1
|
Random versus Cell Cycle-Regulated Replication Initiation in Bacteria: Insights from Studying Vibrio cholerae Chromosome 2. Microbiol Mol Biol Rev 2016; 81:81/1/e00033-16. [PMID: 27903655 DOI: 10.1128/mmbr.00033-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chromosomes initiate replication at a fixed time in the cell cycle, whereas there is generally no particular time for plasmid replication initiation or chromosomal replication initiation from integrated plasmids. In bacteria with divided genomes, the replication system of one of the chromosomes typically resembles that of bacteria with undivided genomes, whereas the remaining chromosomes have plasmid-like replication systems. For example, in Vibrio cholerae, a bacterium with two chromosomes (chromosome 1 [Chr1] and Chr2), the Chr1 system resembles that of the Escherichia coli chromosome, and the Chr2 system resembles that of iteron-based plasmids. However, Chr2 still initiates replication at a fixed time in the cell cycle and thus offers an opportunity to understand the molecular basis for the difference between random and cell cycle-regulated modes of replication. Here we review studies of replication control in Chr2 and compare it to those of plasmids and chromosomes. We argue that although the Chr2 control mechanisms in many ways are reminiscent of those of plasmids, they also appear to combine more regulatory features than are found on a typical plasmid, including some that are more typical of chromosomes. One of the regulatory mechanisms is especially novel, the coordinated timing of replication initiation of Chr1 and Chr2, providing the first example of communication between chromosomes for replication initiation.
Collapse
|
2
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
3
|
Cai H, Hong C, Lilburn TG, Rodriguez AL, Chen S, Gu J, Kuang R, Wang Y. A novel subnetwork alignment approach predicts new components of the cell cycle regulatory apparatus in Plasmodium falciparum. BMC Bioinformatics 2013; 14 Suppl 12:S2. [PMID: 24267797 PMCID: PMC3848769 DOI: 10.1186/1471-2105-14-s12-s2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background According to the World Health organization, half the world's population is at risk of contracting malaria. They estimated that in 2010 there were 219 million cases of malaria, resulting in 660,000 deaths and an enormous economic burden on the countries where malaria is endemic. The adoption of various high-throughput genomics-based techniques by malaria researchers has meant that new avenues to the study of this disease are being explored and new targets for controlling the disease are being developed. Here, we apply a novel neighborhood subnetwork alignment approach to identify the interacting elements that help regulate the cell cycle of the malaria parasite Plasmodium falciparum. Results Our novel subnetwork alignment approach was used to compare networks in Escherichia coli and P. falciparum. Some 574 P. falciparum proteins were revealed as functional orthologs of known cell cycle proteins in E. coli. Over one third of these predicted functional orthologs were annotated as "conserved Plasmodium proteins" or "putative uncharacterized proteins" of unknown function. The predicted functionalities included cyclins, kinases, surface antigens, transcriptional regulators and various functions related to DNA replication, repair and cell division. Conclusions The results of our analysis demonstrate the power of our subnetwork alignment approach to assign functionality to previously unannotated proteins. Here, the focus was on proteins involved in cell cycle regulation. These proteins are involved in the control of diverse aspects of the parasite lifecycle and of important aspects of pathogenesis.
Collapse
|
4
|
Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA. J Bacteriol 2010; 192:242-55. [PMID: 19880599 DOI: 10.1128/jb.01244-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SPOR domains are approximately 70 amino acids long and occur in >1,500 proteins identified by sequencing of bacterial genomes. The SPOR domains in the FtsN cell division proteins from Escherichia coli and Caulobacter crescentus have been shown to bind peptidoglycan. Besides FtsN, E. coli has three additional SPOR domain proteins--DamX, DedD, and RlpA. We show here that all three of these proteins localize to the septal ring in E. coli. The loss of DamX or DedD either alone or in combination with mutations in genes encoding other division proteins resulted in a variety of division phenotypes, demonstrating that DamX and DedD participate in cytokinesis. In contrast, RlpA mutants divided normally. Follow-up studies revealed that the SPOR domains themselves localize to the septal ring in vivo and bind peptidoglycan in vitro. Even SPOR domains from heterologous organisms, including Aquifex aeolicus, localized to septal rings when produced in E. coli and bound to purified E. coli peptidoglycan sacculi. We speculate that SPOR domains localize to the division site by binding preferentially to septal peptidoglycan. We further suggest that SPOR domain proteins are a common feature of the division apparatus in bacteria. DamX was characterized further and found to interact with multiple division proteins in a bacterial two-hybrid assay. One interaction partner is FtsQ, and several synthetic phenotypes suggest that DamX is a negative regulator of FtsQ function.
Collapse
|
5
|
López-Garrido J, Casadesús J. The DamX protein of Escherichia coli and Salmonella enterica. Gut Microbes 2010; 1:285-288. [PMID: 21327035 PMCID: PMC3023611 DOI: 10.4161/gmic.1.4.12079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/14/2010] [Accepted: 04/18/2010] [Indexed: 02/03/2023] Open
Abstract
We recently showed that disruption of damX causes bile sensitivity in Salmonella enterica. The damX gene is part of an operon that contains genes with heterogeneous functions: DNA adenine methylation, biosynthesis of aromatic compounds, carbohydrate metabolism, and tRNA charging. The damX gene encodes a protein with a predicted size of 46 kDa. In Salmonella, DamX is found in the inner membrane of both dividing and non-dividing cells. The DamX protein contains a peptidoglycan-binding SPOR domain, and accumulates in the E. coli septal ring. E. coli mutants lacking DamX are bile-sensitive like their Salmonella counterparts.
Collapse
|
6
|
Identification of the Salmonella enterica damX gene product, an inner membrane protein involved in bile resistance. J Bacteriol 2009; 192:893-5. [PMID: 19948803 DOI: 10.1128/jb.01220-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The damX gene product of Salmonella enterica serovar Typhimurium is a protein located in the inner membrane. DamX migrates as a 70-kDa protein in SDS-PAGE even though the predicted protein size is 46 kDa. Synthesis of DamX protein occurs in both exponential- and stationary-phase cultures. Disruption of damX causes severe sensitivity to bile. Lack of the outer membrane protein AsmA suppresses bile sensitivity in Salmonella damX mutants.
Collapse
|
7
|
Self-enhanced accumulation of FtsN at Division Sites and Roles for Other Proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J Bacteriol 2009; 191:7383-401. [PMID: 19684127 DOI: 10.1128/jb.00811-09] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Of the known essential division proteins in Escherichia coli, FtsN is the last to join the septal ring organelle. FtsN is a bitopic membrane protein with a small cytoplasmic portion and a large periplasmic one. The latter is thought to form an alpha-helical juxtamembrane region, an unstructured linker, and a C-terminal, globular, murein-binding SPOR domain. We found that the essential function of FtsN is accomplished by a surprisingly small essential domain ((E)FtsN) of at most 35 residues that is centered about helix H2 in the periplasm. (E)FtsN contributed little, if any, to the accumulation of FtsN at constriction sites. However, the isolated SPOR domain ((S)FtsN) localized sharply to these sites, while SPOR-less FtsN derivatives localized poorly. Interestingly, localization of (S)FtsN depended on the ability of cells to constrict and, thus, on the activity of (E)FtsN. This and other results suggest that, compatible with a triggering function, FtsN joins the division apparatus in a self-enhancing fashion at the time of constriction initiation and that its SPOR domain specifically recognizes some form of septal murein that is only transiently available during the constriction process. SPOR domains are widely distributed in bacteria. The isolated SPOR domains of three additional E. coli proteins of unknown function, DamX, DedD, and RlpA, as well as that of Bacillus subtilis CwlC, also accumulated sharply at constriction sites in E. coli, suggesting that septal targeting is a common property of SPORs. Further analyses showed that DamX and, especially, DedD are genuine division proteins that contribute significantly to the cell constriction process.
Collapse
|
8
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
9
|
Taylor VL, Titball RW, Oyston PCF. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. MICROBIOLOGY-SGM 2005; 151:1919-1926. [PMID: 15941999 DOI: 10.1099/mic.0.27959-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inactivation of the gene encoding DNA adenine methylase (dam) has been shown to attenuate some pathogens such as Salmonella enterica serovar Typhimurium and is a lethal mutation in others such as Yersinia pseudotuberculosis strain YPIII. In this study the dam methylase gene in Yersinia pseudotuberculosis strain IP32953 was inactivated. Unlike the wild-type, DNA isolated from the mutant could be digested with MboI, which is consistent with an altered pattern of DNA methylation. The mutant was sensitive to bile salts but not to 2-aminopurine. The effect of dam inactivation on gene expression was examined using a DNA microarray. In BALB/c mice inoculated orally or intravenously with the dam mutant, the median lethal dose (MLD) was at least 10(6)-fold higher than the MLD of the wild-type. BALB/c mice inoculated with the mutant were protected against a subcutaneous challenge with 100 MLDs of Yersinia pestis strain GB and an intravenous challenge with 300 MLDs of Y. pseudotuberculosis IP32953.
Collapse
Affiliation(s)
- Victoria L Taylor
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W Titball
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Petra C F Oyston
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
10
|
Teresa Pellicer M, Felisa Nuñez M, Aguilar J, Badia J, Baldoma L. Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J Bacteriol 2003; 185:5815-21. [PMID: 13129953 PMCID: PMC193966 DOI: 10.1128/jb.185.19.5815-5821.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme 2-phosphoglycolate phosphatase from Escherichia coli, encoded by the gph gene, was purified and characterized. The enzyme was highly specific for 2-phosphoglycolate and showed good catalytic efficiency (k(cat)/K(m)), which enabled the conversion of this substrate even at low intracellular concentrations. A comparison of the structural and functional features of this enzyme with those of 2-phosphoglycolate phosphatases of different origins showed a high similarity of the sequences, implying the use of the same catalytic mechanism. Western blot analysis revealed constitutive expression of the gph gene, regardless of the carbon source used, growth stage, or oxidative stress conditions. We showed that this housekeeping enzyme is involved in the dissimilation of the intracellular 2-phosphoglycolate formed in the DNA repair of 3'-phosphoglycolate ends. DNA strand breaks of this kind are caused by agents such as the radiomimetic compound bleomycin. The differential response between a 2-phosphoglycolate phosphatase-deficient mutant and its parental strain after treatment with bleomycin allowed us to connect the intracellular formation of 2-phosphoglycolate with the production of glycolate, which is subsequently incorporated into general metabolism. We thus provide evidence for a salvage function of 2-phosphoglycolate phosphatase in the metabolism of a two-carbon compound generated by the cellular DNA repair machinery.
Collapse
Affiliation(s)
- Maria Teresa Pellicer
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Chen L, Paulsen DB, Scruggs DW, Banes MM, Reeks BY, Lawrence ML. Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2283-2290. [PMID: 12904568 DOI: 10.1099/mic.0.26251-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pasteurella multocida is one of the primary bacterial pathogens associated with bovine respiratory disease (BRD) complex. Relatively few virulence factors of P. multocida have been characterized, and there is a need for improved vaccines for prevention of BRD. In other Gram-negative species, DNA adenine methylase (Dam) regulates the expression of virulence genes, and appropriate expression of Dam is required for virulence. In this study, the authors cloned and sequenced the P. multocida A1 dam gene and demonstrated that it is able to restore Dam function in an Escherichia coli dam mutant. When P. multocida dam was placed under the control of a constitutively expressed promoter on a plasmid, it caused an increased spontaneous mutation rate in P. multocida. In addition, the plasmid-mediated alteration of Dam production in P. multocida caused it to be highly attenuated in mice. These findings indicate that appropriate expression of Dam is required for virulence of P. multocida, which is believed to be the first report that Dam is required for virulence of a species in the Pasteurellaceae. Therefore, Dam may function as a virulence gene regulator in the Pasteurellaceae, similar to previously reported findings from other Gram-negative species.
Collapse
Affiliation(s)
- Liang Chen
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Daniel B Paulsen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Daniel W Scruggs
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Michelle M Banes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Brenda Y Reeks
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA
| |
Collapse
|
12
|
Lyngstadaas A, Løbner-Olesen A, Grelland E, Boye E. The gene for 2-phosphoglycolate phosphatase (gph) in Escherichia coli is located in the same operon as dam and at least five other diverse genes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:376-84. [PMID: 10572959 DOI: 10.1016/s0304-4165(99)00146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Downstream of the dam gene in the Escherichia coli genome the following three genes are located: first rpe, then a gene encoding a 27 kDa protein and finally trpS. Here we present evidence that the 27 kDa protein has 2-phosphoglycolate phosphatase activity, and we name the gene gph. Phosphoglycolate phosphatase is needed in autotrophic organisms performing the Calvin-Benson-Bassham (CBB) reductive pentose-phosphate cycle. E. coli is not capable of autotrophic growth and probably utilizes Gph activity for other function(s) than in the CBB cycle. We found no physiological effect of deleting gph and its function in E. coli remains unclear. The use of fusion plasmids, where lacZ was inserted into gph and trpS, and deletion derivatives of these fusion plasmids, showed that rpe, gph and trpS are all members of the dam-containing operon. A novel promoter was identified in the distal part of the dam gene. The operon, which contains aroK, aroB, urf74.3, dam, rpe, gph, and trpS, can be termed a superoperon, since it consists of (at least) seven apparently unrelated genes which are under complex regulatory control.
Collapse
Affiliation(s)
- A Lyngstadaas
- Department of Cell Biology, Institute of Cancer Research, Montebello, Oslo, Norway.
| | | | | | | |
Collapse
|
13
|
Ostendorf T, Cherepanov P, de Vries J, Wackernagel W. Characterization of a dam mutant of Serratia marcescens and nucleotide sequence of the dam region. J Bacteriol 1999; 181:3880-5. [PMID: 10383952 PMCID: PMC93874 DOI: 10.1128/jb.181.13.3880-3885.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors.
Collapse
Affiliation(s)
- T Ostendorf
- Genetik, Fachbereich Biologie, Universität Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | |
Collapse
|
14
|
Leclerc GJ, Tartera C, Metcalf ES. Environmental regulation of Salmonella typhi invasion-defective mutants. Infect Immun 1998; 66:682-91. [PMID: 9453627 PMCID: PMC107957 DOI: 10.1128/iai.66.2.682-691.1998] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Salmonella typhi is the etiologic agent of human typhoid. During infection, S. typhi adheres to and invades epithelial and M cells that line the distal ileum. To survive in the human host, S. typhi must overcome numerous complex extracellular and intracellular environments. Since relatively little is known about S. typhi pathogenesis, studies were initiated to identify S. typhi genes involved in the early steps of interaction with the host and to evaluate the environmental regulation of these genes. In the present study, TnphoA mutagenesis was used to study these early steps. We isolated 16 Salmonella typhi TnphoA mutants that were defective for both adherence and invasion of the human small intestinal epithelial cell line Int407. Twelve of sixteen mutations were identified in genes homologous to the S. typhimurium invG and prgH genes, which are known to be involved in the type III secretion pathway of virulence proteins. Two additional insertions were identified in genes sharing homology with the cpxA and damX genes from Escherichia coli K-12, and two uncharacterized invasion-deficient mutants were nonmotile. Gene expression of TnphoA fusions was examined in response to environmental stimuli. We found that the cpxA, invG, and prgH genes were induced when grown under conditions of high osmolarity (0.3 M NaCl). Expression of invG and prgH genes was optimal at pH 6.5 and strongly reduced at low pH (5.0). Transcription of both invG and prgH TnphoA gene fusions was initiated during the late logarithmic growth phase and was induced under anaerobic conditions. Finally, we show that both invG and prgH genes appear to be regulated by DNA supercoiling, a mechanism influenced by environmental factors. These results are the first to demonstrate that in S. typhi, (i) the prgH and cpxA genes are osmoregulated, (ii) the invG gene is induced under low oxygen conditions, (iii) the invG gene is pH regulated and growth phase dependent, and (iv) the prgH gene appears to be regulated by DNA supercoiling. Since our experimental conditions were designed to mimic the in vivo environmental milieu, our results suggest that specific environmental conditions act as signals to induce the expression of S. typhi invasion genes.
Collapse
Affiliation(s)
- G J Leclerc
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
15
|
Tesfa-Selase F, Drabble WT. Specific binding of DnaA protein to a DnaA box in the guaB gene of Escherichia coli K12. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:411-6. [PMID: 8917437 DOI: 10.1111/j.1432-1033.1996.00411.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of the guaBA operon of Escherichia coli is regulated by the DNA replication-initiating protein, DnaA. Two DnaA boxes, which are potential binding sites for DnaA, are present in the gua operon. One box (with 8/9 match to the DnaA box consensus sequence) is at the gua promoter; the other box, which has a consensus sequence, is on the non-transcribed strand within the guaB coding region approximately 200 bp downstream of the initiation codon. The binding in vitro of purified DnaA protein to these boxes was investigated by filter retention and gel retardation analysis, and by deoxyribonuclease I footprinting, using restriction fragments of gua operon DNA. DnaA protein was shown to bind specifically only to the fragment carrying the consensus sequence DnaA box, and to protect this box from deoxyribonuclease I. Transcription termination resulting from the binding of DnaA to this box within the guaB gene explains repression by DnaA of the gua operon in vivo.
Collapse
Affiliation(s)
- F Tesfa-Selase
- Department of Biochemistry, University of Southampton, England
| | | |
Collapse
|
16
|
Vinella D, Gagny B, Joseleau-Petit D, D'Ari R, Cashel M. Mecillinam resistance in Escherichia coli is conferred by loss of a second activity of the AroK protein. J Bacteriol 1996; 178:3818-28. [PMID: 8682786 PMCID: PMC232642 DOI: 10.1128/jb.178.13.3818-3828.1996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mecillinam, a beta-lactam antibiotic specific to penicillin-binding protein 2 (PBP 2) in Escherichia coli, blocks cell wall elongation and, indirectly, cell division, but its lethality can be overcome by increased levels of ppGpp, the nucleotide effector of the stringent response. We have subjected an E. coli K-12 strain to random insertional mutagenesis with a mini-Tn10 element. One insertion, which was found to confer resistance to mecillinam in relA+ and relA strains, was mapped at 75.5 min on the E. coli map and was located between the promoters and the coding sequence of the aroK gene, which codes for shikimate kinase 1, one of two E. coli shikimate kinases, both of which are involved in aromatic amino acid biosynthesis. The mecillinam resistance conferred by the insertion was abolished in a delta relA delta spoT strain completely lacking ppGpp, and it thus depends on the presence of ppGpp. Furthermore, the insertion increased the ppGpp pool approximately twofold in a relA+ strain. However, this increase was not observed in relA strains, although the insertion still conferred mecillinam resistance in these backgrounds, showing that mecillinam resistance is not due to an increased ppGpp pool. The resistance was also abolished in an ftsZ84(Ts) strain under semipermissive conditions, and the aroK::mini-Tn10 allele partially suppressed ftsZ84(Ts); however, it did not increase the concentration of the FtsZ cell division protein. The insertion greatly decreased or abolished the shikimate kinase activity of AroK in vivo and in vitro. The two shikimate kinases of E. coli are not equivalent; the loss of AroK confers mecillinam resistance, whereas the loss of Arol, does not. Furthermore, the ability of the aroK mutation to confer mecillinam resistance is shown to be independent of polar effects on operon expression and of effects on the availability of aromatic amino acids or shikimic acid. Instead, we conclude that the AroK protein has a second activity, possibly related to cell division regulation, which confers mecillinam sensitivity. We were able to separate the AroK activities mutationally with an aroK mutant allele lacking shikimate kinase activity but still able to confer mecillinam sensitivity.
Collapse
Affiliation(s)
- D Vinella
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA
| | | | | | | | | |
Collapse
|
17
|
Lyngstadaas A, Løbner-Olesen A, Boye E. Characterization of three genes in the dam-containing operon of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:546-54. [PMID: 7603433 DOI: 10.1007/bf00290345] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dam-containing operon in Escherichia coli is located at 74 min on the chromosomal map and contains the genes aroK, aroB, a gene called urf74.3, dam and trpS. We have determined the nucleotide sequence between the dam and trpS genes and show that it encodes two proteins with molecular weights of 24 and 27 kDa. Furthermore, we characterize the three genes urf74.3, 24kDa, 27kDa and the proteins they encode. The predicted amino acid sequences of the 24 and 27 kDa proteins are similar to those of the CbbE and CbbZ proteins, respectively, of the Alcaligenes eutrophus cbb operon, which encodes enzymes involved in the Calvin cycle. In separate experiments, we have shown that the 24 kDa protein has d-ribulose-5-phosphate epimerase activity (similar to CbbE), and we call the gene rpe. Similarly, the 27 kDa protein has 2-phosphoglycolate phosphatase activity (similar to CbbZ), and we name the gene gph. The Urf74.3 protein, with a predicted molecular weight of 46 kDa, migrated as a 70 kDa product under denaturing conditions. Overexpression of Urf74.3 induced cell filamentation, indicating that Urf74.3 directly or indirectly interferes with cell division. We present evidence for translational coupling between aroB and urf74.3 and also between rpe and gph. Proteins encoded in the dam superoperon appear to be largely unrelated: Dam, and perhaps Urf74.3, are involved in cell cycle regulation, AroK, AroB, and TrpS function in aromatic amino acid biosynthesis, whereas Rpe and Gph are involved in carbohydrate metabolism.
Collapse
Affiliation(s)
- A Lyngstadaas
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | | | |
Collapse
|
18
|
Methyl directed DNA mismatch repair inVibrio cholerae. J Biosci 1994. [DOI: 10.1007/bf02703202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
The construction of a variety of strains deficient in the methylation of adenine and cytosine residues in DNA by the methyltransferases (MTases) Dam and Dcm has allowed the study of the role of these enzymes in the biology of Escherichia coli. Dam methylation has been shown to play a role in coordinating DNA replication initiation, DNA mismatch repair and the regulation of expression of some genes. The regulation of expression of dam has been found to be complex and influenced by five promoters. A role for Dcm methylation in the cell remains elusive and dcm- cells have no obvious phenotype. dam- and dcm- strains have a range of uses in molecular biology and bacterial genetics, including preparation of DNA for restriction by some restriction endonucleases, for transformation into other bacterial species, nucleotide sequencing and site-directed mutagenesis. A variety of assays are available for rapid detection of both the Dam and Dcm phenotypes. A number of restriction systems in E. coli have been described which recognise foreign DNA methylation, but ignore Dam and Dcm methylation. Here, we describe the most commonly used mutant alleles of dam and dcm and the characteristics of a variety of the strains that carry these genes. A description of several plasmids that carry dam gene constructs is also included.
Collapse
Affiliation(s)
- B R Palmer
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
20
|
Skarstad K, Boye E. The initiator protein DnaA: evolution, properties and function. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:111-30. [PMID: 8110826 DOI: 10.1016/0167-4781(94)90025-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K Skarstad
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
21
|
Guzzo A, DuBow MS. A luxAB transcriptional fusion to the cryptic celF gene of Escherichia coli displays increased luminescence in the presence of nickel. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:455-60. [PMID: 8121401 DOI: 10.1007/bf00281796] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
From a library of 3000 Escherichia coli clones, each containing a single, chromosomally located luxAB transcriptional gene fusion, one clone was found in which luminescence increased in the presence of 1 to 50 ppm of NiSO4. A molecular analysis revealed that the insertion occurred within the celF gene of E. coli. This gene encodes the phospho-beta-glucosidase involved in cleavage of the sugars cellobiose, salicin and arbutin. Cloning and sequencing of DNA downstream of the celF gene revealed three open reading frames (potentially encoding polypeptides of 9.9, 14.1 and 28.5 kDa) that could be co-expressed with the celF gene and that may underlie the observed induction of the celF gene by nickel. A polypeptide of 26 kDa was produced when this region was placed under the control of the Ptac promoter. Moreover, this region was found to be directly adjacent to, and transcribed in the opposite orientation from, the katE gene of E. coli.
Collapse
Affiliation(s)
- A Guzzo
- McGill University, Department of Microbiology and Immunology, Montreal, Quebec, Canada
| | | |
Collapse
|
22
|
Sanjanwala B, Ganesan AT. Leader region of the gene encoding DNA polymerase III of Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:374-8. [PMID: 7679775 DOI: 10.1007/bf00277136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previously we cloned and sequenced the polC gene of Bacillus subtilis and identified regions corresponding to various catalytic domains of DNA polymerase III, the enzyme it encodes. In the present study, by using primer extension, we have identified the transcription start site and a 139 nucleotide leader region upstream of the first codon. This region contains a DnaA box in the non-transcribed DNA strand. An RNA transcript of the leader would contain a sequence that could form a 29 bp stem-loop secondary structure followed by a strong terminator sequence, rich in uracil, before the ribosome binding site. Plasmids were constructed containing either the intact leader region or deletion mutations of the leader, fused to the Escherichia coli lacZ gene in an expression vector. Single copies of the fusions were then integrated into the B. subtilis genome by transformation. Studies of the expression of beta-galactosidase by the transformed cells supported the idea that the leader region is important in regulating polC gene expression.
Collapse
Affiliation(s)
- B Sanjanwala
- Genetics Department, Stanford University, CA 94305-5120
| | | |
Collapse
|
23
|
Erdmann D, Horst G, Düsterhöft A, Kröger M. Stepwise cloning and genetic organization of the seemingly unclonable HgiCII restriction-modification system from Herpetosiphon giganteus strain Hpg9, using PCR technique. Gene 1992; 117:15-22. [PMID: 1644308 DOI: 10.1016/0378-1119(92)90484-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genes, hgiCIIR and hgiCIIM, that encode the HgiCII restriction and modification (R-M) system from Herpetosiphon giganteus strain Hpg9, an AvaII isoschizomer recognizing the sequence, GGATCC, were cloned in Escherichia coli. Cloning the respective hgiCIIM gene was achieved via in vitro selection both from a Sau3AI- and an NheI-generated plasmid gene library using AvaII, a commercially available isoschizomer of HgiCII. However, all attempts to clone the closely linked hgiCIIR and M genes in a single step resulted in deletions spanning parts of the coding region of hgiCIIR. Therefore, cloning of the missing 3'-terminal part of this gene was achieved by applying the inverse polymerase-chain-reaction technique. All attempts to construct an enzymatically active R.HgiCII failed; only the inactivated hgiCIIR gene could be cloned. Sequencing of the hgiCIIRM region (carrying predesigned small mutations in the R gene) disclosed three open reading frames (ORFs): one small ORF preceding the methltransferase (MTase)-encoding gene, plus those encoding M.HgiCII (49,620 Da) and R.HgiCII (30,891 Da). M.HgiCII exhibits the common motif of ten conserved amino-acid blocks typically found within the group of m5C-MTases. The R-M system of HgiCII reveals strong homologies to the isoschizomeric R-M system of HgiBI from H. giganteus strain Hpg5, which, in contrast, could be cloned in one step.
Collapse
Affiliation(s)
- D Erdmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
The Escherichia coli dam gene and upstream sequences were cloned from the Kohara phage 4D4. Five promoters were found to contribute to dam gene transcription. P1 and P2 (the major promoter) were situated approximately 3.5 kb upstream of the structural gene, P3 was within the aroB gene, P4 was within the urf74.3 gene, and P5 was in the urf74.3-dam intergenic region. The nucleotide sequence of 2280 bp of DNA containing P1 and P2 was determined and shown to have the potential to encode a protein of approximately 16 kDa between P1, P2 and the aroB gene. This 16 kDa open reading frame has been identified as aroK, the gene for shikimic acid kinase I. Thus the dam gene is part of an operon containing aroK, aroB, urf74.3, and dam. The transcriptional start points of the promoters were determined. A comparison of their nucleotide sequences suggested that P1-P4 were all recognized by the sigma 70 subunit of the RNA polymerase.
Collapse
Affiliation(s)
- A Løbner-Olesen
- Department of Microbiology, Technical University of Denmark, Lyngby, Copenhagen
| | | | | |
Collapse
|
25
|
Wu TH, Grelland E, Boye E, Marinus MG. Identification of a weak promoter for the dam gene of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:47-52. [PMID: 1581360 DOI: 10.1016/0167-4781(92)90097-j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have used a combination of techniques to identify a weak promoter located about 70 nucleotides before the start site of translation of the Escherichia coli dam gene which encodes a DNA methyltransferase. The promoter activity was identified by the use of lacZ fusions to fragments containing different lengths of upstream DNA. In vitro run-off transcription and primer extension determinations revealed transcription initiation sites at either 69 or 73 nucleotides prior to the ATG of the dam coding sequence. No ribosome binding sequence was present close to the ATG codon suggesting that the transcript may be inefficiently translated.
Collapse
Affiliation(s)
- T H Wu
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
26
|
Smith DW, Stine WB, Svitil AL, Bakker A, Zyskind JW. Escherichia coli cells lacking methylation-blocking factor (leucine-responsive regulatory protein) have precise timing of initiation of DNA replication in the cell cycle. J Bacteriol 1992; 174:3078-82. [PMID: 1569034 PMCID: PMC205964 DOI: 10.1128/jb.174.9.3078-3082.1992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A protein that is required for specific methylation inhibition of two GATC sites in the papBA pilin promoter region, known as methylation-blocking factor (Mbf) and recently shown to be identical to the leucine-responsive regulatory protein (Lrp), is not responsible for the delayed methylation at oriC implicated in an eclipse period following initiation of DNA replication. Cells containing a transposon mutation within the mbf (lrp) gene initiate DNA replication at the correct time during the cell cycle, whereas cells with increased amounts of the Dam methyltransferase initiate DNA replication randomly throughout the cell cycle.
Collapse
Affiliation(s)
- D W Smith
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
27
|
Abstract
An antiserum against Escherichia coli Dam methyltransferase has been developed in rabbits and employed to detect and quantitate the enzyme in immunoblots. A wild-type, rapidly growing E. coli cell (doubling time = 30 min) was found to contain about 130 molecules of Dam methyltransferase.
Collapse
Affiliation(s)
- E Boye
- Department of Biophysics, Institute for Cancer Research, Oslo, Norway
| | | | | |
Collapse
|
28
|
Tesfa-Selase F, Drabble WT. Regulation of the gua operon of Escherichia coli by the DnaA protein. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:256-64. [PMID: 1736096 DOI: 10.1007/bf00279799] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The guaBA operon determines production of the two enzymes required to convert hypoxanthine to guanine at the nucleotide level during guanine nucleotide biosynthesis. Two DnaA boxes, binding sites for the DNA replication-initiating DnaA protein, are present in the gua operon, one at the gua promoter (guaP) and the other within the guaB coding sequence. Regulation of the guaBA operon by DnaA protein was studied using strains carrying chromosomal gua-lacZ fusions. In these strains beta-galactosidase acts as a reporter enzyme for transcription initiated at guaP. When the intracellular levels of DnaA were increased (by induction of a multicopy plasmid carrying the dnaA gene fused to the tac promoter) transcription from the gua promoter was repressed. Reducing the intracellular level of DnaA, either by sequestration with an oriC plasmid or by placing a temperature-sensitive dnaA mutant at the restrictive temperature, resulted in increased transcription from guaP. Thus the transcriptional activity of the gua operon is coupled, through the DnaA protein, to the DNA replication cycle. Repression of guaP by DnaA was dependent on the presence of both boxes in the gua-lacZ fusion; constructs containing only the box at guaP were unaffected by DnaA.
Collapse
Affiliation(s)
- F Tesfa-Selase
- Department of Biochemistry, University of Southampton, UK
| | | |
Collapse
|
29
|
Wende M, Quinones A, Diederich L, Jueterbock WR, Messer W. Transcription termination in the dnaA gene. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:486-90. [PMID: 1766443 DOI: 10.1007/bf00280306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The termination of transcription in the dnaA gene of E. coli was analyzed using transcriptional fusions to the galactokinase gene, S1 nuclease mapping and quantification of translation products by Western blots. The majority of transcripts originating from dnaA promoters terminated at several positions within a 200 bp region inside the dnaA reading frame.
Collapse
Affiliation(s)
- M Wende
- Max-Planck-Institut für molekulare Genetik, Berlin, FRG
| | | | | | | | | |
Collapse
|
30
|
Quiñones A, Jueterbock WR, Messer W. DNA lesions that block DNA replication are responsible for the dnaA induction caused by DNA damage. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:81-7. [PMID: 1753947 DOI: 10.1007/bf00293825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The initiation protein DnaA of Escherichia coli regulates its own expression autogenously by binding to a 9 bp consensus sequence, the dnaA box, between the promoters dnaAP1 and dnaAP2. In this study, we analysed dnaA regulation in relation to DNA damage and found dnaA expression to be inducible by DNA lesions that inhibit DNA replication. On the other hand, coding DNA lesions were not able to induce dnaA expression. These results suggest that an additional regulatory mechanism is involved in dnaA gene expression and that DnaA protein may play a role in cellular responses to DNA damage. Furthermore, they strongly suggest that in response to DNA replication inhibition by DNA damage, and enhanced (re)initiation capacity is induced by oriC.
Collapse
Affiliation(s)
- A Quiñones
- Institut für Genetik, Martin-Luther-Universität, Halle/S., FRG
| | | | | |
Collapse
|
31
|
Quiñones A, Jüterbock WR, Messer W. Expression of the dnaA gene of Escherichia coli is inducible by DNA damage. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:9-16. [PMID: 1904539 DOI: 10.1007/bf00260699] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DnaA protein is the key DNA initiation protein in Escherichia coli. Using transcriptional and translational fusions, comparative S1 nuclease mapping and immunoblot analysis, the regulation of dnaA in relation to inducible responses to DNA damage was studied. We found that DNA damage caused by mitomycin C (MC) and methyl methanesulfonate (MMS) led to a significant induction of the dnaA gene. These results strongly suggest that in response to DNA damage which inhibits DNA replication, an increased initiation capacity is induced at oriC and that, in addition to the known auto-repression, a new regulatory mechanism may be involved in the control of dnaA gene expression. Furthermore, this mechanism might be indirectly related to the SOS regulon, because lexA and recA mutants, which block the induction of the SOS response, prevent dnaA induction by MMS and MC.
Collapse
Affiliation(s)
- A Quiñones
- Wissenschaftsbereich Genetik, Martin-Luther-Universität, Halle, Saale, FRG
| | | | | |
Collapse
|
32
|
Schaefer C, Messer W. DnaA protein/DNA interaction. Modulation of the recognition sequence. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:34-40. [PMID: 2034227 DOI: 10.1007/bf00273584] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the active orientation the DnaA protein/dnaA box complex blocks transcribing RNA polymerase. The extent of transcription termination at different dnaA boxes was used to determine in vivo their various affinities to the DnaA protein. The rate of transcription distal to the respective dnaA box was monitored by the expression of the reporter gene galK. The dnaA boxes (5'-TTATACACA and 5'-TTATCCAAA), present in oriC, showed the strongest binding affinity. The dnaA box 5'-TTTTCCACA was mutated at eight positions such that the boxes differed from the consensus sequence, 5'-TT(A/T)T(A/C)CA(A/C)A, defined so far. Based on the different properties of the dnaA boxes, a new consensus sequence was derived: 5'-(T/C)(T/C)(A/T/C)T(A/C)C(A/G)(A/C/T(A/C).
Collapse
Affiliation(s)
- C Schaefer
- Max-Planck-Institut für molekulare Genetik, Abt. Trautner, Berlin, Federal Republic of Germany
| | | |
Collapse
|
33
|
Hülsmann KH, Quaas R, Georgalis Y, Saenger W, Hahn U. High-level expression of a semisynthetic dam gene in Escherichia coli. Gene 1991; 98:83-8. [PMID: 2013413 DOI: 10.1016/0378-1119(91)90107-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We constructed a semisynthetic gene encoding a DNA-adenine-methyltransferase (Dam) that codes for the same amino acid sequence as the wild type (wt) Escherichia coli dam gene. Since for unknown reasons the entire wt sequence, from the start codon to the end of the gene, could not be cloned, a gene was constructed consisting of a chemically synthesized 5' portion and a 3' portion from the E. coli chromosome. Introduction of this semisynthetic gene into a suitable vector allows overproduction of E. coli Dam in mg amounts per liter E. coli culture, with optimum expression of the gene in the vector pJLA503. This plasmid places the target gene under control of the strong, tandemly arranged pR pL promoters from bacteriophage lambda, regulated by a temperature-sensitive lambda repressor. A rapid, two-column purification protocol is described that allows for very fast purification of the protein. The 32-kDa recombinant protein methylates the sequence GATC.
Collapse
Affiliation(s)
- K H Hülsmann
- Institut für Kristallographie, Freie Universität Berlin, F.R.G
| | | | | | | | | |
Collapse
|
34
|
Abstract
An adequate model for the initiation of chromosome replication in Escherichia coli should explain why the introduction of multiple copies of the chromosomal origin of replication, oriC, does not perturb cells seriously and why such multiple origins are replicated synchronously; it should explain why the key initiator protein, DnaA, is activated in vitro by binding specifically to acidic phospholipids and why the Dam methyltransferase is essential for the correct timing of initiation; it should explain why phospholipid synthesis and fluidity are necessary for initiation. In the detachment model, presented here, cyclical changes in the phospholipid composition of the cytoplasmic membrane activate initiator proteins such as DnaA protein and cause origins to detach; this detachment allows torsional stresses to open 13mer sequences in oriC; DnaA assists in the serial opening of these sequences and guides the entry of the helicase to form a pre-priming complex and trigger initiation; the greater affinity of hemi-methylated origin for membrane is re-interpreted as a mechanism for preventing re-initiation.
Collapse
Affiliation(s)
- V Norris
- Department of Genetics, University of Leicester, U.K
| |
Collapse
|
35
|
|
36
|
|
37
|
Bakker A, Smith DW. Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J Bacteriol 1989; 171:5738-42. [PMID: 2676991 PMCID: PMC210423 DOI: 10.1128/jb.171.10.5738-5742.1989] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have used the Koppes and Nordstrøm (Cell 44:117-124, 1986) CsCl density transfer approach for analysis of DNA from exponentially growing, isogenic Escherichia coli dam+ and dam mutant cells to show that timing between DNA replication initiation events is precise in the dam+ cells but is essentially random in the dam cells. Thus, methylation of one or more GATC sites, such as those found in unusual abundance within the origin, oriC, is required for precise timing between rounds of DNA replication, and precise timing between initiation events is not required for cell viability. Both the dam-3 point mutant and the delta(dam)100 complete deletion mutant were examined. The results were independent of the mismatch repair system; E. coli mutH cells showed precise timing, whereas timing in the isogenic E. coli mutH delta(dam)100 double mutant was random. The mechanism is thus different from the role of Dam methylation in mismatch repair and probably involves conversion of hemimethylated GATC sites present in daughter origins just after initiation to a fully methylated state.
Collapse
Affiliation(s)
- A Bakker
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|