 DOI: 10.1016/0165-7992(94)90030-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sequence of 366 nucleotides between the C-terminal trailer region of recA and the N-terminal leader region of alaS is presented. This sequence reveals an open reading frame of 166 codons we have named oraA. An NdeI restriction nuclease cleavage site also revealed by the sequence was used to clone, map and sequence three recA mutations: recA11, recA12 and recA52. A mutation in recA (recA946), was discovered in strains originally reported to contain recH166. The relation between recA946 and recH166 is unclear.
Collapse
Affiliation(s)
- E Zaitsev
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
21
|
Guerry P, Pope PM, Burr DH, Leifer J, Joseph SW, Bourgeois AL. Development and characterization of recA mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Infect Immun 1994; 62:426-32. [PMID: 8300203 PMCID: PMC186125 DOI: 10.1128/iai.62.2.426-432.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Isogenic recA mutants of Campylobacter jejuni have been constructed for evaluation of their usefulness in attenuated vaccines against this major worldwide cause of diarrhea. The recA+ gene of C. jejuni 81-176 was cloned by using degenerate primers to conserved regions of other RecA proteins in a PCR. The C. jejuni recA+ gene encodes a predicted protein with an M(r) of 37,012 with high sequence similarity to other RecA proteins. The termination codon of the recA+ gene overlaps with the initiation codon of another open reading frame which encodes a predicted protein which has > 50% identity with the N terminus of the Escherichia coli enolase protein. A kanamycin resistance gene was inserted into the cloned recA+ gene in E. coli and returned to C. jejuni VC83 by natural transformation, resulting in allelic replacement of the wild-type recA gene. The resulting VC83 recA mutant displayed increased sensitivity to UV light and a defect in generalized recombination as determined by natural transformation frequencies. The mutated recA gene was amplified from VC83 recA by PCR, and the product was used to transfer the mutation by natural transformation into C. jejuni 81-176 and 81-116, resulting in isogenic recA mutants with phenotypes similar to VC83 recA. After oral feeding, strain 81-176 recA colonized rabbits at levels comparable to wild-type 81-176 and was capable of eliciting the same degree of protection as wild-type 81-176 against subsequent homologous challenge in the RITARD (removable intestinal tie adult rabbit diarrhea) model.
Collapse
Affiliation(s)
- P Guerry
- Enterics Program, Naval Medical Research Institute, Bethesda, Maryland 20814
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The recA gene of Pseudomonas putida PpG2 was cloned by complementation of the recA mutations of Escherichia coli strains DH5 alpha and HB101. The nucleotide sequence of the DNA fragment was determined and shown to contain recA and a downstream partial open reading frame. Two mutants of P. putida PpG2, strains JS387 and JS388, were constructed by insertional inactivation of recA with a tetracycline-resistance gene in both orientations. Both mutants acquired sensitivity to methyl methanesulfonate (MMS) and both failed to undergo homologous recombination. While the recA mutation of P. putida JS388 was complemented in trans by recA of P. putida, the JS387 mutant was difficult to transform and transformants exhibited varying degrees of sensitivity to MMS. Therefore, P. putida JS388 can be used as a carrier of recombinant plasmids, but JS387 is not a suitable host for this purpose.
Collapse
Affiliation(s)
- J Luo
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | |
Collapse
|
23
|
Tayama K, Fukaya M, Takemura H, Okumura H, Kawamura Y, Horinouchi S, Beppu T. Cloning and sequencing the recA+ genes of Acetobacter polyoxogenes and Acetobacter aceti: construction of recA- mutants of by transformation-mediated gene replacement. Gene 1993; 127:47-52. [PMID: 8486287 DOI: 10.1016/0378-1119(93)90615-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The recA+ gene of Acetobacter polyoxogenes was cloned as a gene that conferred methyl methanesulfonate resistance (MMSR) on the RecA- Escherichia coli HB101. The cloned recA+ gene also conferred (i) resistance to UV irradiation, (ii) enhanced intrachromosomal recombination, and (iii) permitted prophage phi 80 induction in E. coli recA- lysogens. Nucleotide sequence determination revealed that the recA product consists of 348 amino acids (aa) corresponding to 38 kDa, and shows significant similarity to RecA proteins from other Gram- bacteria. Next, a portion of recA from Acetobacter aceti was cloned by using polymerase chain reaction with oligodeoxyribonucleotide primers design based on the A. polyoxogenes recA sequence. Due to availability of efficient host-vector and transformation systems in A. aceti, recA mutants of A. aceti were obtained by transformation-mediated gene replacement with the cloned A. aceti recA gene which was inactivated by insertion of the kanamycin-resistance-encoding gene from pACYC177. The recA mutants obtained in this way showed similar phenotypes to those of E. coli recA strains, such as increased sensitivity to MMS and to UV irradiation, and decreased homologous recombination.
Collapse
Affiliation(s)
- K Tayama
- Nakano Central Research Institute, Nakano Vinegar Co., Ltd., Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Sano Y, Matsui H, Kobayashi M, Kageyama M. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J Bacteriol 1993; 175:2907-16. [PMID: 8491711 PMCID: PMC204608 DOI: 10.1128/jb.175.10.2907-2916.1993] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pyocins S1 and S2 are S-type bacteriocins of Pseudomonas aeruginosa with different receptor recognition specificities. The genetic determinants of these pyocins have been cloned from the chromosomes of P. aeruginosa NIH-H and PAO, respectively. Each determinant constitutes an operon encoding two proteins of molecular weights 65,600 and 10,000 (pyocin S1) or 74,000 and 10,000 (pyocin S2) with a characteristic sequence (P box), a possible regulatory element involved in the induction of pyocin production, in the 5' upstream region. These pyocins have almost identical primary sequences; only the amino-terminal portions of the large proteins are substantially different. The sequence homology suggests that pyocins S1 and S2, like pyocin AP41, originated from a common ancestor of the E2 group colicins. Purified pyocins S1 and S2 make up a complex of the two proteins. Both pyocins cause breakdown of chromosomal DNA as well as complete inhibition of lipid synthesis in sensitive cells. The large protein, but not the pyocin complex, shows in vitro DNase activity. This activity is inhibited by the small protein of either pyocin. Putative domain structures of these pyocins and their killing mechanism are discussed.
Collapse
Affiliation(s)
- Y Sano
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
The region adjacent to the 3' end of the recA gene is indispensable for normal cell division in a rec-2 strain of Pseudomonas aeruginosa when the recA gene is highly expressed. A putative protein encoded by this region may play a regulatory role(s) in recA function.
Collapse
Affiliation(s)
- Y Sano
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| |
Collapse
|
26
|
Matsui H, Sano Y, Ishihara H, Shinomiya T. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J Bacteriol 1993; 175:1257-63. [PMID: 8444788 PMCID: PMC193209 DOI: 10.1128/jb.175.5.1257-1263.1993] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Most strains of Pseudomonas aeruginosa produce various types of bacteriocins (pyocins), namely, R-, F-, and S-type pyocins. The production of all types of pyocins was shown to be regulated by positive (prtN) and negative (prtR) regulatory genes. The prtN gene activates the expression of various pyocin genes, probably by the interaction of its product with the DNA sequences conserved in the 5' noncoding regions of the pyocin genes. The prtR gene represses the expression of the prtN gene, and its product, predicted from the nucleotide sequence, has a structure characteristic of phage repressors and seems to be inactivated by the RecA protein activated by DNA damage. A model for the regulation of the pyocin genes is proposed.
Collapse
Affiliation(s)
- H Matsui
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Sano Y, Kageyama M. A novel transposon-like structure carries the genes for pyocin AP41, a Pseudomonas aeruginosa bacteriocin with a DNase domain homology to E2 group colicins. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:161-70. [PMID: 8384291 DOI: 10.1007/bf00282797] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The genetic determinant for pyocin AP41, a bacteriocin produced by Pseudomonas aeruginosa, has been cloned. The determinant is located on the chromosome flanked by a pair of inverted repeats, forming a transposon-like structure (TnAP41). TnAP41 possesses some features characteristic of the Tn3 family of transposons. Based on a comparison with the structure of the corresponding region of the chromosome of a non-producer strain, we propose that P. aeruginosa has acquired pyocinogeny by the transposition of TnAP41 into the chromosome. The determinant comprises two ORFs encoding the protein subunits responsible for the killing action (the large component) and immunity (the small component). Amino acid sequences of the C-terminus of the large component (the deoxyribonuclease domain) and the immunity protein show remarkable homology to those of E2 group colicins, suggesting that these bacteriocins, which are produced by distantly related species, have originated from a common ancestor.
Collapse
Affiliation(s)
- Y Sano
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
28
|
Vosman B, Rauch PJ, Westerhoff HV, Hellingwerf KJ. Regulation of the expression of the Pseudomonas stutzeri recA gene. Antonie Van Leeuwenhoek 1993; 63:55-62. [PMID: 8480993 DOI: 10.1007/bf00871732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the aid of recA-lacZ fusion strains, the in vivo regulation of the Pseudomonas stutzeri recA gene has been studied. It is shown that expression of this gene can be induced with a variety of DNA damaging agents, as well as with agents that interfere with DNA replication. For this induction, the presence of an active RecA protein is essential. Sequence analysis of the promoter region of the P. stutzeri recA gene showed that its open reading frame is preceded by an SOS-box, suggesting a regulation of its expression, similar to the regulation of recA expression in Escherichia coli.
Collapse
Affiliation(s)
- B Vosman
- Department of Microbiology & Biotechnology Centre, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
29
|
Garriga X, Calero S, Barbé J. Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida. MOLECULAR & GENERAL GENETICS : MGG 1992; 236:125-34. [PMID: 1494343 DOI: 10.1007/bf00279651] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complete nucleotide sequences of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida were determined; the DNA sequences of the lexA genes from these bacteria were 86%, 76%, 61% and 59% similar, respectively, to the Escherichia coli K12 gene. The predicted amino acid sequences of the S. typhimurium, E. carotovora and P. putida LexA proteins are 202 residues long whereas that of P. aeruginosa is 204. Two putative LexA repressor binding sites were localized upstream of each of the heterologous genes, the distance between them being 5 bp in S. typhimurium and E. carotovora, as in the lexA gene of E. coli, and 3 bp in P. putida and P. aeruginosa. The first lexA site present in the lexA operator of all five bacteria is very well conserved. However, the second lexA box is considerably more variable. The Ala-84--Gly-85 bond, at which the LexA repressor of E. coli is cleaved during the induction of the SOS response, is also found in the LexA proteins of S. typhimurium and E. carotovora. Likewise, the amino acids Ser-119 and Lys-156 are present in all of these three LexA repressors. These residues also exist in the LexA proteins of P. putida and P. aeruginosa, but they are displaced by 4 and 6 residues, respectively. Furthermore, the structure and sequence of the DNA-binding domain of the LexA repressor of E. coli are highly conserved in the S. typhimurium, E. carotovora, P. aeruginosa and P. putida LexA proteins.
Collapse
Affiliation(s)
- X Garriga
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
30
|
Wardhan H, McPherson MJ, Harris CA, Sharma E, Sastry GR. Molecular analysis of the recA gene of Agrobacterium tumefaciens C58. Gene 1992; 121:133-6. [PMID: 1427086 DOI: 10.1016/0378-1119(92)90171-k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complete nucleotide sequence of the Agrobacterium tumefaciens recA gene was determined. A comparison of the translated open reading frame of the gene with other known recA sequences revealed significant sequence conservation. However, unlike its Escherichia coli equivalent, A. tumefaciens recA lacks the upstream 'SOS box', suggesting a different mechanism of regulation for this gene.
Collapse
Affiliation(s)
- H Wardhan
- Department of Genetics, University of Leeds, UK
| | | | | | | | | |
Collapse
|
31
|
Ogawa T, Shinohara A, Ogawa H, Tomizawa J. Functional structures of the recA protein found by chimera analysis. J Mol Biol 1992; 226:651-60. [PMID: 1507220 DOI: 10.1016/0022-2836(92)90622-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed a novel genetic method for finding functional regions of a protein by the analysis of chimeras formed between homologous proteins. Sets of chimeric genes were made by intramolecular homologous recombination in a linearized plasmid DNA carrying both recA genes of Escherichia coli and Pseudomonas aeruginosa. A recBCsbcA strain of E. coli was used for isolation of plasmids carrying recombinants between these genes. Examination of properties of E. coli strains deleting the recA gene and carrying a plasmid with a chimeric gene shows that chimera formation at certain positions inactivates a RecA function. Frequently, all chimeras with a junction in a certain region of the protein inactivate a function. Rather than a direct effect of the presence of the junction at a particular position, mismatching of the regions both sides of the junction that are derived from the different species is responsible for the inactivation. For a chimeric protein to be functional, certain pairs of sequences in different regions of the protein must derive from the same parent. Four pairs of such sequences were found: two are involved in activities for genetic recombination and for resistance to ultraviolet light irradiation and the others in formation of active oligomers. Regions defined by these sequences are located in the looped regions of the protein. A pair of regions may co-operate to form a functional folded structure.
Collapse
Affiliation(s)
- T Ogawa
- Department of Biology, Faculty of Science, Osaka University, Japan
| | | | | | | |
Collapse
|
32
|
Quivey RG, Faustoferri RC. In vivo inactivation of the Streptococcus mutans recA gene mediated by PCR amplification and cloning of a recA DNA fragment. Gene 1992; 116:35-42. [PMID: 1628842 DOI: 10.1016/0378-1119(92)90626-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The inactivation of the RecA protein in pathogenic oral streptococci would facilitate genetic analysis of potential virulence factors in these strains. Comparison of recA nucleotide (nt) sequences from a number of bacteria has suggested that two regions of highly conserved RecA amino acid (aa) sequence could be used as a basis for synthesizing degenerate oligodeoxyribonucleotide primers with which to amplify recA homologues from the streptococci. Accordingly, primer mixtures were used to amplify a 693-bp fragment of the Streptococcus mutans chromosome by PCR. The amplified fragment was cloned and its identity confirmed via hybridization to an Escherichia coli recA gene probe and by nt sequence determination. The recA homologue fragment from S. mutans GS-5 was 63% and 75% homologous to the deduced aa sequences of the E. coli and Bacillus subtilis RecA enzymes, respectively. The S. mutans recA fragment was mutagenized in vitro via insertional inactivation and returned to the chromosome using allelic exchange. The resulting strains of S. mutans were shown to be substantially more sensitive to UV irradiation than the wild-type strain. Further, the ability to incorporate linear markers into the chromosome was abolished in putative S. mutans recA strains, thus indicating the functional inactivation of RecA in these microorganisms.
Collapse
Affiliation(s)
- R G Quivey
- Department of Dental Research, University of Rochester School of Medicine and Dentistry, NY 14642
| | | |
Collapse
|
33
|
Venkatesh TV, Das HK. The Azotobacter vinelandii recA gene: sequence analysis and regulation of expression. Gene 1992; 113:47-53. [PMID: 1563632 DOI: 10.1016/0378-1119(92)90668-f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide (nt) sequence of the Azotobacter vinelandii recA gene (Av-recA) was determined and compared with the recA sequences from Pseudomonas aeruginosa (Pa-recA), a soil bacterium, and Escherichia coli (Ec-recA), an enteric bacterium. The Av-recA gene and the deduced aa sequence were found to be more similar to their Pa-recA counterparts than to the Ec-recA gene and protein. Expression of Av-recA was found to be autoregulatory. Unlike Ec-recA and Pa-recA, however, expression of Av-recA was weakly enhanced upon DNA damage. In E. coli, expression of an Av-recA::lacZ fusion was poor, but its autoregulation was similar to that of Ec-recA. Av-recA expression, however, could not induce the repair system response in E. coli.
Collapse
Affiliation(s)
- T V Venkatesh
- Genetic Engineering Unit, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
34
|
Warner-Bartnicki AL, Miller RV. Characterization of stress-responsive behavior in Pseudomonas aeruginosa PAO: isolation of Tn3-lacZYA fusions with novel damage-inducible (din) promoters. J Bacteriol 1992; 174:1862-8. [PMID: 1312530 PMCID: PMC205789 DOI: 10.1128/jb.174.6.1862-1868.1992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the pervasive soil and water microorganism Pseudomonas aeruginosa demonstrates heightened sensitivity to UV radiation, this species possesses a recA gene that, based on structural and functional properties, could mediate a DNA damage-responsive regulon similar to the SOS regulon of Escherichia coli. To determine whether P. aeruginosa encodes such stress-inducible genes, the response of P. aeruginosa to DNA-damaging agents including far-UV radiation (UVC) and the quinolone antimicrobial agent norfloxacin was investigated by monitoring the expression of fusions linking P. aeruginosa promoters to a beta-galactosidase reporter gene. These fusions were obtained by Tn3-HoHoI insertional mutagenesis of a P. aeruginosa genomic library. Eight different damage-inducible (din) gene fusions were isolated which lack homology to the P. aeruginosa recA gene. Expression of the three gene fusions studied, dinA::lacZYA, dinB::lacZYA, and dinC::lacZYA, increased following UVC and quinolone exposure but not following heat shock. Similar to E. coli SOS genes, the din genes were induced to different extents and with dissimilar kinetics following UVC irradiation.
Collapse
Affiliation(s)
- A L Warner-Bartnicki
- Department of Molecular and Cellular Biochemistry, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 60153
| | | |
Collapse
|
35
|
Abstract
We have cloned and sequenced the recA gene from two strains, 775 and 531A, of the fish pathogen, Vibrio anguillarum. Although both strains showed different sensitivities to methyl methanesulfonate (MMS), the recA genes were identical. In vitro expression of the V. anguillarum recA gene produced a polypeptide of about 40 kDa, in agreement with the value obtained from the nucleotide sequence. We identified the transcription start point by primer extension. The promoter for the recA gene mapped to an SOS regulatory element. The presence of an SOS box suggests that a LexA-like mediated response system may exist in V. anguillarum. The deduced RecA amino acid sequence is highly homologous with Escherichia coli RecA and other RecA proteins. Domains important in RecA function are conserved. We provide a comparative analysis of the activities and features of RecA analogs from a variety of species. We observed that certain residues that could be important in protein conformation are conserved in RecA proteins across a diverse range of bacterial species.
Collapse
Affiliation(s)
- M E Tolmasky
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-3098
| | | | | |
Collapse
|
36
|
Michiels J, Vande Broek A, Vanderleyden J. Molecular cloning and nucleotide sequence of the Rhizobium phaseoli recA gene. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:486-90. [PMID: 1832737 DOI: 10.1007/bf00260644] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A recombinant lambda phage carrying the recA gene of Rhizobium phaseoli was isolated from a R. phaseoli genomic library by complementation of the Fec- phenotype of the recombinant phage in Escherichia coli. When expressed in E. coli, the cloned recA gene was shown to restore resistance to both UV irradiation and the DNA alkylating agent methyl methanesulphonate (MMS). The R. phaseoli recA gene also promoted homologous recombination in E. coli. The cloned recA gene was only weakly inducible in E. coli recA strains by DNA damaging agents. The DNA sequence of the R. phaseoli recA gene was determined and compared with published recA sequences. No LexA-binding site was detected in the R. phaseoli recA upstream region.
Collapse
Affiliation(s)
- J Michiels
- F.A. Janssens Laboratory of Genetics, University of Leuven, Heverlee, Belgium
| | | | | |
Collapse
|
37
|
Selbitschka W, Arnold W, Priefer UB, Rottschäfer T, Schmidt M, Simon R, Pühler A. Characterization of recA genes and recA mutants of Rhizobium meliloti and Rhizobium leguminosarum biovar viciae. MOLECULAR & GENERAL GENETICS : MGG 1991; 229:86-95. [PMID: 1896024 DOI: 10.1007/bf00264217] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA fragments carrying the recA genes of Rhizobium meliloti and Rhizobium leguminosarum biovar viciae were isolated by complementing a UV-sensitive recA- Escherichia coli strain. Sequence analysis revealed that the coding region of the R. meliloti recA gene consists of 1044 bp coding for 348 amino acids whereas the coding region of the R. leguminosarum bv. viciae recA gene has 1053 bp specifying 351 amino acids. The R. meliloti and R. leguminosarum bv. viciae recA genes show 84.8% homology at the DNA sequence level and of 90.1% at the amino acid sequence level. recA- mutant strains of both Rhizobium species were constructed by inserting a gentamicin resistance cassette into the respective recA gene. The resulting recA mutants exhibited an increased sensitivity to UV irradiation, were impaired in their ability to perform homologous recombination and showed a slightly reduced growth rate when compared with the respective wild-type strains. The Rhizobium recA strains did not have altered symbiotic nitrogen fixation capacity. Therefore, they represent ideal candidates for release experiments with impaired strains.
Collapse
Affiliation(s)
- W Selbitschka
- Lehrstuhl für Genetik, Universität Bielefeld, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Fernandez de Henestrosa AR, Calero S, Barbé J. Expression of the recA gene of Escherichia coli in several species of gram-negative bacteria. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:503-6. [PMID: 2038310 DOI: 10.1007/bf00260664] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A broad host range plasmid containing an operon fusion between the recA and lacZ genes of Escherichia coli was introduced into various aerobic and facultative gram-negative bacteria-30 species belonging to 20 different genera - to study the expression of the recA gene after DNA damage. These included species of the families Enterobacteriaceae, Pseudomonadaceae. Rhizobiaceae, Vibrionaceae, Neisseriaceae, Rhodospirillaceae and Azotobacteraceae. Results obtained show that all bacteria tested, except Xanthomonas campestris and those of the genus Rhodobacter, are able to repress and induce the recA gene of E. coli in the absence and in the presence of DNA damage, respectively. All these data indicate that the SOS system is present in bacterial species of several families and that the LexA-binding site must be very conserved in them.
Collapse
|
39
|
Abstract
The genome of the class II filamentous bacteriophage Pf1 has been sequenced by a combination of the chain termination and chemical degradation methods. It consists of 7349 nucleotides in a closed, circular loop of single-stranded DNA. The size and position of its open reading frames (ORFs) in general resemble those of other filamentous bacteriophage genomes. The size and position of the spaces between the ORFs have not been conserved, however, and six short reading frames (2 of which overlap) occupy a region corresponding to that filled by genes 2 and 10 in the Ff genome. Most of the ORFs are preceded by sequences resembling ribosome binding sites from the phage's host. Pseudomonas aeruginosa, that appear to differ somewhat from their counterparts in Escherichia coli. A search for sequences related to known pseudomonad promoters suggests that the promoters in this bacteriophage may well be ntr-dependent, with the two strongest preceding the gene for the major coat protein (gene 8) and another ORF (430). Gene 8 is followed by a sequence with the properties of a rho-independent terminator of transcription, like that at the same position in the genome of Ff. The Pf1 genome contains no collection of potential stem-and-loop structures corresponding to those that initiate replication of Ff DNA and assembly of the Ff virion, although isolated structures of this kind are present. The available evidence suggests that at least 13 of the 14 major ORFs are expressed. Overall, the organization of the Pf1 genome differs from that of the other class II filamentous phage whose genome has been sequenced, Pf3, as much as it does from that of the class I phages Ff and IKe.
Collapse
Affiliation(s)
- D F Hill
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
40
|
Favre D, Cryz SJ, Viret JF. Cloning of the recA gene of Bordetella pertussis and characterization of its product. Biochimie 1991; 73:235-44. [PMID: 1832021 DOI: 10.1016/0300-9084(91)90208-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A recA gene of Bordetella pertussis was identified in a plasmid library by complementation of a recA mutation in E coli and subcloned as a 2.1-kb Sph I DNA fragment. Southern hybridization experiments showed no similarity to the E coli recA gene, but very strong similarity to other Bordetella species. E coli recA mutant cells containing the B pertussis recA gene at high gene dosage were resistant to DNA-damaging agents such as methyl methane sulfonate or 4-nitroquinoline-N-oxide, displayed induction of SOS functions, and were able to promote DNA recombination, but not induction of phage lambda. The latter phenotype distinguishes the B pertussis recA gene product from the corresponding proteins from most other Gram-negative organisms. Amino acid sequence comparisons revealed a high degree of structural conservation between prokaryotic RecA proteins.
Collapse
Affiliation(s)
- D Favre
- Swiss Serum and Vaccine Institute, Berne, Switzerland
| | | | | |
Collapse
|
41
|
Abstract
A protein has various epitopes, and a monoclonal antibody specifically binds to the protein by recognizing 1 of the epitopes. This characteristic of the monoclonal antibody has opened various new approaches in a wide variety of research works. In studies about recA protein and its promoted various reactions relating to genetic recombination, anti-recA protein-monoclonal antibodies are very useful to analyse reaction mechanisms and to detect transition in the higher order-structure of the protein, as well as to measure the amounts of recA protein in vitro or in vivo and to identify the related proteins. In this article, we will review studies on recA protein in which monoclonal antibodies were used as major tools. By using anti-recA protein-monoclonal IgGs as specific inhibitors, the partial reactions of the homologous pairing and strand exchange promoted by recA protein were separated, and by use of a set of anti-recA protein IgGs the stages of activation of recA protein in the above reactions were discriminated.
Collapse
Affiliation(s)
- T Shibata
- Laboratory of Microbiology, RIKEN (Institute of Physical and Chemical Research), Saitama, Japan
| | | | | | | |
Collapse
|
42
|
Lidstrom ME, Tsygankov YD. Molecular genetics of methylotrophic bacteria. BIOTECHNOLOGY (READING, MASS.) 1991; 18:273-304. [PMID: 1909917 DOI: 10.1016/b978-0-7506-9188-8.50019-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Nakazawa T, Kimoto M, Abe M. Cloning, sequencing, and transcriptional analysis of the recA gene of Pseudomonas cepacia. Gene X 1990; 94:83-8. [PMID: 2227456 DOI: 10.1016/0378-1119(90)90471-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A recombinant plasmid carrying the recA gene of Pseudomonas cepacia complements a recA mutation of Escherichia coli and restores UV and methylmethane sulfonate resistance, as well as recombinational proficiency. The predicted amino acid (aa) sequence of P. cepacia RecA (347 aa; Mr, 37256) is highly homologous to the RecA proteins from Thiobacillus ferrooxidans (74% aa homology), Pseudomonas aeruginosa (72%), E. coli (71%), Anabaena variabilis (61%), and Synechococcus sp. strains PCC7002 (59%). The transcription of the recA gene in P. cepacia and E. coli, which starts at almost the same site, was enhanced slightly by UV irradiation in the former and markedly in the latter bacteria. An SOS box characteristic to LexA-regulated promoters, along with the -10 and -35 consensus sequences, was found in the 5' upstream region of the P. cepacia recA gene.
Collapse
Affiliation(s)
- T Nakazawa
- Department of Microbiology, Yamaguchi University School of Medicine, Japan
| | | | | |
Collapse
|
44
|
Gomelsky M, Gak E, Chistoserdov A, Bolotin A, Tsygankov YD. Cloning, sequence and expression in Escherichia coli of the Methylobacillus flagellatum recA gene. Gene 1990; 94:69-75. [PMID: 2227454 DOI: 10.1016/0378-1119(90)90469-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By means of interspecific complementation of an Escherichia coli recA- mutation with phasmids containing a gene bank from an obligate methylotroph, Methylobacillus flagellatum (Mf), the recA+ gene from this bacterium was identified. When expressed in an E. coli recA- host, it can function in recombination, DNA repair, and prophage induction. The nucleotide sequence of the gene has been determined. The coding region consists of 1032 bp specifying 344 amino acids. The deduced RecA protein structure shows a striking homology with RecA from other bacteria, except for the C-terminal region and some residues which were proposed to be responsible for the coprotease ability of RecA proteins. The region preceding the recA-Mf gene start codon has no SOS box--the LexA repressor binding site. Expression of the recA-Mf gene in E. coli proved to be DNA-damage independent.
Collapse
Affiliation(s)
- M Gomelsky
- Institute of Genetics and Selection of Industrial Microorganisms, Moscow, U.S.S.R
| | | | | | | | | |
Collapse
|
45
|
Abstract
The nucleotide sequence of a 2.5-kb DNA segment containing the Bacteroides fragilis recA gene was determined. The coding region of the recA gene specifies a protein of 318 amino acids. The RecA protein of B. fragilis shows significant homology with that of Escherichia coli, Thiobacillus ferrooxidans, Pseudomonas aeruginosa and Proteus mirabilis. No SOS box characteristic of LexA-regulated promoters could be identified in the 5'-noncoding region of the B. fragilis recA gene. Promoter activity of the cloned recA gene in E. coli was located within a 113-bp fragment of the B. fragilis DNA by in vitro construction of operon fusions with a promoterless lacZ gene. The transcription start point for this gene in B. fragilis was determined by primer extension analysis.
Collapse
Affiliation(s)
- H J Goodman
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
46
|
Fyfe JA, Davies JK. Nucleotide sequence and expression in Escherichia coli of the recA gene of Neisseria gonorrhoeae. Gene 1990; 93:151-6. [PMID: 2121608 DOI: 10.1016/0378-1119(90)90151-g] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleotide sequence of the recA gene of Neisseria gonorrhoeae MS11 has been determined. The product of this gene can act as a recombinase in Escherichia coli, but does so with a decreased efficiency, probably because of the formation of mixed multimers with the equivalent E. coli protein.
Collapse
Affiliation(s)
- J A Fyfe
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
47
|
Zhao X, Dreyfus LA. Expression and nucleotide sequence analysis of the Legionella pneumophila recA gene. FEMS Microbiol Lett 1990; 58:227-31. [PMID: 2121588 DOI: 10.1111/j.1574-6968.1990.tb13983.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleotide sequence of the L pneumophila recA gene was determined. The coding region was 1044 nucleotides (348 codons), specifying a 37,934 Da protein. Preceding the recA gene was a tandem set of transcription regulatory sequences and putative LexA binding sites. When expressed in E. coli, the cloned recA gene yield two proteins with molecular weights of approximately 38,000 and 35,500 Da. The larger of these two proteins shared 70.4% and 74.6% identity with the E. coli and Pseudomonas aeruginosa RecA proteins, respectively. The 35,500 Da recA encoded protein was presumed to be the product of translation from Met26 which was preceded by an alternate ribosomal binding site.
Collapse
Affiliation(s)
- X Zhao
- Department of Microbiology, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
48
|
Zhao XJ, McEntee K. DNA sequence analysis of the recA genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri and Escherichia coli B/r. MOLECULAR & GENERAL GENETICS : MGG 1990; 222:369-76. [PMID: 2274037 DOI: 10.1007/bf00633842] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete nucleotide sequences of the recA genes from Escherichia coli B/r, Shigella flexneri, Erwinia carotovora and Proteus vulgaris were determined. The DNA sequence of the coding region of the E. coli B/r gene contained a single nucleotide change compared with the E. coli K12 gene sequence whereas the S. flexneri gene differed at 7 residues. In both cases, the predicted proteins were identical in primary structure to the E. coli K12 RecA protein. The DNA sequences of the recA genes from E. carotovora and P. vulgaris were 80% and 74% homologous, respectively, to the E. coli K12 gene. The predicted amino acid sequences of the E. carotovora and P. vulgaris RecA proteins were 91% and 85% identical respectively, to that of E. coli K12. The RecA proteins from both P. vulgaris and E. carotovora diverged significantly in sequence in the last 50 residues whereas they showed striking conservation throughout the first 300 amino acids which include an ATP-binding region and a subunit interaction domain. A putative LexA repressor binding site was localized upstream of each of the heterologous genes.
Collapse
Affiliation(s)
- X J Zhao
- Department of Biological Chemistry, UCLA School of Medicine, University of California 90024
| | | |
Collapse
|
49
|
|
50
|
Abstract
The effect of the CAM-OCT plasmid on responses to UV irradiation of Pseudomonas aeruginosa recA mutants was characterized. Mutant alleles examined included rec-1, rec-2, and recA7::Tn501. The plasmid substantially enhanced both survival and mutagenesis of RecA- cells after treatment with UV light. Survival of the RecA-(CAM-OCT) cells after UV irradiation was intermediate between that seen in the wild-type P. aeruginosa PAO1 and the increased survival seen in PAO1(CAM-OCT) cells. Mutability was quantitated by the reversion to carbenicillin resistance of strains carrying a bla(Am) mutation on a derivative of plasmid RP1. UV-induced mutagenesis of CAM-OCT carrying recA mutants occurred at levels comparable to that seen in PAO1(CAM-OCT). The ability of CAM-OCT plasmid to suppress the recombination deficiency in recA mutants was tested by assaying for bacteriophage F116L-generalized transduction of a Tn7 insertion in the alkane utilization genes of CAM-OCT. Transduction of the Tn7 insertion was not detected in RecA-(CAM-OCT) strains but was easily seen in PAO1(CAM-OCT), indicating that the plasmid does not encode a recA analog. The results indicate that the CAM-OCT UV response genes are expressed in RecA- cells, which differs from results seen with other UV response-enhancing plasmids. The results suggest that CAM-OCT either encodes several UV responses genes itself or induces chromosomal UV response genes by an alternate mechanism.
Collapse
Affiliation(s)
- D L McBeth
- Department of Microbiology, City University of New York Medical School/Sophie Davis School of Biomedical Education, City College, New York 10031
| |
Collapse
|