1
|
Raman G, Lee EM, Park S. Intracellular DNA transfer events restricted to the genus Convallaria within the Asparagaceae family: Possible mechanisms and potential as genetic markers for biographical studies. Genomics 2021; 113:2906-2918. [PMID: 34182083 DOI: 10.1016/j.ygeno.2021.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Intracellular gene transfer among plant genomes is a common phenomenon. Due to their high conservation and high plastid membrane integrity, chloroplast (cp) genomes incorporate foreign genetic material very rarely. Convallaria is a small monocotyledonous genus consisting of C. keiskei, C. majalis and C. montana. Here, we characterized, analyzed and identified 3.3 and 3.7 kb of mitochondrial DNA sequences in the plastome (MCP) of C. majalis and C. montana, respectively. We identified 6 bp and 23 bp direct repeats and mitochondrial pseudogenes, with rps3, rps19 and rpl10 identified in the MCP region. Additionally, we developed novel plastid molecular genetic markers to differentiate Convallaria spp. based on 21 populations. BEAST and biogeographical analyses suggested that Convallaria separated into Eurasian and North American lineages during the middle Pliocene and originated in East Asia. Vicariance in the genus was followed by dispersal into Europe and southeastern North America. These analyses indicate that the MCP event was restricted to the genus Convallaria of Asparagaceae, in contrast to similar events that occurred in its common ancestors with other families of land plants. However, further mitochondrial and population studies are necessary to understand the integration of the MCP region and gene flow in the genus Convallaria.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk 38541, Republic of Korea.
| | - Eun Mi Lee
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk 38541, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk 38541, Republic of Korea.
| |
Collapse
|
2
|
The complete organelle genomes of Physochlaina orientalis: Insights into short sequence repeats across seed plant mitochondrial genomes. Mol Phylogenet Evol 2019; 137:274-284. [PMID: 31112782 DOI: 10.1016/j.ympev.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022]
Abstract
Short repeats (SR) play an important role in shaping seed plant mitochondrial genomes (mtDNAs). However, their origin, distribution, and relationships across the different plant lineages remain unresolved. We focus on the angiosperm family Solanaceae that shows great variation in repeat content and extend the study to a wide diversity of seed plants. We determined the complete nucleotide sequences of the organellar genomes of the medicinal plant Physochlaina orientalis (Solanaceae), member of the tribe Hyoscyameae. To understand the evolution of the P. orientalis mtDNA we made comparisons with those of five other Solanaceae. P. orientalis mtDNA presents the largest mitogenome (∼685 kb in size) among the Solanaceae and has an unprecedented 8-copy repeat family of ∼8.2 kb in length and a great number of SR arranged in tandem-like structures. We found that the SR in the Solanaceae share a common origin, but these only expanded in members of the tribe Hyoscyameae. We discuss a mechanism that could explain SR formation and expansion in P. orientalis and Hyoscyamus niger. Finally, the great increase in plant mitochondrial data allowed us to systematically extend our repeat analysis to a total of 136 seed plants to characterize and analyze for the first time families of SR among seed plant mtDNAs.
Collapse
|
3
|
Choi B, Acero MM, Bonen L. Mapping of wheat mitochondrial mRNA termini and comparison with breakpoints in DNA homology among plants. PLANT MOLECULAR BIOLOGY 2012; 80:539-552. [PMID: 22956245 DOI: 10.1007/s11103-012-9966-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/28/2012] [Indexed: 05/27/2023]
Abstract
Mitochondrial DNA rearrangements occur very frequently in flowering plants and when close to genes there must be concomitant acquisition of new regulatory cis-elements. To explore whether there might be limits to such DNA shuffling, we have mapped the termini of mitochondrial mRNAs in wheat, a monocot, and compared them to the known positions for counterpart genes in the eudicot Arabidopsis. Nine genes share homologous 3' UTRs over their full-length and for six of them, the termini map very close to the site of wheat/Arabidopsis DNA rearrangements. Only one such case was seen for comparisons of 5' UTRs, and the 5' ends of mRNAs are typically more heterogeneous than 3' termini. Approximately half of the thirty-one wheat mitochondrial transcriptional units are preceded by CRTA promoter-like motifs, and of the potential stem-loop or tRNA-like structures identified as candidate RNA processing/stability signals near the 5' or 3' ends, several are shared with Arabidopsis. Comparison of the mitochondrial gene flanking sequences from normal fertile wheat (Triticum aestivum) with those of Aegilops kotschyi which is the source of mitochondria present in K-type cytoplasmic male sterile wheat, revealed six cases where mRNAs are precluded from sharing full-length homologous UTRs because of genomic reorganization events, and the presence of short repeats located at the sites of discontinuity points to a reciprocal recombination-mediated mode of rearrangement.
Collapse
Affiliation(s)
- Boyoung Choi
- Biology Department, University of Ottawa, Ottawa, Canada
| | | | | |
Collapse
|
4
|
Grienenberger JM. Plant mitochondrial RNA editing: The Strasbourg chapter. IUBMB Life 2009; 61:1110-3. [DOI: 10.1002/iub.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Intraplastidial trafficking of a phage-type RNA polymerase is mediated by a thylakoid RING-H2 protein. Proc Natl Acad Sci U S A 2008; 105:9123-8. [PMID: 18567673 DOI: 10.1073/pnas.0800909105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plastid genome of dicotyledonous plants is transcribed by three different RNA polymerases; an eubacterial-type enzyme, PEP; and two phage-type enzymes, RPOTp and RPOTmp. RPOTp plays an important role in chloroplast transcription, biogenesis, and mesophyll cell proliferation. RPOTmp fulfills a specific function in the transcription of the rrn operon in proplasts/amyloplasts during seed imbibition/germination and a more general function in chloroplasts during later developmental stages. In chloroplasts, RPOTmp is tightly associated with thylakoid membranes indicating that functional switching of RPOTmp is connected to thylakoid association. By using the yeast two-hybrid system, we have identified two proteins that interact with RPOTmp. The two proteins are very similar, both characterized by three N-terminal transmembrane domains and a C-terminal RING domain. We show that at least one of these proteins is an intrinsic thylakoid membrane protein that fixes RPOTmp on the stromal side of the thylakoid membrane, probably via the RING domain. A model is presented in which light by triggering the synthesis of the RING protein determines membrane association and functional switching of RPOTmp.
Collapse
|
6
|
Kmiec B, Woloszynska M, Janska H. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 2006; 50:149-59. [PMID: 16763846 DOI: 10.1007/s00294-006-0082-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 05/11/2006] [Accepted: 05/13/2006] [Indexed: 10/24/2022]
Abstract
Plant and animal mitochondrial genomes, although quite distinct in size, structure, expression and evolutionary dynamics both may exhibit the state of heteroplasmy--the presence of more than one type of mitochondrial genome in an organism. This review is focused on heteroplasmy in plants, but we also highlight the most striking similarities and differences between plant and animal heteroplasmy. First we summarize the information on heteroplasmy generation and methods of its detection. Then we describe examples of quantitative changes in heteroplasmic populations of mitochondrial DNA (mtDNA) and consequences of such events. We also summarize the current knowledge about transmission and somatic segregation of heteroplasmy in plants and animals. Finally, factors which influence the stoichiometry of heteroplasmic mtDNA variants are discussed. Despite the apparent differences between the plant and animal heteroplasmy, the observed similarities allow one to conclude that this condition must play an important role in the mitochondrial biology of living organisms.
Collapse
Affiliation(s)
- Beata Kmiec
- Institute of Biochemistry and Molecular Biology, Department of Cell Molecular Biology, University of Wroclaw, ul Przybyszewskiego 63/77, Wroclaw, Poland
| | | | | |
Collapse
|
7
|
|
8
|
Toffaletti DL, Del Poeta M, Rude TH, Dietrich F, Perfect JR. Regulation of cytochrome c oxidase subunit 1 (COX1) expression in Cryptococcus neoformans by temperature and host environment. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1041-1049. [PMID: 12686646 DOI: 10.1099/mic.0.26021-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the study of differential gene expression of Cryptococcus neoformans, a transcript of COX1 (cytochrome oxidase c subunit 1) was identified in a serotype A strain. The transcript was upregulated at 37 degrees C compared to 30 degrees C and expressed by yeasts infecting the central nervous system. Northern analysis of COX1 from the serotype A strain revealed two polycistronic transcripts, a temperature-upregulated 2.3 kb transcript and a 1.9 kb transcript that was not affected by temperature. In contrast, COX1 in a serotype D strain showed only a 1.9 kb polycistronic transcript plus a 1.6 kb monocistronic message, and temperature had no effect on the transcripts. The sequence of COX1 revealed similar coding regions between the two strains, but the serotype D strain had five introns whereas no introns were found in the serotype A strain. The serotype D strain had reduced growth rates compared to the serotype A strain at 37 degrees C, but in an AD hybrid strain the serotype D COX1 gene could support efficient high temperature growth. These studies have revealed mitochondrial molecular differences between serotype A and D strains which show evolutionary divergence. It will be important to determine whether differences in mitochondrial structure and function can influence cryptococcosis.
Collapse
Affiliation(s)
- Dena L Toffaletti
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Maurizio Del Poeta
- Department of Biochemistry, Medical College of South Carolina, Charleston, SC 29425, USA
| | - Thomas H Rude
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Fred Dietrich
- Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - John R Perfect
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Siqueira SF, Dias SM, Lejeune B, de Souza AP. Marchantia polymorpha mitochondrial orf identifies transcribed sequence in angiosperm mitochondrial genome. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:203-11. [PMID: 11566356 DOI: 10.1016/s0167-4781(01)00273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heterologous hybridizations performed using nine Marchantia polymorpha mitochondrial orfs and the sdh4 gene against angiosperm mtDNA suggested that three of them and the sdh4 gene have been conserved in the mitochondrial genome of different angiosperm species. Solanum tuberosum mtDNA fragments, which hybridized to M. polymorpha orf207 and sdh4 gene, were cloned, sequenced, and their expressions evaluated by Northern and RT-PCR. Hybridizing fragments to sdh4 gene and orf207 from potato mtDNA were shown to be transcribed, but only in the case of sdh4 gene was there homology between the protein encoded by the DNA sequence from M. polymorpha and the potato mitochondrial genome. M. polymorpha orf207 showed little similarity to an open reading frame from potato mtDNA, named here orf78. The putative proteins encoded by both orf207 and orf78 were not related, indicating that these orfs do not constitute homologous sequences.
Collapse
Affiliation(s)
- S F Siqueira
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Cidade Universitária Zererino Vaz, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
10
|
Dias SM, Siqueira SF, Lejeune B. Identification and characterization of the trnS/pseudo-tRNA/nad3/rps12 gene cluster from Coix lacryma-jobi L: organization, transcription and RNA editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 158:97-105. [PMID: 10996249 DOI: 10.1016/s0168-9452(00)00308-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During a study of mitochondrial sequence conservation between the liverwort Marchantia polymorpha and several Angiosperm species, as revealed by heterologous hybridization experiments, the trnS/pseudo-tRNA/nad3/rps12 gene cluster in Coix lacryma-jobi L., an Asian grass species from the Andropogoneae, was identified using the mitochondrial probe orf167 from M. polymorpha. The Coix gene cluster was cloned and sequenced, and its expression analyzed. The gene sequence and gene locus organization were found to be similar to the corresponding cluster in wheat and maize. Northern hybridization and reverse transcription-polymerase chain reaction analyses indicated that nad3 and rps12 genes were co-transcribed as a 1.25 kb RNA molecule. The transcript displayed 20 and six RNA edition sites, in the nad3 and rps12 genes, respectively, that changed the codon identities to amino acids, which are better conserved in different organisms. Twenty-three cDNA clones were analysed for the edition process and revealed different partial editing patterns without apparent sequential processing.
Collapse
Affiliation(s)
- SM Dias
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Cidade Universitária 'Zeferino Vaz', 13083-970 C.P. 6010 SP, Campinas, Brazil
| | | | | |
Collapse
|
11
|
Thompson P, Bowsher CG, Tobin AK. Heterogeneity of mitochondrial protein biogenesis during primary leaf development in barley. PLANT PHYSIOLOGY 1998; 118:1089-99. [PMID: 9808754 PMCID: PMC34782 DOI: 10.1104/pp.118.3.1089] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 07/21/1998] [Indexed: 05/18/2023]
Abstract
The natural developmental gradient of light-grown primary leaves of barley (Hordeum vulgare L.) was used to analyze the biogenesis of mitochondrial proteins in relation to the age and physiological changes within the leaf. The data indicate that the protein composition of mitochondria changes markedly during leaf development. Three distinct patterns of protein development were noted: group A proteins, consisting of the E1 beta-subunit of the pyruvate dehydrogenase complex, ORF156, ORF577, alternative oxidase, RPS12, cytochrome oxidase subunits II and III, malic enzyme, and the alpha- and beta-subunits of F1-ATPase; group B proteins, consisting of the E1 alpha-subunit of the pyruvate dehydrogenase complex, isocitrate dehydrogenase, HSP70A, cpn60C, and cpn60B; and group C proteins, consisting of the four subunits of the glycine decarboxylase complex (P, H, T, and L proteins), fumarase, and formate dehydrogenase. All of the proteins increased in concentration from the basal meristem to the end of the elongation zone (20.0 mm from the leaf base), whereupon group A proteins decreased, group B proteins increased to a maximum at 50 mm from the leaf base, and group C proteins increased to a maximum at the leaf tip. This study provides evidence of a marked heterogeneity of mitochondrial protein composition, reflecting a changing function as leaf cells develop photosynthetic and photorespiratory capacity.
Collapse
Affiliation(s)
- P Thompson
- Plant Science Laboratory, School of Environmental and Evolutionary Biology, Sir Harold Mitchell Building, University of St. Andrews, St. Andrews, Fife KY16 9TH, Scotland (P.T., A.K.T.)
| | | | | |
Collapse
|
12
|
Lelandais C, Albert B, Gutierres S, De Paepe R, Godelle B, Vedel F, Chétrit P. Organization and expression of the mitochondrial genome in the Nicotiana sylvestris CMSII mutant. Genetics 1998; 150:873-82. [PMID: 9755215 PMCID: PMC1460359 DOI: 10.1093/genetics/150.2.873] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous analyses suggested that the Nicotiana sylvestris CMSII mutant carried a large deletion in its mitochondrial genome. Here, we show by cosmid mapping that the deletion is 60 kb in length and contains several mitochondrial genes or ORFs, including the complex I nad7 gene. However, due to the presence of large duplications in the progenitor mitochondrial genome, the only unique gene that appears to be deleted is nad7. RNA gel blot data confirm the absence of nad7 expression, strongly suggesting that the molecular basis for the CMSII abnormal phenotype, poor growth and male sterility, is the altered complex I structure. The CMSII mitochondrial genome appears to consist essentially of one of two subgenomes resulting from recombination between direct short repeats. In the progenitor mitochondrial genome both recombination products are detected by PCR and, reciprocally, the parental fragments are detected at the substoichiometric level in the mutant. The CMSII mtDNA organization has been maintained through six sexual generations.
Collapse
Affiliation(s)
- C Lelandais
- Institut de Biotechnologie des Plantes, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Menand B, Maréchal-Drouard L, Sakamoto W, Dietrich A, Wintz H. A single gene of chloroplast origin codes for mitochondrial and chloroplastic methionyl-tRNA synthetase in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1998; 95:11014-9. [PMID: 9724821 PMCID: PMC28012 DOI: 10.1073/pnas.95.18.11014] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One-fifth of the tRNAs used in plant mitochondrial translation is coded for by chloroplast-derived tRNA genes. To understand how aminoacyl-tRNA synthetases have adapted to the presence of these tRNAs in mitochondria, we have cloned an Arabidopsis thaliana cDNA coding for a methionyl-tRNA synthetase. This enzyme was chosen because chloroplast-like elongator tRNAMet genes have been described in several plant species, including A. thaliana. We demonstrate here that the isolated cDNA codes for both the chloroplastic and the mitochondrial methionyl-tRNA synthetase (MetRS). The protein is transported into isolated chloroplasts and mitochondria and is processed to its mature form in both organelles. Transient expression assays using the green fluorescent protein demonstrated that the N-terminal region of the MetRS is sufficient to address the protein to both chloroplasts and mitochondria. Moreover, characterization of MetRS activities from mitochondria and chloroplasts of pea showed that only one MetRS activity exists in each organelle and that both are indistinguishable by their behavior on ion exchange and hydrophobic chromatographies. The high degree of sequence similarity between A. thaliana and Synechocystis MetRS strongly suggests that the A. thaliana MetRS gene described here is of chloroplast origin.
Collapse
Affiliation(s)
- B Menand
- Institut de Biologie Moléculaire des Plantes/Centre National de la Recherche Scientifique, Université Louis Pasteur, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Leon P, Arroyo A, Mackenzie S. NUCLEAR CONTROL OF PLASTID AND MITOCHONDRIAL DEVELOPMENT IN HIGHER PLANTS. ACTA ACUST UNITED AC 1998; 49:453-480. [PMID: 15012242 DOI: 10.1146/annurev.arplant.49.1.453] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nucleus must coordinate organelle biogenesis and function on a cell and tissue-specific basis throughout plant development. The vast majority of plastid and mitochondrial proteins and components involved in organelle biogenesis are encoded by nuclear genes. Molecular characterization of nuclear mutants has illuminated chloroplast development and function. Fewer mutants exist that affect mitochondria, but molecular and biochemical approaches have contributed to a greater understanding of this organelle. Similarities between organelles and prokaryotic regulatory molecules have been found, supporting the prokaryotic origin of chloroplasts and mitochondria. A striking characteristic for both mitochondria and chloroplast is that most regulation is posttranscriptional.
Collapse
Affiliation(s)
- P. Leon
- Departamento de Biologia Molecular de Plantas, Instituto de Biotecnologia UNAM, Cuernavaca, Morelos 62250 Mexico; e-mail: , Department of Agronomy, Lilly Hall of Life Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
15
|
Chen HC, Viry-Moussaïd M, Dietrich A, Wintz H. Evolution of a mitochondrial tRNA PHE gene in A. thaliana: import of cytosolic tRNA PHE into mitochondria. Biochem Biophys Res Commun 1997; 237:432-7. [PMID: 9268729 DOI: 10.1006/bbrc.1997.7138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously we have described a putative tRNATyr in Arabidopsis thaliana mitochondria, the sequence of which is different from that of other plant mitochondrial tRNATyr genes. We show here that this tRNATyr gene sequence is present in several copies in the mitochondrial genome of A. thaliana. One copy of these tRNATyr gene sequences, termed here tRNATyr-1, could encode a functional tRNA. Expression analysis has shown that the tRNATyr-1 gene is cotranscribed with the downstream tRNAGlu gene, and that the corresponding mature-sized tRNA is present in mitochondria. We also show that the native tRNATyr gene, similar to the mitochondrial tRNATyr genes found in plants, is present in the A. thaliana mitochondrial genome and expressed. The tRNATyr-1 gene has been previously suggested to be derived from a tRNAPhe gene sequence. We show here that, as a consequence, there is no tRNAPhe gene in the mitochondrial genome of A. thaliana and that a cytosolic tRNAPhe is imported in A. thaliana mitochondria.
Collapse
Affiliation(s)
- H C Chen
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du général Zimmer, Strasbourg Cedex, F-67084, France
| | | | | | | |
Collapse
|
16
|
Lelandais C, Gutierres S, Mathieu C, Vedel F, Remacle C, Maréchal-Drouard L, Brennicke A, Binder S, Chétrit P. A promoter element active in run-off transcription controls the expression of two cistrons of nad and rps genes in Nicotiana sylvestris mitochondria. Nucleic Acids Res 1996; 24:4798-804. [PMID: 8972868 PMCID: PMC146301 DOI: 10.1093/nar/24.23.4798] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The expression of two mitochondrial gene clusters (orf87-nad3-nad1/A and orf87-nad3-rps12) was studied in Nicotiana sylvestris. 5' and 3' termini of transcripts were mapped by primer extension and nuclease S1 protection. Processing and transcription initiation sites were differentiated by in vitro phosphorylation and capping experiments. A transcription initiation site, present in both gene clusters, was found 213 nucleotides upstream of orf87. This promoter element matches the consensus motif for dicotyledonous mitochondrial promoters and initiates run-off transcription in a pea mitochondrial purified protein fraction. Processing sites were identified 5' of nad3, nad1/A and rps12 respectively. These results suggest that (i) the expression of the two cistrons is only controlled by one duplicated promoter element, and (ii) multiple processing events are required to produce monocistronic nad3, nad1/A and rps12 transcripts.
Collapse
Affiliation(s)
- C Lelandais
- Institut de Biotechnologie des Plantes, URA 1128, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pesole G, Ceci LR, Gissi C, Saccone C, Quagliariello C. Evolution of thenad3-rps12 gene cluster in angiosperm mitochondria: Comparison of edited and unedited sequences. J Mol Evol 1996. [DOI: 10.1007/bf02337516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Binder S, Marchfelder A, Brennicke A. Regulation of gene expression in plant mitochondria. PLANT MOLECULAR BIOLOGY 1996; 32:303-314. [PMID: 8980484 DOI: 10.1007/bf00039387] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many genes is plant mitochondria have been analyzed in the past 15 years and regulatory processes controlling gene expression can now be investigated. In vitro systems capable of initiating transcription faithfully at promoter sites have been developed for both monocot and dicot plants and will allow the identification of the interacting nucleic acid elements and proteins which specify and guide transcriptional activities. Mitochondrial activity, although required in all plant tissues, is capable of adapting to specific requirements by regulated gene expression. Investigation of the factors governing the quality and quantity of distinct RNAs will define the extent of interorganelle regulatory interference in mitochondrial gene expression.
Collapse
Affiliation(s)
- S Binder
- Allgemeine Botanik, Universität Ulm, Germany
| | | | | |
Collapse
|
19
|
Sane AP, Nath P, Sane PV. Cytoplasmic male sterility in sorghum: Organization and expression of mitochondrial genes in Indian CMS cytoplasms. J Genet 1996. [DOI: 10.1007/bf02931758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Kubo N, Ozawa K, Hino T, Kadowaki K. A ribosomal protein L2 gene is transcribed, spliced, and edited at one site in rice mitochondria. PLANT MOLECULAR BIOLOGY 1996; 31:853-62. [PMID: 8806415 DOI: 10.1007/bf00019472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mitochondrial ribosomal protein L2 gene (rpl2) is coded by two exons of 840 and 669 bp separated by an intron sequence of 1481 bp in the rice mitochondrial genome. The rpl2 gene is located three nucleotides upstream of the ribosomal protein S19 gene (rps19) and both genes are co-transcribed. cDNA sequence analysis identified splicing of the intron sequence from the rpl2 mRNA as well as RNA editing events. The deduced secondary structure of the rpl2 intron sequence shows the characteristic features of a group-II intron. A single RNA editing site is identified in rpl2 and six editing sites in rps19 transcripts. In addition, one editing site is observed in the 3 nucleotide intergenic region. Analysis of individual cDNA clones showed a different extent of RNA editing. The rice rpl2 intron is located at a different site and shows no significant nucleotide sequence similarity with the rpl2 intron of liverwort. However, 60% nucleotide sequence identity is observed between the rice rpl2 intron and the Oenothera nad5 intron in a 234 nucleotide region. The mitochondrial rpl2 sequence is absent from the pea mitochondrial genome and we consequently propose that the mitochondrial RPL2 protein is encoded by a nuclear gene in pea.
Collapse
Affiliation(s)
- N Kubo
- Department of Molecular Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | | | |
Collapse
|
21
|
Quiñones V, Zanlungo S, Moenne A, Gómez I, Holuigue L, Litvak S, Jordana X. The rpl5-rps14-cob gene arrangement in Solanum tuberosum: rps14 is a transcribed and unedited pseudogene. PLANT MOLECULAR BIOLOGY 1996; 31:937-43. [PMID: 8806426 DOI: 10.1007/bf00019483] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The L5 ribosomal protein gene (rpl5) and a S14 ribosomal protein pseudogene were identified by sequence analysis in the potato mitochondrial genome. The two genes are separated by one nucleotide and are found upstream of the apocytochrome b gene (cob), an arrangement conserved also in Arabidopsis and Brassica. The rpl5 gene has an intact open reading frame while the rps14 locus is disrupted by a five nucleotide duplication that introduces a frameshift in the reading frame. Editing of rpl5 and pseudorps14 cotranscripts has been studied by cDNA sequence analysis. Eight C residues are edited into U in the rpl5 coding region, resulting in eight amino acid changes that increase the homology between potato and other RPL5 polypeptides. Interestingly, the rps14 pseudogene sequence is not edited at any nucleotide position.
Collapse
Affiliation(s)
- V Quiñones
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
22
|
Perrotta G, Regina TM, Ceci LR, Quagliariello C. Conservation of the organization of the mitochondrial nad3 and rps12 genes in evolutionarily distant angiosperms. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:326-37. [PMID: 8676875 DOI: 10.1007/bf02172523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The organization of the genes nad3 and rps12 has been investigated in the mitochondrial genome of two dicotyledonous plants - Helianthus and Magnolia - and one monocotyledonous plant (Allium). These plants all contain a complete rps12 gene downstream of the nad3 gene. This arrangement is thus highly conserved within angiosperms. The two genes are co-transcribed and the transcript is modified at several positions by RNA editing of the C to U-type, thus confirming that both genes encode functional proteins. Some 26, 35 and 27 editing events have been identified in the PCR-derived nad3-rps12 cDNA population from sunflower, Magnolia and onion, respectively. Editing of the nad3-rps12 transcript is thus more extensive in Magnolia than in the other angiosperms so far investigated and radically changes the genomically encoded polypeptide sequence. A novel species-specific codon modification was observed in Magnolia. Several homologous sites show differences in editing pattern among plant species. A C-to-U alteration is also found in the non-coding region separating the nad3 and rps12 genes in sunflower. The PCR-derived cDNA populations from the nad3-rps12 loci analysed were found to be differently edited. In addition the plant species show marked variations in the completeness of RNA editing, with only the Magnolia nad3 mRNA being edited fully.
Collapse
Affiliation(s)
- G Perrotta
- Dipartimento di Biologia Cellulare, Università della Calabria, Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
23
|
Rankin CT, Cutright MT, Makaroff CA. Characterization of the radish mitochondrial nad3/rps12 locus: analysis of recombination repeats and RNA editing. Curr Genet 1996; 29:564-71. [PMID: 8662196 DOI: 10.1007/bf02426961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to further investigate sequences that are responsible for low-frequency recombination in plant mitochondrial DNAs and RNA editing in radish mitochondria, the nad3/rps12 locus has been isolated and characterized from a normal cultivar of radish and the male-sterile Ogura cytoplasm. A repeated sequence that has been implicated in other radish mitochondrial DNA rearrangements was identified at the breakpoint between the two loci indicating that it was also involved in the nad3/rps12 rearrangement. Similar to some other radish mitochondrial genes, nad3/rps12 genomic sequences already contain several, but not all, of the bases that are typically edited in plant mitochondrial nad3 and rps12 genes. Analysis of nad3/rps12 cDNAs indicated that the mRNAs are not edited. One partially edited transcript was identified out of the twenty two that were examined. This finding, along with the observation that nad3/rps12 RNAs are present at very low levels, raises the possibility that radish mitochondria may not encode functional copies of these genes. Consistent with this hypothesis, DNA-blot analysis detects nad3/rps12 sequences in the nucleus.
Collapse
Affiliation(s)
- C T Rankin
- Chemistry Department, Hughes Hall, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
24
|
Nakazono M, Ito Y, Tsutsumi N, Hirai A. The gene for a subunit of an ABC-type heme transporter is transcribed together with the gene for subunit 6 of NADH dehydrogenase in rice mitochondria. Curr Genet 1996; 29:412-6. [PMID: 8625418 DOI: 10.1007/bf02221507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously identified a chloroplast-derived (ct-derived) sequence of 32 base pairs (bp) in rice mitochondrial DNA that includes a part (30 bp; psitrnI) of a gene for isoleucine tRNA (CAU) of the chloroplast. Analyzing the ct-derived psitrnI, we found that an open reading frame (orf240), which was homologous to the gene for a subunit of an ATP-binding cassette-type (ABC-type) heme transporter, namely helC, of Rhodobacter capsulatus, and a gene for subunit 6 of NADH dehydrogenase (nad6) were located upstream of and downstream from the ct-derived psitrnI, respectively. Northern-blot hybridization and analysis by reverse transcription-polymerase chain reaction (RT-PCR) revealed that both orf240 and nad6 were co-transcribed in rice mitochondria. An analysis of PCR-amplified fragments of the region of orf240/nad6 from the DNA of some Gramineae suggests that the arrangement of orf240/nad6 was generated in the mitochondrial genome of the genus Oryza during evolution after its divergence from the other Gramineae. Most of the transcripts of orf240 are edited, with a change from cytidine to uridine, at 35 positions. Editing of the RNA changes 33 amino-acid residues among the 240 encoded amino-acid residues, suggesting that the orf240 gene is functional in rice mitochondria.
Collapse
Affiliation(s)
- M Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113, Japan
| | | | | | | |
Collapse
|
25
|
Wolff G, Kück U. Transcript mapping and processing of mitochondrial RNA in the chlorophyte alga Prototheca wickerhamii. PLANT MOLECULAR BIOLOGY 1996; 30:577-595. [PMID: 8605307 DOI: 10.1007/bf00049333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The detailed transcript map of the circular 55328 bp mitochondrial (mt) genome from the colourless chlorophycean alga Prototheca wickerhamii has been determined. On each half of this genome the genes are encoded only on one DNA strand, forming transcriptional units comprising variable numbers of genes. With the exception of four genes coding for ribosomal proteins, transcripts of the three rRNA genes and all protein-coding genes have been detected by both northern analysis and primer extension experiments. Polycistronic transcripts of protein coding and tRNA genes were verified by northern analyses, primer extension and RNAse mapping experiments. The 5' and 3' ends of different RNA species are often located in close proximity to putative stem-loop structures and some 5' termini of mRNAs coincide with the 3' end of tRNAs located immediately upstream. Transcript mapping in a putative promoter region revealed two different possible transcription initiation sites; no significant sequence homology to putative mt promoters from higher plants could be found. In addition, two out of three group I introns residing in the cox1 gene were found to be self-splicing in vitro under reaction conditions developed for related mt introns from a filamentous fungus. Mitochondrial gene expression of P. wickerhamii and of filamentous fungi has several features in common, such as intron splicing and the processing of longer polycistronic transcripts. The similarities in RNA maturation between higher-plant and P. wickerhamii mitochondria are less pronounced, since plants rarely use tRNAs as processing signals for their relatively short mitochondrial co-transcripts.
Collapse
Affiliation(s)
- G Wolff
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
26
|
Ceci LR, Veronico P, Gallerani R. Identification and mapping of tRNA genes on the Helianthus annuus mitochondrial genome. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1996; 6:159-66. [PMID: 8722570 DOI: 10.3109/10425179609010203] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The physical map for seventeen tRNA genes on the mitochondrial genome of the dicotyledonous plant Helianthus annuus has been established. Eleven are genuine mitochondrial genes, while the other six show a high degree of similarity with the chloroplast counterparts. The genes, with the exception of the genuine trnS(GCT) and of the chloroplast-like trnV and trnP, are expressed. The comparison of the organization of some tRNA genes in the H. annuus mitochondrial genome with that of similar genes detectable in other plants reveals that their association is common to several dicotyledons.
Collapse
Affiliation(s)
- L R Ceci
- Centro di Studio sui Mitocondri e Metabolismo Energetico-C.N.R., Trani, Italy
| | | | | |
Collapse
|
27
|
Dietrich A, Small I, Cosset A, Weil JH, Maréchal-Drouard L. Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 1996; 78:518-29. [PMID: 8915541 DOI: 10.1016/0300-9084(96)84758-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recombinations and mutations that plant mitochondrial DNA has undergone during evolution have led to the inactivation or complete loss of a number of the 'native' transfer RNA genes deriving from the genome of the ancestral endosymbiont. Following sequence divergence in their genes, some native mitochondrial tRNAs are 'rescued' by editing, a post-transcriptional process which changes the RNA primary sequence. According to in vitro studies with the native mitochondrial tRNA(Phe) from potato and tRNA(His) from larch, editing is required for efficient processing. Some of the native tRNA genes which have been inactivated or lost have been replaced by tRNA genes present in plastid DNA sequences acquired by the mitochondrial genome during evolution, which raises the problem of the transcriptional regulation of tRNA genes in plant mitochondria. Finally, tRNAs for which no gene is present in the mitochondrial genome are imported from the cytosol. This process is highly specific for certain tRNAs, and it has been suggested that the cognate aminoacyl-tRNA synthetases may be responsible for this specificity. Indeed, a mutation which blocks recognition of the cytosolic Arabidopsis thaliana tRNA(Ala) by the corresponding alanyl-tRNA synthetase also prevents mitochondrial import of this tRNA in transgenic plants. Conversely, no significant mitochondrial co-import of the normally cytosol-specific tRNA(Asp) was detected in transgenic plants expressing the yeast cytosolic aspartyl-tRNA synthetase fused to a mitochondrial targeting sequence, suggesting that, although necessary, recognition by a cognate aminoacyl-tRNA synthetase might not be sufficient to allow tRNA import into plant mitochondria.
Collapse
Affiliation(s)
- A Dietrich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis-Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
28
|
Laser B, Kück U. The mitochondrial atpA/atp9 co-transcript in wheat and triticale: RNA processing depends on the nuclear genotype. Curr Genet 1995; 29:50-7. [PMID: 8595658 DOI: 10.1007/bf00313193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene region coding for subunits alpha and 9 of the mitochondrial ATP synthase exhibit an identical DNA sequence in wheat, rye, and the intergeneric hybrid triticale (xTriticosecale Wittmack). However, co-transcripts containing both genes show different sizes depending on the nuclear genotype. To investigate nuclear-mitochondrial interactions leading to this variation, we performed a comparative transcript analysis with various lines carrying defined nuclear and cytoplasmic genotypes. Northern analyses showed that all wheat lines investigated possess a single atpA/atp9 mRNA of 2.6kb, whereas in rye and five independent triticale lines an additional transcript of 2.35kb appeared. Primer-extension and RNase-protection analyses indicate that the co-transcripts of this gene have staggered 5' termini in some lines, whereas the 3' termini seem to be similar in wheat, rye, and triticale. Transcription is initiated at position -338/-339 upstream of the atpA gene in all lines investigated, giving rise to a 2.6-kb mRNA. In rye and triticale, staggered 5' termini were observed closer to the translational start. The DNA sequences upstream of these termini exhibit homology to plant mitochondrial-processing sites, therefore the proximal 5' ends are most probably generated by RNA processing. As the processing event occurs more frequently in triticale carrying the Triticum timopheevi cytoplasm, trans-acting factors from rye are likely to interact with other cytoplasmic factors resulting in the observed RNA modification. Most interestingly, the T. timopheevi cytoplasm inducing male sterility in alloplasmic wheat, fails to generate the CMS phenotype in triticale. The data support our hypothesis that nuclear factors affect mitochondrial gene expression and thus control sexual fertility in wheat and triticale.
Collapse
Affiliation(s)
- B Laser
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
29
|
Handa H, Gualberto JM, Grienenberger JM. Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the "Polima" male-sterile cytoplasm in rapeseed (Brassica napus L.). Curr Genet 1995; 28:546-52. [PMID: 8593685 DOI: 10.1007/bf00518167] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
orf224 is a novel reading frame present upstream of the atp6 gene in the mitochondria of "Polima" cms cytoplasm of rapeseed. In order to determine the origin of orf224, the sequences homologous to orf224 were isolated and characterized. Sequence analysis indicated that orf224 originated by recombination events involving the 5'-flanking region and the amino-terminal segment of the coding region of orf158 (well-known as orfB in other plants), part of exon 1 of the ribosomal protein S3 (rps3) gene, and an unidentified sequence. Transcripts of the orf158 gene were found to be edited at three positions, one of which induces an amino-acid change, while orf224 transcripts have only one RNA editing site within the region homologous to the rps3 gene. This editing site is also present in the proper rps3 transcripts. This result indicates that editing of orf224 occurred because of the sequence homology to rps3. Polyclonal antibodies prepared against a rapeseed ORF158 fusion protein specifically recognize a 18-kDa protein in the membrane fractions of mitochondria from both normal and cms rapeseed.
Collapse
Affiliation(s)
- H Handa
- Department of Cell Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | |
Collapse
|
30
|
Karpinska B, Karpinski S, Hällgren JE. The genes encoding subunit 3 of NADH dehydrogenase and ribosomal protein S12 are co-transcribed and edited in Pinus sylvestris (L.) mitochondria. Curr Genet 1995; 28:423-8. [PMID: 8575014 DOI: 10.1007/bf00310810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nucleotide sequence of the region encoding NADH dehydrogenase subunit 3 and ribosomal protein S12 from Pinus sylvestris (L.) mitochondrial DNA (mtDNA) has been determined. A sequence comparison of this region with six individual cDNA clones prepared by RT-PCR revealed 35 C-to-T differences, showing the occurrence of RNA editing. All but one of these alterations in mRNA sequence change codon identities to specify amino acid better conserved in evolution. Most of these modifications take place within the nad3 gene changing 20% of the amino-acid sequence, which is much more than in angiosperms. Of six cDNA clones investigated, four clones of nad3 were differentially edited, but the editing of the rps12 sequences was identical. As in angiosperms, the two genes are separated by a short sequence of 52 bp, which is not edited. Two transcripts of about 0.9 kb and 1.2 kb, each encoding both proteins, have been detected by Northern hybridisation. The hybridisation of nad3 and rps12 probes with pine mtDNA digested with different restriction enzymes indicates that both genes are present in a single copy in pine mtDNA. The analysis of PCR amplification products with gene-specific primers shows a conserved order of these genes in a wide range of gymnosperms.
Collapse
Affiliation(s)
- B Karpinska
- Department of Forest Genetics and Plant Physiology, Faculty of Forestry, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | |
Collapse
|
31
|
Pozueta-Romero J, Klein M, Houlné G, Schantz ML, Meyer B, Schantz R. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. PLANT MOLECULAR BIOLOGY 1995; 28:1011-25. [PMID: 7548820 DOI: 10.1007/bf00032663] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Using a fruit-specific cDNA as a probe we isolated and sequenced the two corresponding homologous genes (Sn-1 and Sn-2) of the bell pepper (Capsicum annuum) genome. Both genes have a single intron and numerous unusual long inverted repeat sequences. The introns share 87% homology and Sn-2 contains one 450 bp additional sequence with structural features of a transposable element, which is highly repetitive in the bell pepper genome. Surprisingly, analysis in data banks showed that genes encoding the potato starch phosphorylase (EC 2.4.1.1) and patatin contain a similar element, named Alien, in their 5'-upstream region. Alien elements are characterized by a conserved 28 bp terminal inverted repeat (TIR), small size, high AT content, potential to form stable DNA secondary structures and they have probably been inserted in TA target sites. Interestingly, the TIR of the Alien elements shares high homology with sequences existing in the TIR of extrachromosomal linear pSKL DNA plasmid of Saccharomyces kluyveri. Northern blot analyses detected Sn-1 transcripts principally in the red fruit whereas no Sn-2 transcripts were detected in neither of the samples monitored. Western blot analyses detected a 16.8 kDa Sn protein principally in the ripe red fruit and wounded areas of green unripe fruit. A comparison of the deduced amino acid sequence of Sn-1 with protein sequences in data banks revealed a significant homology with proteins likely involved in the plant's disease resistance response. Analyses at the subcellular level showed that Sn-1 is localized in the membrane of vacuoles.
Collapse
Affiliation(s)
- J Pozueta-Romero
- Institut de Biologie Moléculaire des Plantes, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
32
|
Kubo T, Satoh Y, Muro T, Kinoshita T, Mikami T. Physical and gene organization of mitochondrial DNA from the fertile cytoplasm of sugarbeet (Beta vulgaris L.). Curr Genet 1995; 28:235-41. [PMID: 8529269 DOI: 10.1007/bf00309782] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have constructed a complete physical map of the mitochondrial genome from the male-fertile cytoplasm of sugarbeet. The entire sequence complexity can be represented on a single circular master chromosome of 358 kb. This master chromosome contains three copies of one recombinationally active repeat sequence, with two copies in direct orientation and the other in inverted orientation. The positions of the rRNA genes and of 23 polypeptide genes, determined by filter hybridization, are scattered throughout the genome, with triplicate rrn26 genes located partially or entirely within the recombination-repeat elements. Three ribosomal-protein genes (rps1A, rps14 and rps19) were found to be absent from sugarbeet mtDNA. Our results also reveal that at least six regions homologous with cDNA are dispersed in the mitochondrial genome.
Collapse
Affiliation(s)
- T Kubo
- Laboratory of Genetic Engineering, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
33
|
Muise RC, Hauswirth WW. Selective DNA amplification regulates transcript levels in plant mitochondria. Curr Genet 1995; 28:113-21. [PMID: 8590461 DOI: 10.1007/bf00315776] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Most plant mitochondrial genomes exist as subgenomic-size fragments apparently due to recombination between repetitive sequences. This leads to the possibility that independently replicating subgenomic domains could result in mitochondrial gene copy number variation. We show, through Southern-blot analysis of both restricted and intact mtDNA, that there are gene-specific copy number differences in the monocot Zea mays. Comparison of two different maize genotypes, B37(N) and B37(T), a cytoplasmic male-sterile strain, reveal fewer gene copy number differences for B37(T) than for B37(N). In contrast to maize, significant gene copy number differences are not detected in the dicot Brassica hirta. We also demonstrate that mitochondrial transcriptional rates in both species are apparently dependent on gene copy number since relative rates determined by run-on analysis are proportional to relative gene copy numbers. Thus a direct relationship exists between plant mitochondrial gene copy number and transcriptional rate.
Collapse
Affiliation(s)
- R C Muise
- Department of Immunology and Medical Microbiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | |
Collapse
|
34
|
Nakazono N, Kanno A, Tsutsumi N, Hirai A. Homologous recombination mediated by two palindromic repeated sequences in the mitochondrial genome of Oryza. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:1-8. [PMID: 24169660 DOI: 10.1007/bf00220851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/1994] [Accepted: 10/18/1994] [Indexed: 06/02/2023]
Abstract
Palindromic repeated sequences (PRSs) are distributed in at least ten regions of the mitochondrial (mt) genome of rice and are, apparently, mobile. In the present study, we examined the possibility of homologous recombination via some PRSs during the course of evolution of Oryza. We first performed Southern hybridization of the DNA from 11 species (18 strains) of Oryza in order to identify the distribution of PRSs in the mitochondrial genome of Oryza. The hybridization patterns revealed genome type-specific and/or species-specific variations. We speculated that homologous recombination via some PRSs might have made a contribution to such variations. After subsequent polymerase chain reaction, Southern hybridization and sequencing, we concluded that homologous recombination mediated by two PRSs occurred in the mtDNA of Oryza after divergence of the BB genome type and the other genome types of Oryza. Evidence was obtained that some PRSs were involved in both insertion and recombination events during the evolution of Oryza. Our results indicate, therefore, that PRSs have contributed considerably to the polymorphism of Oryza mtDNAs.
Collapse
Affiliation(s)
- N Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Suzuki T, Nakamura C, Mori N, Kaneda C. Overexpression of mitochondrial genes in alloplasmic common wheat with a cytoplasm of wheatgrass (Agropyron trichophorum) showing depressed vigor and male sterility. PLANT MOLECULAR BIOLOGY 1995; 27:553-565. [PMID: 7534497 DOI: 10.1007/bf00019321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An alloplasmic hybrid (nucleus-cytoplasm hybrid) of common wheat (Triticum aestivum) with a cytoplasm of wheatgrass (Agropyron trichophorum) shows highly depressed vigor and complete male sterility. The presence of one short-arm telocentric homeologous group 1 chromosome (telosome) of the cytoplasm donor, however, restores normal vigor and male fertility of the hybrid. To study role(s) of the telosome on vigor/fertility restoration, mitochondrial genome organization and gene expression were compared among seedlings of the alloplasmic line showing depressed vigor, the corresponding restored line having a pair of the telosomes, and a euplasmic nuclear donor as control. No differences were detected in the mitochondrial genome structure between the depressed line and the restored line. Northern blot analysis using ten mitochondrial genes as probes showed no differences in transcript size and number between the depressed and restored lines, although clear differences were found in size of the major transcripts of two genes (cob and orf25) between the alloplasmic lines and the euplasmic control. Steady-state transcript levels were higher in the depressed line than in the other lines for all the mitochondrial genes analyzed including rrn18&5 when the same amount of mitochondrial RNA was loaded. The amount of rrn18&5 transcript in the total cellular RNA, however, did not differ among the lines. Run-on transcription analysis demonstrated markedly elevated transcriptional activities of all the mitochondrial genes analyzed in the depressed line based on unit amount of mitochondrial DNA, RNA and protein. The presence of Agropyron telosomes apparently normalized the level of mitochondrial transcription. These observations suggest either direct or indirect association of the observed mitochondrial gene overexpression with the depressed vigor and male sterility of the alloplasmic hybrid.
Collapse
Affiliation(s)
- T Suzuki
- Division of Biological Resources, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | |
Collapse
|
36
|
Bonnard G, Grienenberger JM. A gene proposed to encode a transmembrane domain of an ABC transporter is expressed in wheat mitochondria. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:91-9. [PMID: 7529870 DOI: 10.1007/bf00290137] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In a study of transcribed regions of the wheat mitochondrial genome, we identified an open reading frame of 720 bp, which was consequently designated orf240. The amino acid sequence deduced from orf240 shows a high level of similarity with HelC, a protein essential for c-type cytochrome biogenesis in the photosynthetic purple bacterium Rhodobacter capsulatus. HelC is part of a putative heme ABC transporter. An open reading frame homologous to orf240 is present in the mitochondrial genome of Marchantia polymorpha. The wheat gene is expressed as an mRNA of 2.8 kb, which is further processed to smaller transcripts. The transcript is highly edited, with 36 C to U modifications found in the coding region of all cDNAs sequenced. RNA editing is responsible for changes in 14% of the amino acids specified by the transcript.
Collapse
Affiliation(s)
- G Bonnard
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | |
Collapse
|
37
|
|
38
|
|
39
|
Nakazono M, Itadani H, Wakasugi T, Tsutsumi N, Sugiura M, Hirai A. The rps3-rpl16-nad3-rps12 gene cluster in rice mitochondrial DNA is transcribed from alternative promoters. Curr Genet 1995; 27:184-9. [PMID: 7788722 DOI: 10.1007/bf00313433] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The two gene clusters rps3-rpl16 and nad3-rps12 are separated from each other in the mitochondrial genome and are expressed as the individual transcription units in many plants. In rice mitochondrial DNA (mtDNA), the four genes rps3, rpl16, nad3 and rps12 are located within a region of 6 kbp. Northern-blot analysis revealed that a large transcript (6.6 kb) hybridized to both the rps3-rpl16 and the nad3-rps12 gene clusters. Using RT-PCR, we amplified a fragment of anticipated size (790 bp) from two primers that corresponded to sequences in the coding regions of rpl16 and nad3, demonstrating that at least two of the four genes, namely rpl16 and nad3, were co-transcribed. These results together indicated that all four genes, namely, rps3, rpl16, nad3 and rps12, were co-transcribed in rice mitochondria. Transcription initiation sites were determined by an in vitro capping/ribonuclease protection assay and primer extension analysis. Two initiation sites were identified in the rps3-rpl16-nad3-rps12 gene cluster: one was located upstream of rps3 and the other was located between rpl16 and nad3. This evidence indicates that the rps3-rpl16-nad3-rps12 gene cluster is transcribed from two alternative promoters.
Collapse
Affiliation(s)
- M Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Bonen L, Williams K, Bird S, Wood C. The NADH dehydrogenase subunit 7 gene is interrupted by four group II introns in the wheat mitochondrial genome. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:81-9. [PMID: 8041365 DOI: 10.1007/bf00280190] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have characterized a wheat mitochondrial gene, designated nad7, capable of encoding a 394-amino acid subunit of the respiratory chain NADH dehydrogenase complex. It contains four introns possessing group II features and their positions differ from those in both the liverwort mitochondrial nad7 pseudogene and the nuclear gene encoding the homologous 49 kDa subunit of complex I in Neurospora. The derived amino acid sequence of the wheat nad7 gene is strongly conserved relative to its nuclear or organellar counterparts in other organisms. C-to-U type RNA editing, which is observed at 32 positions within the coding region of wheat nad7 transcripts, strengthens protein sequence similarity. RNA editing is also predicted to improve base-pairing within the domain V/VI regions of all four introns.
Collapse
Affiliation(s)
- L Bonen
- Department of Biology, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Zanlungo S, Quiñones V, Moenne A, Holuigue L, Jordana X. A ribosomal protein S10 gene is found in the mitochondrial genome in Solanum tuberosum. PLANT MOLECULAR BIOLOGY 1994; 25:743-749. [PMID: 8061325 DOI: 10.1007/bf00029612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The S10 ribosomal protein gene (rps10), which has not been previously reported in any angiosperm mitochondrial genome, was identified by sequence analysis in the potato mitochondrial DNA. This gene is found downstream of a truncated non-functional apocytochrome b (cob) pseudogene, and is expressed as multiple transcripts ranging in size from 0.8 to 5.0 kb. Southern hybridization analysis indicates that rps10-homologous sequences are not present in the wheat mitochondrial genome. Sequence analysis of a single-copy region of the pea mitochondrial genome located upstream of cox1 [11] shows that a non-functional rps10 pseudogene is present in this species. These results suggest that the functional genes coding for wheat and pea mitochondrial RPS10 polypeptides have been translocated to the nucleus.
Collapse
Affiliation(s)
- S Zanlungo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago
| | | | | | | | | |
Collapse
|
43
|
Hervieu F, Bannerot H, Pelletier G. A unique cytoplasmic male sterility (CMS) determinant is present in three Phaseolus species characterized by different mitochondrial genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:314-320. [PMID: 24186012 DOI: 10.1007/bf00223638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/1993] [Accepted: 09/09/1993] [Indexed: 06/02/2023]
Abstract
Previous results have shown that cytoplasmic male sterility (CMS) in lines from Phaseolus coccineus and Phaseolus vulgaris contain the same CMS-specific sequence, raising the question of whether this sequence rearrangement arose before divergence of the two species or afterward with subsequent transfer by introgression. Hybridization patterns of total DNA from eight P. vulgaris lines with cytoplasm from P. coccineus and three P. vulgaris lines were examined in order to analyze the mitochondrial DNA (mtDNA) diversity within each species and to determine differences between CMS lines derived from the two species. Three restriction enzymes and 17 heterologous mtDNA sequences were used. The analysis of the different hybridization patterns revealed a considerable diversity in mtDNA organization particularly within P. coccineus. We obtained distinctive hybridization patterns for the five CMS lines tested. The resulting classification showed that mitochondrial genomes from P. coccineus CMS lines group with those of fertile P. coccineus but not with CMS lines from P. vulgaris. The groupings concur with the taxonomic classification of these lines. The results support the hypothesis of a single ancient origin of the CMS determinant and exclude the transfer of cytoplasm by introgression from P. vulgaris to P. coccineus and P. coccineus ssp polyanthus.
Collapse
Affiliation(s)
- F Hervieu
- Laboratoire de Biologie Cellulaire, INRA, route de St Cyr, 78026, Versailles Cedex, France
| | | | | |
Collapse
|
44
|
Nakazono M, Kanno A, Tsutsumi N, Hirai A. Palindromic repeated sequences (PRSs) in the mitochondrial genome of rice: evidence for their insertion after divergence of the genus Oryza from the other Gramineae. PLANT MOLECULAR BIOLOGY 1994; 24:273-281. [PMID: 7509206 DOI: 10.1007/bf00020167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have identified a family of small repeated sequences (from 60 to 66 bp in length) in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare). There are at least ten copies of these sequences and they are distributed throughout the mitochondrial genome. Each is potentially capable of forming a stem-and-loop structure and we have designated them PRSs (palindromic repeated sequences). Their features are reminiscent of the small dispersed repeats in the mitochondrial DNA (mtDNA) of some lower eukaryotes, such as Saccharomyces cerevisiae, Neurospora crassa and Chlamydomonas reinhardtii. Some of the PRSs of rice mtDNA are located in the intron of the gene for ribosomal protein S3 (rps3) and in the flanking sequence of the gene for chloroplast-like tRNA(Asn) (trnN). analysis of PCR-amplified fragments of these regions from the DNA of some Gramineae suggests that the PRSs were inserted into these regions of the Oryza mtDNA after the divergence of Oryza from the other Gramineae.
Collapse
Affiliation(s)
- M Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | |
Collapse
|
45
|
Haouazine N, Takvorian A, Jubier MF, Michel F, Lejeune B. The nad6 gene and the exon d of nad1 are co-transcribed in wheat mitochondria. Curr Genet 1993; 24:533-8. [PMID: 7507801 DOI: 10.1007/bf00351718] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The exon d of nad1 is located 993 bp upstream of the nad6 gene in the wheat mitochondrial genome. Transcription analyses of both sequences (nad1 exon d and the nad6 gene) were done by Northern hybridization using RNA from wheat seedlings and tissue cultures derived from immature embryos. A complicated pattern was generated with a probe including exon d of nad1 and the whole nad6 gene. An 0.71-kb transcript is specific to nad1 exon d whereas a 1.2-kb transcript is specific to the nad6 gene. Three larger transcripts hybridize to both probes suggesting that nad1 exon d and nad6 are co-transcribed. This co-transcription has been directly demonstrated by cDNA synthesis on mtRNAs and sequencing of the PCR amplification product.
Collapse
Affiliation(s)
- N Haouazine
- Laboratoire de Biologie Moléculaire Végétale associé au CNRS (UA 1128), Université Paris Sud, Orsay, France
| | | | | | | | | |
Collapse
|
46
|
Kubo T, Mikami T, Kinoshita T. The sugar beet mitochondrial genome contains an ORF sharing sequence homology with the gene for the 30 kDa subunit of bovine mitochondrial complex I. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:479-81. [PMID: 8246903 DOI: 10.1007/bf00284703] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
From a sugar beet mitochondrial DNA library, we have isolated an open reading frame (ORF192) showing extensive homology to the gene for the 30 kDa subunit of the bovine mitochondrial complex I (NADH: ubiquinone reductase). The ORF192 was found to be actively transcribed to give an RNA of approximately 1.0 kb. We have designated this gene nad9. Transcripts from the nad9 locus are edited by five C to U transitions, increasing similarity with the amino acid sequence of the corresponding bovine and Neurospora crassa polypeptides. Southern blot hybridization also indicates that nad9 is present in the mitochondrial genomes of a variety of higher plant species.
Collapse
Affiliation(s)
- T Kubo
- Plant Breeding Institute, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
47
|
Maréchal-Drouard L, Ramamonjisoa D, Cosset A, Weil JH, Dietrich A. Editing corrects mispairing in the acceptor stem of bean and potato mitochondrial phenylalanine transfer RNAs. Nucleic Acids Res 1993; 21:4909-14. [PMID: 8177739 PMCID: PMC311405 DOI: 10.1093/nar/21.21.4909] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Editing is a general event in plant mitochondrial messenger RNAs, but has never been detected in a plant mitochondrial transfer RNA (tRNA). We demonstrate here the occurrence of a tRNA editing event in higher plant mitochondria: in both bean and potato, the C encoded at position 4 in the mitochondrial tRNA(Phe)(GAA) gene is converted into a U in the mature tRNA. This nucleotide change corrects the mismatched C4-A69 base-pair which appears when folding the gene sequence into the cloverleaf structure and it is consistent with the fact that C to U transitions constitute the common editing events affecting plant mitochondrial messenger RNAs. The tRNA(Phe)(GAA) gene is located upstream of the single copy tRNA(Pro)(UGG) gene in both the potato and the bean mitochondrial DNAs. The sequences of potato and bean tRNA(Pro)(UGG) genes are colinear with the sequence of the mature bean mitochondrial tRNA(Pro)(UGG), demonstrating that this tRNA is not edited. A single copy tRNA(Ser)(GCU) gene was found upstream of the tRNA(Phe) gene in the potato mitochondrial DNA. A U6-U67 mismatched base-pair appears in the cloverleaf folding of this gene and is maintained in the mature potato mitochondrial tRNA(Ser)(GCU), which argues in favour of the hypothesis that the editing system of plant mitochondria can only perform C to U or occasionally U to C changes.
Collapse
Affiliation(s)
- L Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
48
|
Brandt P, Unseld M, Eckert-Ossenkopp U, Brennicke A. An rps14 pseudogene is transcribed and edited in Arabidopsis mitochondria. Curr Genet 1993; 24:330-6. [PMID: 7916674 DOI: 10.1007/bf00336785] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sequence analysis of the region upstream of the apocytochrome b (cob) gene in the Arabidopsis mitochondrial genome identifies an open reading frame with homology to ribosomal protein L5, (rpl5), and a pseudogene with similarity to ribosomal protein S14 (rps14) genes. Both cob and rpl5 genes have intact reading frames, but the rps14 homology is disrupted by a stop codon and a deleted nucleotide. The rpl5 gene, the rps14 pseudogene, and the cob gene are separated by one nucleotide and a 1604-nucleotide-long spacer respectively. A plastid-like tRNA(Ser) is encoded downstream from the cob gene. The entire region is transcribed into a 5-kb transcript, containing the rps14 pseudogene and the cob gene. Cob and rpl5 mRNAs are edited in several positions with different frequencies. The rps14 pseudogene is transcribed and edited in one position in common with other plants. Since no intact rps14 gene is found in the mitochondrial genome of Arabidopsis, the functional gene is presumably encoded in the nucleus.
Collapse
Affiliation(s)
- P Brandt
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | |
Collapse
|
49
|
Ye F, Bernhardt J, Abel WO. Genes for ribosomal proteins S3, L16, L5 and S14 are clustered in the mitochondrial genome of Brassica napus L. Curr Genet 1993; 24:323-9. [PMID: 8252643 DOI: 10.1007/bf00336784] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have cloned and sequenced an 8.9-kb mitochondrial-DNA fragment from rapeseed (Brassica napus L.). The nucleotide sequence indicates a gene cluster that encodes four ribosomal proteins (S3, L16, L5, S14), two tRNA genes (trnD, trnK), and the 5' region of the cob gene. The arrangement of these seven genes is trnD-trnK-rps3-rpl16-rpl5-rps14-cob. The rps3 and rpl16 frames overlap by 131 bp. The rpl5 and rps14 genes are separated by a 4-bp spacer. A 1474-basepair intron is located in the rps3 gene. The tRNA(Asp) gene (trnD) is very similar to the corresponding gene from chloroplasts (cp-like-tRNA(Asp)). Gene-specific probes for each ribosomal protein gene, and for the cp-like-trnD, trnK and cob genes, hybridized to a common pre-mRNA of an estimated size of 10 kilobases, indicating that these seven genes may be expressed as a single transcription unit. The rps3-rpl16-rpl5-rps14 region of B. napus mtDNA may function as a ribosomal operon, similar to the S10 and SPC operons of Escherichia coli and to the ribosomal protein operon of the chloroplast genome from Euglena gracilis.
Collapse
Affiliation(s)
- F Ye
- Arbeitsbereich Genetik, Institut für Allgemeine Botanik, Universität Hamburg, Germany
| | | | | |
Collapse
|
50
|
Gonzalez DH, Bonnard G, Grienenberger JM. A gene involved in the biogenesis of c-type cytochromes is co-transcribed with a ribosomal protein gene in wheat mitochondria [corrected]. Curr Genet 1993; 24:248-55. [PMID: 8221934 DOI: 10.1007/bf00351799] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sequence analysis of a transcribed region of the wheat mitochondrial (mt) genome revealed two open reading frames (orfs) coding for proteins of 589 and 174 amino acids. Both genes are co-transcribed in a 2.6-kb RNA. The largest orf codes for a hydrophobic protein which bears similarity to a bacterial protein involved in the biogenesis of c-type cytochromes. Its corresponding RNA sequence is fully edited at 34 positions. The second orf encodes a protein homologous to the amino-terminal third of E. coli ribosomal protein S1, corresponding to the ribosome-binding domain of this protein. Its RNA sequence is edited at four positions, one of the edits creating a stop codon. The presence of both proteins in wheat mitochondria was demonstrated using specific antibodies raised against fusion proteins obtained in E. coli from the corresponding cDNAs.
Collapse
Affiliation(s)
- D H Gonzalez
- Institute de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|