1
|
Gubler M, Hennecke H. fixA, BandCgenes are essential for symbiotic and free-living, microaerobic nitrogen fixation. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80536-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
|
3
|
Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer HM. Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol 2000; 182:1472-80. [PMID: 10692350 PMCID: PMC94442 DOI: 10.1128/jb.182.6.1472-1480.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The so-called symbiotic region of the Bradyrhizobium japonicum chromosome (C. Kündig, H. Hennecke, and M. Göttfert, J. Bacteriol. 175:613-622, 1993) was screened for the presence of genes controlled by the nitrogen fixation regulatory protein NifA. Southern blots of restriction enzyme-digested cosmids that represent an ordered, overlapping library of the symbiotic region were competitively hybridized with in vitro-labeled RNA from anaerobically grown wild-type cells and an excess of RNA isolated either from anaerobically grown nifA and rpoN mutant cells or from aerobically grown wild-type cells. In addition to the previously characterized nif and fix gene clusters, we identified three new NifA-regulated genes that were named nrgA, nrgB, and nrgC (nrg stands for NifA-regulated gene). The latter two probably form an operon, nrgBC. The proteins encoded by nrgC and nrgA exhibited amino acid sequence similarity to bacterial hydroxylases and N-acetyltransferases, respectively. The product of nrgB showed no significant similarity to any protein with a database entry. Primer extension experiments and expression studies with translational lacZ fusions revealed the presence of a functional -24/-12-type promoter upstream of nrgA and nrgBC and proved the NifA- and RpoN (sigma(54))-dependent transcription of the respective genes. Null mutations introduced into nrgA and nrgBC resulted in mutant strains that exhibited wild-type-like symbiotic properties, including nitrogen fixation, when tested on soybean, cowpea, or mung bean host plants. Thus, the discovery of nrgA and nrgBC further emphasizes the previously suggested role of NifA as an activator of anaerobically induced genes other than the classical nitrogen fixation genes.
Collapse
Affiliation(s)
- A Nienaber
- Institut für Mikrobiologie, Eidgenössische Hochschule, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
4
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
5
|
Weidenhaupt M, Rossi P, Beck C, Fischer HM, Hennecke H. Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes: fixA, fixB and etfS, etfL. Arch Microbiol 1996; 165:169-78. [PMID: 8599534 DOI: 10.1007/bf01692858] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A group of four co-regulated genes (fixA, fixB, fixC, fixX) essential for symbiotic nitrogen fixation has been described in several rhizobial species, including Bradyrhizobium japonicum. The complete nucleotide sequence of the B. japonicum fixA, fixB and fixC, genes is reported here. The derived amino acid sequences confirmed the previously noted sequence similarity between FixA and the beta-subunit and between FixB and the alpha-subunit of mammalian and Paracoccus denitrificans electron transfer flavoproteins (ETF). Since the classical role of ETF is in beta-oxidation of fatty acids, a process unrelated to nitrogen fixation, we rationalized that B. japonicum ought to contain bona fide etf genes in addition to the etf-like genes fixA and fixB. Therefore, we identified, cloned, sequenced, and transcriptionally analyzed the B. japonicum etfSL genes encoding the beta- and alpha-subunits of ETF. The etfSL genes, but not the fix genes, are transcribed in aerobically grown cells. An amino acid sequence comparison between all available ETFs and ETF-like proteins revealed the existence of two distinguishable subfamilies. Group I comprises housekeeping ETFs that link acyl-CoA dehydrogenase reactions with the respiratory chain, such as in the fatty acid degradation pathway. B. japonicum EtfS and EtfL clearly belong to this group. Group II contains ETF-like proteins that are synthesized only under certain specific growth conditions and receive electrons from the oxidation of specific substrates. The products of the anaerobically induced fixA and fixB genes of B. japonicum are members of that group. B. japonicum is the first example of an organism in which genes for proteins of both groups I and II of the ETF family have been identified.
Collapse
Affiliation(s)
- M Weidenhaupt
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Chun JY, Sexton GL, Roth LE, Stacey G. Identification and characterization of a novel Bradyrhizobium japonicum gene involved in host-specific nitrogen fixation. J Bacteriol 1994; 176:6717-29. [PMID: 7961425 PMCID: PMC197029 DOI: 10.1128/jb.176.21.6717-6729.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To understand the genetic mechanism of host specificity in the interaction between rhizobia and their hosts, it is important to identify genes that influence both early and late steps in symbiotic development. This paper focuses on the little-understood genetics of host-specific nitrogen fixation. A deletion mutant of Bradyrhizobium japonicum, strain NAD163, was found to induce effective, nitrogen-fixing nodules on soybean and siratro plants but produced ineffective nodules on cowpea plants. Additional transposon and deletion mutants defined a small region that conferred this phenotype, and this region was sequenced to identify two putative open reading frames (ORFs). Data indicate that only one of these ORFs is detectable in bacteroids. This ORF was termed hsfA, with a predicted protein product of 11 kDa. The transcriptional start site of hsfA was determined and found to coincide with a predicted RpoN-dependent promoter. Microscopic studies of nodules induced by the wild type and hsfA mutants on cowpea and soybean plants indicate that the cowpea mutant nodules are slow to develop. The data indicate that hsfA appears to play a crucial role in bacteroid development on cowpea but does not appear to be essential for nitrogen fixation on the other hosts tested.
Collapse
Affiliation(s)
- J Y Chun
- Center for Legume Research, Graduate Program of Plant Physiology and Genetics, Department of Zoology, and Department of Microbiology and Graduate Program of Ecology, University of Tennessee, Knoxville 37996
| | | | | | | |
Collapse
|
7
|
Bradburne JA, Mathis JN, Israel DW. nifGene expression in a Nif +, Fix âBradyrhizobium japanicumvariant. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07206.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Michiels J, Vanderleyden J. Cloning and sequence of the Rhizobium leguminosarum biovar phaseoli fixA gene. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:232-3. [PMID: 8369342 DOI: 10.1016/0005-2728(93)90179-j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report the identification and cloning of Rhizobium leguminosarum biovar phaseoli fixABCX homologous genes and the complete nucleotide sequence of the fixA gene. The corresponding gene product is highly homologous to the Rhizobium meliloti and Azorhizobium caulinodans FixA proteins. Putative NtrA- and NifA-binding sites are identified in the fixA promoter region.
Collapse
Affiliation(s)
- J Michiels
- F.A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | |
Collapse
|
9
|
Weidenhaupt M, Fischer HM, Acuña G, Sanjuan J, Hennecke H. Use of a promoter-probe vector system in the cloning of a new NifA-dependent promoter (ndp) from Bradyrhizobium japonicum. Gene X 1993; 129:33-40. [PMID: 8335258 DOI: 10.1016/0378-1119(93)90693-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many of the symbiotic nitrogen-fixation genes in the soybean root nodule bacterium, Bradyrhizobium japonicum, are transcribed from -24/-12 promoters that are recognized by the sigma 54-RNA polymerase and activated by the transcriptional regulator protein, NifA. Several lines of evidence suggest that the B. japonicum genome has more than those seven NifA-regulated promoters which were characterized previously. Here, we present a strategy aimed at the cloning of new NifA-activated promoters. It makes use of (i) a promoter-probe vector into which random B. japonicum genomic fragments were cloned in front of a promoterless reporter gene and (ii) a screening procedure that allowed us to distinguish constitutive promoters from promoters that were specifically activated by NifA under microaerobic or anaerobic conditions. With certain modifications, the system may be generally applicable to clone positively regulated, anaerobically induced genes. A novel NifA-dependent promoter region (ndp) of B. japonicum was found by these means. The transcription start point was mapped, and its 5'-flanking DNA carried a -24/-12-type promoter sequence plus potential binding sites for NifA and integration host factor. Further transcript analyses confirmed that maximal transcription from this promoter occurred only in the presence of NifA and sigma 54 during anaerobic growth of B. japonicum. In Escherichia coli, expression of beta-galactosidase derived from a transcriptional ndp::lacZ fusion was activated 11-fold by B. japonicum NifA, and this activation also required sigma 54 but was independent of NtrC. The DNA around ndp shared no similarity with known sequences in databases.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Weidenhaupt
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Kündig C, Hennecke H, Göttfert M. Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J Bacteriol 1993; 175:613-22. [PMID: 8423135 PMCID: PMC196196 DOI: 10.1128/jb.175.3.613-622.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We describe a compilation of 79 known genes of Bradyrhizobium japonicum 110, 63 of which were placed on a correlated physical and genetic map of the chromosome. Genomic DNA was restricted with enzymes PacI, PmeI, and SwaI, which yielded two, five, and nine fragments, respectively. Linkage of some of the fragments was established by performing Southern blot hybridization experiments. For probes we used isolated, labelled fragments that were produced either by PmeI or by SwaI. Genes were mapped on individual restriction fragments by performing gene-directed mutagenesis. The principle of this method was to introduce recognition sites for all three restriction enzymes mentioned above into or very near the desired gene loci. Pulsed-field gel electrophoresis of restricted mutant DNA then resulted in an altered fragment pattern compared with wild-type DNA. This allowed us to identify overlapping fragments and to determine the exact position of any selected gene locus. The technique was limited only by the accuracy of the fragment size estimates. After linkage of all of the restriction fragments we concluded that the B. japonicum genome consists of a single, circular chromosome that is approximately 8,700 kb long. Genes directly concerned with nodulation and symbiotic nitrogen fixation are clustered in a chromosomal section that is about 380 kb long.
Collapse
Affiliation(s)
- C Kündig
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
11
|
Arigoni F, Kaminski PA, Celli J, Elmerich C. Transcriptional analysis of the fix ABCXORF1 region of Azorhizobium caulinodans suggests post-transcriptional processing of the fix ABCXORF1 mRNA. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:422-31. [PMID: 1281516 DOI: 10.1007/bf00279389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report here the transcriptional analysis of the fixABCXORF1 region of Azorhizobium caulinodans. This led to the identification of a 0.9 kb transcript covering fixX and ORF1, which was synthesized only under conditions of nitrogen fixation. The 5' end of this transcript was mapped by primer extension and S1 nuclease protection analyses and shown to be located 70 +/- 1 nucleotides upstream of the fixX start codon. By means of transcriptional fixX- and ORF1-lacZ fusions, it was shown that fixX and ORF1 were most probably transcribed from the fixA promoter and that expression of fixX and ORF1 was dependent on NifA activation. This suggests that the 0.9 kb mRNA results from post-transcriptional processing of a large mRNA covering fixA,B,C,X and ORF1. In addition, ORF1 mutants were constructed and were shown not to be impaired in nitrogenase activity.
Collapse
Affiliation(s)
- F Arigoni
- Unité de Physiologie Cellulaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
12
|
Ebeling S, Kündig C, Hennecke H. Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J Bacteriol 1991; 173:6373-82. [PMID: 1717438 PMCID: PMC208969 DOI: 10.1128/jb.173.20.6373-6382.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
All of the Azorhizobium, Bradyrhizobium, and Rhizobium genes known to be involved in the development of nitrogen-fixing legume root nodules are genes that code for proteins. Here we report the first exception to this rule: the sra gene; it was discovered during the genetic analysis of a Bradyrhizobium japonicum Tn5 mutant (strain 259) which had a severe deficiency in colonizing soybean nodules. A DNA region as small as 0.56 kb cloned from the parental wild type restored a wild-type phenotype in strain 259 by genetic complementation. The sra gene was located on this fragment, sequenced, and shown to be transcribed into a 213-nucleotide RNA. Results obtained with critical point mutations in the sra gene proved that the transcript was not translated into protein; rather, it appeared to function as an RNA molecule with a certain stem-and-loop secondary structure. We also detected an sra homolog in Rhizobium meliloti which, when cloned and transferred to B. japonicum mutant 259, fully restored symbiotic effectiveness in that strain. We propose several alternative functions for the sra gene product, of which that as a regulatory RNA for gene expression may be the most probable one.
Collapse
Affiliation(s)
- S Ebeling
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | |
Collapse
|
13
|
Scott-Craig JS, Guerinot ML, Chelm BK. Isolation of Bradyrhizobium japonicum DNA sequences that are transcribed at high levels in bacteroids. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:356-60. [PMID: 1896009 DOI: 10.1007/bf00260627] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA sequences have been isolated that are expressed at high levels in bacteroids, the differentiated form of the soybean microsymbiont, Bradyrhizobium japonicum. Random-primed cDNA was synthesized using total RNA isolated from purified B. japonicum bacteroids or from cells grown in culture. When used directly to screen bacteriophage lambda libraries, these cDNA probes produced a high background hybridization signal due to sequence similarity between B. japonicum and E. coli ribosomal DNA (rDNA) operons. To reduce this background signal, the rDNA operon of B. japonicum was cloned and the rDNA plasmid DNA used in subtractive hybridization with the cDNA probes and as a competitor in hybridization solutions. This method greatly reduced the background signal in screening of genomic libraries and thus permitted the identification of twelve unique recombinant phage which contained sequences that are expressed at higher levels in B. japonicum bacteroids than in cells grown in culture.
Collapse
Affiliation(s)
- J S Scott-Craig
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing 48824-1312
| | | | | |
Collapse
|
14
|
Arigoni F, Kaminski PA, Hennecke H, Elmerich C. Nucleotide sequence of the fixABC region of Azorhizobium caulinodans ORS571: similarity of the fixB product with eukaryotic flavoproteins, characterization of fixX, and identification of nifW. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:514-20. [PMID: 1850088 DOI: 10.1007/bf00261695] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nucleotide sequence of a 4.1 kb DNA fragment containing the fixABC region of Azorhizobium caulinodans was established. The three gene products were very similar to the corresponding polypeptides of Rhizobium meliloti. The C-terminal domains of both fixB products displayed a high degree of similarity with the alpha-subunits of rat and human electron transfer flavoproteins, suggesting a role for the FixB protein in a redox reaction. Two open reading frames (ORF) were found downstream of fixC. The first ORF was identified as fixX on the basis of sequence homology with fixX from several Rhizobium and Bradyrhizobium strains. The second ORF potentially encoded a 69 amino acid product and was found to be homologous to a DNA region in the Rhodobacter capsulatus nif cluster I. Insertion mutagenesis of the A. caulinodans fixX gene conferred a Nif- phenotype to bacteria growth in the free-living state and a Fix- phenotype in symbiotic association with the host plant Sesbania rostrata. A crude extract from the fixX mutant had no nitrogenase activity. Furthermore, data presented in this paper also indicate that the previously identified nifO gene located upstream of fixA was probably a homologue of the nifW gene of Klebsiella pneumoniae and Azotobacter vinelandii.
Collapse
Affiliation(s)
- F Arigoni
- Unité de Physiologie Cellulaire, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
15
|
Singh M, Tripathi AK, Klingmüller W. Identification of a regulatory nifA type gene and physical mapping of cloned new nif regions of Azospirillum brasilense. MOLECULAR & GENERAL GENETICS : MGG 1989; 219:235-40. [PMID: 2559312 DOI: 10.1007/bf00261182] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three new Tn5-mutagenized nif genes of Azospirillum brasilense were characterized. The sizes of the restriction fragments and the restriction maps of the cloned nif DNA regions showed that these nif genes are distinct from those reported earlier, e.g. nifHDK, nifE, nifUS, fixABC. The Nif27 mutant was identified as a nifA type regulatory gene of A. brasilense (a) by genetic complementation with nifA of Klebsiella pneumoniae, (b) by the absence of nitrogenase iron protein in western protein blots and (c) by its inability to activate expression of a nifH-lacZ fusion. The growth characteristics of the three mutants showed that none of them is defective in general nitrogen regulatory (ntr) genes. Also, no homology was detected between the three nif DNA regions of the mutants, cloned in pMS188, pMS189 and pMS197, and the K. pneumoniae nif, glnA or ntr genes. In addition, the fixABC genes of Bradyrhizobium japonicum did not show any hybridization with the cloned Azospirillum genes. Unlike the situation in enteric bacteria, the nif genes in A. brasilense are scattered and span a region of about 65 kb.
Collapse
Affiliation(s)
- M Singh
- Gesellschaft für Biotechnologische Forschung mbH (GBF), Bereich Mikrobiologie, Braunschweig, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Moreno-Vivian C, Schmehl M, Masepohl B, Arnold W, Klipp W. DNA sequence and genetic analysis of the Rhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:353-63. [PMID: 2747620 DOI: 10.1007/bf00334376] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rhodobacter capsulatus genes homologous to Klebsiella pneumoniae nifE, nifN and nifX were identified by DNA sequence analysis of a 4282 bp fragment of nif region A. Four open reading frames coding for a 51,188 (NifE), a 49,459 (NifN), a 17,459 (NifX) and a 17,472 (ORF4) dalton protein were detected. A typical NifA activated consensus promoter and two imperfect putative NifA binding sites were located in the 377 bp sequence in front of the nifE coding region. Comparison of the deduced amino acid sequences of R. capsulatus NifE and NifN revealed homologies not only to analogous gene products of other organisms but also to the alpha and beta subunits of the nitrogenase iron-molybdenum protein. In addition, the R. capsulatus nifE and nifN proteins shared considerable homology with each other. The map position of nifX downstream of nifEN corresponded in R. capsulatus and K. pneumoniae and the deduced molecular weights of both proteins were nearly identical. Nevertheless, R. capsulatus NifX was more related to the C-terminal end of NifY from K. pneumoniae than to NifX. A small domain of approximately 33 amino acid residues showing the highest degree of homology between NifY and NifX was also present in all nifB proteins analyzed so far. This homology indicated an evolutionary relationship of nifX, nifY and nifB and also suggested that NifX and NifY might play a role in maturation and/or stability of the iron-molybdenum cofactor. The open reading frame (ORF4) downstream of nifX in R. capsulatus is also present in Azotobacter vinelandii but not in K. pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Moreno-Vivian
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
17
|
Gubler M, Zürcher T, Hennecke H. The Bradyrhizobium japonicum fixBCX operon: identification of fixX and of a 5' mRNA region affecting the level of the fixBCX transcript. Mol Microbiol 1989; 3:141-8. [PMID: 2503674 DOI: 10.1111/j.1365-2958.1989.tb01803.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Bradyrhizobium japonicum fixX gene was identified and shown to be essential for symbiotic and free-living, microaerobic nitrogen fixation. The fixX gene encodes a ferredoxin-like protein which may be involved in a redox process (electron transport?) essential for nitrogenase activity. This gene was localized downstream of fixC and its expression was dependent on the fixB promoter, providing evidence for the existence of a fixBCX operon. Mutagenesis and sequence analysis of the unusually long, 709bp leader region between the fixB promoter and the fixB structural gene did not reveal the presence of a nif or fix gene that was absolutely essential for nitrogen fixation. However, a short open reading frame (ORF) within this region encoding a polypeptide of 35 amino acids (ORF35) was shown to be efficiently translated. Chromosomal deletion of a 400bp DNA fragment covering ORF35 resulted in a three-fold reduction of the fixBCX mRNA level, which in turn also reduced the nitrogen fixation activity of this mutant. This suggests a possible post-transcriptional control mechanism for the expression of the fixBCX operon involving the stabilization of fixBCX mRNA by ribosomes actively translating ORF35.
Collapse
Affiliation(s)
- M Gubler
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
18
|
Kaminski PA, Norel F, Desnoues N, Kush A, Salzano G, Elmerich C. Characterization of the fixABC region of Azorhizobium caulinodans ORS571 and identification of a new nitrogen fixation gene. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:496-502. [PMID: 3216855 DOI: 10.1007/bf00330486] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The fast growing strain, Azorhizobium caulinodans ORS571, isolated from stem nodules of the tropical legume Sesbania rostrata, can grow in the free-living state at the expense of molecular nitrogen. Five point mutants impaired in nitrogen fixation in the free-living state have been complemented by a plasmid containing the cloned fix-ABC region of strain ORS571. Genetic analysis of the mutants showed that one was impaired in fixC, one in fixA and the three others in a new gene, located upstream from fixA and designated nifO. Site-directed Tn5 mutagenesis was performed to obtain Tn5 insertions in fixB and fixC. The four genes are required for nitrogen fixation both in the free-living state and under symbiotic conditions. The nucleotide sequence of nifO was established. The gene is transcribed independently of fixA and does not correspond to fixX, recently identified in Rhizobium meliloti and R. leguminosarum. Biochemical analysis of the five point mutants showed that they synthesized normal amounts of nitrogenase components. It is unlikely that fixA, fixC and nifO are involved in electron transport to nitrogenase. FixC could be required for the formation of a functional nitrogenase component 2.
Collapse
Affiliation(s)
- P A Kaminski
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The transcriptional start site of the Bradyrhizobium japonicum fixBC operon was identified by nuclease S1 mapping. It was located approximately 700 base pairs upstream of fixB and was preceded by a promoter sequence that showed strong homology to the B. japonicum fixA promoter and thus to the general nif consensus promoter sequence. Further transcript mapping experiments revealed that fixA and fixBC transcription in B. japonicum strictly depended on the presence of the regulatory gene nifA and on low oxygen partial pressure. Consistent with these data, chromosomally integrated fixA- and fixB-lacZ fusions expressed beta-galactosidase activity only in the wild type but not in a nifA mutant and only under microaerobic but not aerobic growth conditions. The presence of nifA accounted for a 19-fold and 44-fold activation of the fixA and fixB promoters, respectively. These results show that the fixA and fixBC genes are regulated in a way similar to that of the nitrogenase genes nifH and nifDK. A very peculiar finding was that the fixA and fixB promoters, when they were located on plasmids, could hardly be activated by the NifA protein, irrespective of whether this was tested in Escherichia coli or B. japonicum backgrounds. This is in clear contrast to the situation with nifH and nifD promoters.
Collapse
Affiliation(s)
- M Gubler
- Mikrobiologisches Institut, ETH-Zentrum, Zürich, Switzerland
| | | |
Collapse
|
20
|
Carlson TA, Martin GB, Chelm BK. Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. J Bacteriol 1987; 169:5861-6. [PMID: 2445733 PMCID: PMC214189 DOI: 10.1128/jb.169.12.5861-5866.1987] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bradyrhizobium japonicum induces the formation of nitrogen-fixing symbiotic root nodules on soybean plants. The B. japonicum genome encodes two isoforms of glutamine synthetase (GS). One form, GSI, encoded by the gene glnA, is similar in structure and activity to the enzyme found in all other bacteria. The second form, GSII, encoded by glnII, is structurally related to the eucaryotic enzyme. Genetic analyses indicate that glnA or glnII alone is sufficient to provide glutamine prototrophy, whereas the double mutation glnA glnII produces glutamine auxotrophy. The glnA gene is transcribed from a single promoter that has a structure most similar to that of the bacterial consensus promoter. The level of transcription of glnA is not specifically affected by nitrogen limitation of growth. The glnII gene is also transcribed from a single promoter; however, this promoter has structural features characteristic of promoters controlled by the nitrogen regulation system. In contrast to glnA, physiological studies indicate that glnII transcription is regulated in response to nitrogen source availability. Under aerobic growth conditions, expression of glnII is induced when growth is limited by nitrogen source depletion as expected for regulation by the nitrogen regulation system.
Collapse
Affiliation(s)
- T A Carlson
- Department of Biochemistry, MSU/DOE Plant Research Laboratory, East Lansing
| | | | | |
Collapse
|
21
|
Nieuwkoop AJ, Banfalvi Z, Deshmane N, Gerhold D, Schell MG, Sirotkin KM, Stacey G. A locus encoding host range is linked to the common nodulation genes of Bradyrhizobium japonicum. J Bacteriol 1987; 169:2631-8. [PMID: 3584066 PMCID: PMC212140 DOI: 10.1128/jb.169.6.2631-2638.1987] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
By using cloned Rhizobium meliloti, Rhizobium leguminosarum, and Rhizobium sp. strain MPIK3030 nodulation (nod) genes as hybridization probes, homologous regions were detected in the slow-growing soybean symbiont Bradyrhizobium japonicum USDA 110. These regions were found to cluster within a 25-kilobase (kb) region. Specific nod probes from R. meliloti were used to identify nodA-, nodB-, nodC-, and nodD-like sequences clustered on two adjacent HindIII restriction fragments of 3.9 and 5.6 kb. A 785-base-pair sequence was identified between nodD and nodABC. This sequence contained an open reading frame of 420 base pairs and was oriented in the same direction as nodABC. A specific nod probe from R. leguminosarum was used to identify nodIJ-like sequences which were also contained within the 5.6-kb HindIII fragment. A nod probe from Rhizobium sp. strain MPIK3030 was used to identify hsn (host specificity)-like sequences essential for the nodulation of siratro (Macroptilium atropurpureum) on a 3.3-kb HindIII fragment downstream of nodIJ. A transposon Tn5 insertion within this region prevented the nodulation of siratro, but caused little or no delay in the nodulation of soybean (Glycine max).
Collapse
|
22
|
Wilson KJ, Anjaiah V, Nambiar PT, Ausubel FM. Isolation and characterization of symbiotic mutants of bradyrhizobium sp. (Arachis) strain NC92: mutants with host-specific defects in nodulation and nitrogen fixation. J Bacteriol 1987; 169:2177-86. [PMID: 3032910 PMCID: PMC212124 DOI: 10.1128/jb.169.5.2177-2186.1987] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Random transposon Tn5 mutagenesis of Bradyrhizobium sp. (Arachis) strain NC92, a member of the cowpea cross-inoculation group, was carried out, and kanamycin-resistant transconjugants were tested for their symbiotic phenotype on three host plants: groundnut, siratro, and pigeonpea. Two nodulation (Nod- phenotype) mutants were isolated. One is unable to nodulate all three hosts and appears to contain an insertion in one of the common nodulation genes (nodABCD); the other is a host-specific nodulation mutant that fails to nodulate pigeonpea, elicits uninvaded nodules on siratro, and elicits normal, nitrogen-fixing nodules on groundnut. In addition, nine mutants defective in nitrogen fixation (Fix- phenotype) were isolated. Three fail to supply symbiotically fixed nitrogen to all three host plants. Surprisingly, nodules elicited by one of these mutants exhibit high levels of acetylene reduction activity, demonstrating the presence of the enzyme nitrogenase. Three more mutants have partially effective phenotypes (Fix +/-) in symbiosis with all three host plants. The remaining three mutants fail to supply fixed nitrogen to one of the host plants tested while remaining partially or fully effective on the other two hosts; two of these mutants are Fix- in pigeonpea and Fix +/- on groundnut and on siratro, whereas the other one is Fix- on groundnut but Fix+ on siratro and on pigeonpea. These latter mutants also retain significant nodule acetylene reduction activity, even in the ineffective symbioses. Such bacterial host-specific fixation (Hsf) mutants have not previously been reported.
Collapse
|
23
|
Ebeling S, Hahn M, Fischer HM, Hennecke H. Identification of nifE-, nifN- and nifS-like genes in Bradyrhizobium japonicum. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00331622] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Hirsch AM, Smith CA. Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol 1987; 169:1137-46. [PMID: 3818542 PMCID: PMC211911 DOI: 10.1128/jb.169.3.1137-1146.1987] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ineffective alfalfa nodules were examined at the light and electron microscope level after inoculation with Rhizobium meliloti strains with mutations in nif and fix genes. All the mutant strains induced nodules that contained elongated bacteroids within the host cells, but the bacteroids quickly senesced. The nodules were small and numerous, and the host cells also exhibited symptoms of an ineffective symbiosis. nifB, fixA, and fixB bacteroids appeared to be completely differentiated (by ultrastructural criteria), i.e., as bacteroids developed, they increased in diameter and length and their cytoplasm underwent a change from homogeneous and electron dense to heterogeneous and electron transparent after enlargement. In contrast, nifA bacteroids rarely matured to this state. The bacteroids degenerated at an earlier stage of development and did not become electron transparent.
Collapse
|
25
|
Earl CD, Ronson CW, Ausubel FM. Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J Bacteriol 1987; 169:1127-36. [PMID: 3029021 PMCID: PMC211910 DOI: 10.1128/jb.169.3.1127-1136.1987] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The fixA, fixB, fixC, and fixX genes of Rhizobium meliloti 1021 constitute an operon and are required for nitrogen fixation in alfalfa nodules. DNA homologous to the R. meliloti fixABC genes is present in all other Rhizobium and Bradyrhizobium species examined, but fixABC-homologous sequences were found in only one free-living diazotroph, Azotobacter vinelandii. To determine whether the fixABCX genes share sequence homology with any of the 17 Klebsiella pneumoniae nif genes, we determined the entire nucleotide sequence of the fixA, fixB, fixC, and fixX genes and defined four open reading frames that code for polypeptides of molecular weights 31,146, 37,786, 47,288, and 10,937, respectively. Neither DNA nor amino acid sequence homology to the R. meliloti fixA, -B, -C, and -X genes was found in the K. pneumoniae nif operon. The fixX gene contains a cluster of cysteine residues characteristic of ferredoxins and is highly homologous to an Azotobacter ferredoxin which has been shown to donate electrons to nitrogenase. The fixABC operon contains a promoter region that is highly homologous to other nifA-activated promoters. We also found a duplication of the 5' end of the fixABCX operon; a 250-bp region located 520 bp upstream of the fixABCX promoter bears more than 65% homology to the 5' end of the transcribed region, including the first 32 codons of fixA.
Collapse
|
26
|
NIF, FIX and NOD Gene Clusters in Bradyrhizobium Japonicum, and NifA-Mediated Control of Symbiotic Nitrogen Fixation. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/978-94-009-4482-4_48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Noti JD, Folkerts O, Turken AN, Szalay AA. Organization and characterization of genes essential for symbiotic nitrogen fixation from Bradyrhizobium japonicum I110. J Bacteriol 1986; 167:774-83. [PMID: 3462181 PMCID: PMC215941 DOI: 10.1128/jb.167.3.774-783.1986] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A total of 96 independent Tn5 insertions within a 39-kilobase-pair (kbp) segment of chromosomal DNA containing the three structural genes for nitrogenase (nifH, nifD, and nifK) from Bradyhizobium japonicum I110 were obtained in Escherichia coli and transferred to the wild-type strain by marker exchange. Individual transconjugants containing a Tn5 insertion were inoculated onto Glycine max cv. Wilkin (soybeans) and analyzed for their effect on symbiotic nitrogen fixation. In addition to the three structural genes, genes essential for nitrogen fixation (fix genes) were located in three separate regions: 9 kbp upstream of the nifDK operon; 1.5 kbp downstream of the nifDK operon; 4.5 kbp upstream of nifH. All of the fix::Tn5 insertion strains formed nodules which contained low or undetectable levels of nitrogenase activity. Bacteroids isolated from these nodules had approximately the same levels of the nifDK and nifH transcripts as those detectable from nodules formed by the wild-type strain. Western blot analysis of bacteroid proteins from nodules formed by the fix::Tn5 mutants or the wild-type strain showed the presence of similar levels of the nitrogenase protein subunits. The region upstream of nifH was characterized further by DNA sequence analysis and was shown to contain the nifB gene. The coding sequence of the nifB gene consisted of 1,494 nucleotides and was preceded by putative promoter (5' GTGG-10 base pairs [bp] TTGCA 3') and upstream activator (5' TGT-4 bp-T-5 bp-ACA 3') sequences.
Collapse
|
28
|
Bradyrhizobium japonicum mutants defective in root-nodule bacteroid development and nitrogen fixation. Arch Microbiol 1986. [DOI: 10.1007/bf00409885] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
In Bradyrhizobium japonicum the common nodulation genes, nodABC, are linked to nifA and fixA. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf00333286] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Donald RG, Nees DW, Raymond CK, Loroch AI, Ludwig RA. Characterization of three genomic loci encoding Rhizobium sp. strain ORS571 N2 fixation genes. J Bacteriol 1986; 165:72-81. [PMID: 3001035 PMCID: PMC214372 DOI: 10.1128/jb.165.1.72-81.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sixty-five independent, N2 fixation-defective (Nif-) vector insertion (Vi) mutants were selected, cloned, and mapped to the ORS571 genome. The recombinant Nif::Vi plasmids obtained in this way were used as DNA hybridization probes to isolate homologous phages from a genomic library of ORS571 constructed in lambda EMBL3. Genomic maps were drawn for three ORS571 Nif gene loci. Forty-five Nif::Vi mutants in genomic Nif locus 1 defined two gene clusters separated by 8 kilobase pairs (kb) of DNA. In the first cluster, 36 Nif::Vi mutants mapped to a 7-kb DNA segment that showed DNA homology with Klebsiella pneumoniae nifHDKE and encoded at least two Nif operons. In the other cluster, nine Nif::Vi mutants mapped to a 1.5-kb DNA segment that showed homology with K. pneumoniae and Rhizobium meliloti nifA; this DNA segment encoded a separate Nif operon. Fifteen Nif::Vi mutants mapped to a 3.5-kb DNA segment defined as Nif locus 2 and showed DNA homology with the R. meliloti P2 fixABC operon. Nif locus 2 carries a second nifH (nifH2) gene. Four Nif::Vi mutants mapped to a 2-kb DNA segment defined as Nif locus 3 and showed DNA homology with K. pneumoniae nifB. DNA from lambda Nif phages comprising all three genomic Nif loci was subcloned in plasmid vectors able to stably replicate in ORS571. These plasmid subclones were introduced into ORS571 strains carrying physically mapped Nif::Vi insertions, and genetic complementations were conducted. With the exception of certain mutants mapping to the nifDK genes, all mutants could be complemented to Nif+ when they carried plasmid subclones of defined genomic DNA regions. Conversely, most nifDK mutants behaved as pseudodominant alleles.
Collapse
|
31
|
Symbiotic mutants of USDA191, a fast-growing Rhizobium that nodulates soybeans. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00331339] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Fogher C, Dusha I, Barbot P, Elmerich C. Heterologous hybridization ofAzospirillumDNA toRhizobium nodandfixgenes. FEMS Microbiol Lett 1985. [DOI: 10.1111/j.1574-6968.1985.tb01020.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Alvarez-Morales A, Hennecke H. Expression of Rhizobium japonicum nifH and nifDK operons can be activated by the Klebsiella pneumonia nifA protein but not by the product of ntrC. MOLECULAR & GENERAL GENETICS : MGG 1985; 199:306-14. [PMID: 2862569 DOI: 10.1007/bf00330273] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhizobium japonicum nifH'- and nifD'-'lacZ fusions were constructed using the translational fusion vector pMC1403. beta-Galactosidase activities from these fusion plasmids were measured in wild-type, ntrA- and delta(ntrBC) Escherichia coli strains carrying plasmids which overproduced the Klebsiella pneumoniae nifA or ntrC gene products. In contrast to results reported in R. meliloti (ref. in the text) neither nifH nor nifD promoters were activated by the ntrC product. In the presence of nifA gene product, however, beta-galactosidase activity from both nifH and nifD fusion plasmids increased substantially. NifA-mediated activation of these Rhizobium promoters was temperature sensitive and was dependent on the host ntrA product. In order to determine the point at which the fusion transcripts were initiated, RNA was extracted from the wild-type E. coli strain carrying each of the R. japonicum fusion plasmids plus the nifA overproducing plasmid. This RNA was used to perform S1 mapping experiments. NifA-mediated transcription from both R. japonicum promoters, began at the same point as previously determined in soybean root-nodule bacteroids (ref. in the text). The results obtained suggest that there may be differences in the mode of regulation between members of the fast- and slow-growing rhizobia. Also, the results of the S1 mapping experiments indicate that activation of the R. japonicum nitrogenase structural genes may be similar to the activation of nif genes in K. pneumoniae thus raising the possibility that R. japonicum may contain nifA and ntrA-like genes.
Collapse
|
34
|
|
35
|
|