1
|
Ledermann R, Bartsch I, Müller B, Wülser J, Fischer HM. A Functional General Stress Response of Bradyrhizobium diazoefficiens Is Required for Early Stages of Host Plant Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:537-547. [PMID: 29278144 DOI: 10.1094/mpmi-11-17-0284-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phylogenetically diverse bacteria respond to various stress conditions by mounting a general stress response (GSR) resulting in the induction of protection or damage repair functions. In α-proteobacteria, the GSR is induced by a regulatory cascade consisting of the extracytoplasmic function (ECF) σ factor σEcfG, its anti-σ factor NepR, and the anti-anti-σ factor PhyR. We have reported previously that σEcfG and PhyR of Bradyrhizobium diazoefficiens (formerly named Bradyrhizobium japonicum), the nitrogen-fixing root nodule symbiont of soybean and related legumes, are required for efficient symbiosis; however, the precise role of the GSR remained undefined. Here, we analyze the symbiotic defects of a B. diazoefficiens mutant lacking σEcfG by comparing distinct infection stages of enzymatically or fluorescently tagged wild-type and mutant bacteria. Although root colonization and root hair curling were indistinguishable, the mutant was not competitive, and showed delayed development of emerging nodules and only a few infection threads. Consequently, many of the mutant-induced nodules were aborted, empty, or partially colonized. Congruent with these results, we found that σEcfG was active in bacteria present in root-hair-entrapped microcolonies and infection threads but not in root-associated bacteria and nitrogen-fixing bacteroids. We conclude that GSR-controlled functions are crucial for synchronization of infection thread formation, colonization, and nodule development.
Collapse
Affiliation(s)
- Raphael Ledermann
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Ilka Bartsch
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Barbara Müller
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Janine Wülser
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Hans-Martin Fischer
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
2
|
Luka S, Stacey G. Molecular studies on a new genetic locus linked to the common nodulation genes in Bradyrhizobium japonicum. FEMS Microbiol Lett 1997; 148:145-51. [PMID: 9084141 DOI: 10.1111/j.1574-6968.1997.tb10280.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ORFA, an actively transcribed genetic locus linked to the common nodulation genes in Bradyrhizobium japonicum USDA110, was sequenced and analysed. The expression of ORFA is neither dependent on the regulatory proteins NifA, NtrC, NtrB and NodD1 nor on either copy of sigma 54, RpoN1 and RpoN2. The transcriptional start site of ORFA was determined and found to overlap the oppositely transcribed nodZ gene by 224 nucleotides. An appropriately located -10 sequence identical to the consensus proposed for rhizobia and a homologous -35 region were identified upstream of the transcriptional start site. ORFA showed no significant homologies to known sequences in gene databases, and its mutational inactivation had no effect on the nodulation of five legume species. Nevertheless, ORFA seems to be conserved among bradyrhizobia, since an ORFA probe hybridised to total DNA extracted from other Bradyrhizobium strains.
Collapse
Affiliation(s)
- S Luka
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA.
| | | |
Collapse
|
3
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Relić B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ. Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 1994; 13:171-8. [PMID: 7984092 DOI: 10.1111/j.1365-2958.1994.tb00412.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lipo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japonicum strain USDA110. Between 10(-7) M and 10(-6) M NodNGR factors permitted these NodABC- mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a nonhost. Detailed cytological investigations of V. unguiculata showed that the NodABC- mutant NGR delta nodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.
Collapse
Affiliation(s)
- B Relić
- LBMPS, Université de Genève, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kündig C, Hennecke H, Göttfert M. Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J Bacteriol 1993; 175:613-22. [PMID: 8423135 PMCID: PMC196196 DOI: 10.1128/jb.175.3.613-622.1993] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We describe a compilation of 79 known genes of Bradyrhizobium japonicum 110, 63 of which were placed on a correlated physical and genetic map of the chromosome. Genomic DNA was restricted with enzymes PacI, PmeI, and SwaI, which yielded two, five, and nine fragments, respectively. Linkage of some of the fragments was established by performing Southern blot hybridization experiments. For probes we used isolated, labelled fragments that were produced either by PmeI or by SwaI. Genes were mapped on individual restriction fragments by performing gene-directed mutagenesis. The principle of this method was to introduce recognition sites for all three restriction enzymes mentioned above into or very near the desired gene loci. Pulsed-field gel electrophoresis of restricted mutant DNA then resulted in an altered fragment pattern compared with wild-type DNA. This allowed us to identify overlapping fragments and to determine the exact position of any selected gene locus. The technique was limited only by the accuracy of the fragment size estimates. After linkage of all of the restriction fragments we concluded that the B. japonicum genome consists of a single, circular chromosome that is approximately 8,700 kb long. Genes directly concerned with nodulation and symbiotic nitrogen fixation are clustered in a chromosomal section that is about 380 kb long.
Collapse
Affiliation(s)
- C Kündig
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
6
|
Abstract
This review focuses on the functions of nodulation (nod) genes in the interaction between rhizobia and legumes. The nod genes are the key bacterial determinants of the signal exchange between the two symbiotic partners. The product of the nodD gene is a transcriptional activator protein that functions as receptor for a flavonoid plant compound. This signaling induces the expression of a set of nod genes that produces several related Nod factors, substituted lipooligosaccharides. The Nod factors are then excreted and serve as signals sent from the bacterium to the plant. The plant responds with the development of a root nodule. The plant-derived flavonoid, as well as the rhizobial signal, must have distinct chemical structures which guarantee that only matching partners are brought together.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland
| |
Collapse
|
7
|
Wang SP, Stacey G. Studies of the Bradyrhizobium japonicum nodD1 promoter: a repeated structure for the nod box. J Bacteriol 1991; 173:3356-65. [PMID: 1675210 PMCID: PMC207946 DOI: 10.1128/jb.173.11.3356-3365.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of nod genes in Rhizobium and Bradyrhizobium species is dependent on the presence of plant-produced flavonoids, the NodD protein, and the cis-acting nod box promoter sequence. Although the nodD (nodD1) gene in Rhizobium species is constitutively expressed, nodD1 expression in Bradyrhizobium japonicum is inducible by isoflavones in a manner similar to that of the nodYABC operon. A consensus nod box sequence is found 5' of the nodYABC operon, whereas a presumptive, nod box-like sequence is found 5' of the nodD1 gene. As an initial step toward examining the nodD1 promoter, the transcriptional start sites of the nodD1 and nodYABC operons were determined and found to be 44 and 28 bp, respectively, downstream of their respective nod box sequences. A series of deletions of the nodD1 promoter were constructed and fused to the lacZ gene. Analysis of the activity of these deletions clearly showed that the divergent nod box sequence was essential for nodD1 induction by isoflavones or soybean seed extract. The induction of nodD1 expression requires NodD1, as tested in B. japonicum and in a heterologous system, Agrobacterium tumefaciens. On the basis of these data, we analyzed the published nod box sequences and propose a new consensus sequence composed of paired 9-bp repeats. Analysis of the nodD1 nod box and synthetic constructs of the nocYABC nod box indicate that at least two 9-bp repeats are required for NodD1-mediated induction. Furthermore, insertions between the paired repeats of the nodYABC nod box suggest that orientation of the repeats on opposite faces of the DNA helix is essential for maximum nod gene expression.
Collapse
Affiliation(s)
- S P Wang
- Center for Legume Research, University of Tennessee, Knoxville 37996-0845
| | | |
Collapse
|
8
|
Girard ML, Flores M, Brom S, Romero D, Palacios R, Dávila G. Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli. J Bacteriol 1991; 173:2411-9. [PMID: 2013564 PMCID: PMC207802 DOI: 10.1128/jb.173.8.2411-2419.1991] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The complete physical map of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli strain CFN42 was established. The data support the concept that Rhizobium symbiotic genes are part of a complex genomic structure which contains a large amount of reiterated DNA sequences. This plasmid is a circular structure of 390 kb with approximately 10 families of internally reiterated DNA sequences of two to three elements each. One family includes two directly oriented nitrogenase operons situated 120 kb apart. We also found several stretches of pSym that are reiterated in other replicons of the cell. Localization of symbiotic gene sequences by heterologous hybridization revealed that nodABC sequences are separated in two regions, each of which contains a nod boxlike element, and it also suggested the presence of two copies of the nifA and nodD gene sequences. We propose that the complex structure of the symbiotic plasmid allows interactions between repeated DNA sequences which, in turn, might result in frequent rearrangements.
Collapse
Affiliation(s)
- M L Girard
- Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | | | | | |
Collapse
|
9
|
Kondorosi A, Kondorosi E, John M, Schmidt J, Schell J. The Role of Nodulation Genes in Bacterium-Plant Communication. GENETIC ENGINEERING 1991; 13:115-36. [PMID: 1367410 DOI: 10.1007/978-1-4615-3760-1_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- A Kondorosi
- Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
10
|
Cloning of a DNA region from Bradyrhizobium japonicum encoding pleiotropic functions in heme metabolism and respiration. Arch Microbiol 1989. [DOI: 10.1007/bf00413131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Göttfert M, Lamb JW, Gasser R, Semenza J, Hennecke H. Mutational analysis of the Bradyrhizobium japonicum common nod genes and further nod box-linked genomic DNA regions. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:407-15. [PMID: 2710106 DOI: 10.1007/bf00427037] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By insertional and deletional marker replacement mutagenesis the common nod region of Bradyrhizobium japonicum was examined for the presence of additional, essential nodulation genes. An open reading frame located in the 800 bp large intergenic region between nodD1 and nodA did not appear to be essential for nodulation of soybean. Furthermore, a strain with a deletion of the nodI- and nodJ-like genes downstream of nodC had a Nod+ phenotype. A mutant with a 1.7 kb deletion immediately downstream of nodD1 considerably delayed the onset of nodulation. This region carried a second copy of nodD (nodD2). A nodD1-nodD2 double mutant had a similar phenotype to the nodD2 mutant. Using a 22-mer oligonucleotide probe partially identical to the nod box sequence, a total of six hybridizing regions were identified in B. japonicum genomic DNA and isolated from a cosmid library. Sequencing of the hybridizing regions revealed that at least three of them represented true nod box sequences whereas the others showed considerable deviations from the consensus sequence. One of the three nod box sequences was the one known to be associated with nodA, whereas the other two were located 60 to 70 kb away from nif cluster I. A deletion of one of these two sequences plus adjacent DNA material (mutant delta 308) led to a reduced nodulation on Vigna radiata but not on soybean. Thus, this region is probably involved in the determination of host specificity.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- S R Long
- Department of Biological Sciences, Stanford University, California 94305
| |
Collapse
|
13
|
Györgypal Z, Iyer N, Kondorosi A. Three regulatory nodD alleles of diverged flavonoid-specificity are involved in host-dependent nodulation by Rhizobium meliloti. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf00322448] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Hahn M, Hennecke H. Conservation of a Symbiotic DNA Region in Soybean Root Nodule Bacteria. Appl Environ Microbiol 1987; 53:2253-5. [PMID: 16347446 PMCID: PMC204090 DOI: 10.1128/aem.53.9.2253-2255.1987] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium japonicum
USDA 3I1b110 contains a DNA region in which symbiotic genes and many repeated sequences are closely linked. Hybridization analysis revealed that this region was highly conserved in some
B. japonicum
strains (USDA 24, USDA 122, USDA 123, ATCC 10324, 61A24) but not in others (USDA 76, 61A76, 61A101). The genomic presence of multiple copies of one of the repeated sequences (RSα) appeared to be specifically characteristic for soybean root nodule bacteria, including the fast-growing
Rhizobium fredii,
which carries most of these RSα copies on the symbiotic plasmid.
Collapse
Affiliation(s)
- M Hahn
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092 Zurich, Switzerland
| | | |
Collapse
|
15
|
Liang R, Emerich DW. Analysis of lectin binding by Bradyrhizobium japonicum strains grown on nitrocellulose filters using peroxidase-labeled lectin. Anal Biochem 1987; 164:488-93. [PMID: 3118739 DOI: 10.1016/0003-2697(87)90523-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A procedure was developed to assess the ability of wild-type and mutant strains of Bradyrhizobium japonicum to bind soybean lectin. The lectin-binding ability of bacteria grown on nitrocellulose filters was determined using peroxidase-labeled soybean lectin. The assay produced clear differences between strains known to be unable to bind soybean lectin and those which can. The assay gave results identical to those of the fluorescein isothiocyanate-soybean lectin-binding assay of T. V. Bhuvaneswari, S. G. Pueppke, and W. D. Bauer (1977, Plant Physiol. 60, 486-491) with regard both to the ability of particular B. japonicum strains to bind lectin and to the inhibition caused by N-acetyl-D-galactosamine. The method was used to screen Tn5-induced mutants of B. japonicum 2143 for their inability to bind soybean lectin. The procedure provides a sensitive and convenient method to screen Bradyrhizobium strains for the ability to bind soybean lectin.
Collapse
Affiliation(s)
- R Liang
- Department of Biochemistry, University of Missouri, Columbia 65211
| | | |
Collapse
|
16
|
VERMA DESHPALS, STANLEY JOHN. Molecular Interactions in Endosymbiosis between Legume Plants and Nitrogen-Fixing Microbes. Ann N Y Acad Sci 1987. [DOI: 10.1111/j.1749-6632.1987.tb40615.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Nieuwkoop AJ, Banfalvi Z, Deshmane N, Gerhold D, Schell MG, Sirotkin KM, Stacey G. A locus encoding host range is linked to the common nodulation genes of Bradyrhizobium japonicum. J Bacteriol 1987; 169:2631-8. [PMID: 3584066 PMCID: PMC212140 DOI: 10.1128/jb.169.6.2631-2638.1987] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
By using cloned Rhizobium meliloti, Rhizobium leguminosarum, and Rhizobium sp. strain MPIK3030 nodulation (nod) genes as hybridization probes, homologous regions were detected in the slow-growing soybean symbiont Bradyrhizobium japonicum USDA 110. These regions were found to cluster within a 25-kilobase (kb) region. Specific nod probes from R. meliloti were used to identify nodA-, nodB-, nodC-, and nodD-like sequences clustered on two adjacent HindIII restriction fragments of 3.9 and 5.6 kb. A 785-base-pair sequence was identified between nodD and nodABC. This sequence contained an open reading frame of 420 base pairs and was oriented in the same direction as nodABC. A specific nod probe from R. leguminosarum was used to identify nodIJ-like sequences which were also contained within the 5.6-kb HindIII fragment. A nod probe from Rhizobium sp. strain MPIK3030 was used to identify hsn (host specificity)-like sequences essential for the nodulation of siratro (Macroptilium atropurpureum) on a 3.3-kb HindIII fragment downstream of nodIJ. A transposon Tn5 insertion within this region prevented the nodulation of siratro, but caused little or no delay in the nodulation of soybean (Glycine max).
Collapse
|
18
|
Van den Eede G, Dreyfus B, Goethals K, Van Montagu M, Holsters M. Identification and cloning of nodulation genes from the stem-nodulating bacterium ORS571. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00333587] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
NIF, FIX and NOD Gene Clusters in Bradyrhizobium Japonicum, and NifA-Mediated Control of Symbiotic Nitrogen Fixation. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/978-94-009-4482-4_48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
The nifHDK genes are contiguous with a nifA-like regulatory gene in Rhodobacter capsulatus. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf00338080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Bradyrhizobium japonicum mutants defective in root-nodule bacteroid development and nitrogen fixation. Arch Microbiol 1986. [DOI: 10.1007/bf00409885] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|