1
|
Sugiura C, Miyaue S, Shibata Y, Matsumoto A, Maeda S. Bacteriophage P1 vir-induced cell-to-cell plasmid transformation in Escherichia coli. AIMS Microbiol 2017; 3:784-797. [PMID: 31294189 PMCID: PMC6604958 DOI: 10.3934/microbiol.2017.4.784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/28/2017] [Indexed: 01/14/2023] Open
Abstract
Bacteria undergo horizontal gene transfer via various mechanisms. We recently reported that cell-to-cell transfer of nonconjugative plasmids occurs between strains of Escherichia coli in co-cultures, and that a specific strain (CAG18439) causes frequent plasmid transfer involving a DNase-sensitive mechanism, which we termed "cell-to-cell transformation". Here we found that CAG18439 is a type of P1 bacteriophage lysogen that continuously releases phages. We tested the ability of P1vir bacteriophage to induce horizontal plasmid transfer and demonstrated that such a horizontal plasmid transfer was caused by adding culture supernatants of P1vir-infected cells harboring plasmids to other plasmid-free cells. This plasmid transfer system also reproduced the major features of plasmid transfer involving CAG18439, suggesting that P1vir-induced plasmid transfer is equivalent or very similar to plasmid transfer involving CAG18439. We further revealed that approximately two-thirds of the P1vir-induced plasmid transfer was DNase-sensitive, but that complete abolition of plasmid transfer was observed when proteins were denatured or removed, despite the presence or absence of DNase. Therefore, we concluded that P1vir-induced plasmid transfer is largely due to the occurrence of cell-to-cell transformation, which involves the assistance of some proteinaceous factor, and partly due to the occurrence of plasmid transduction, which is mediated by phage virions. This is the first demonstration of the P1-phage-induced cell-to-cell transformation.
Collapse
Affiliation(s)
- Chiaki Sugiura
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara 630-8506, Japan
| | - Saki Miyaue
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara 630-8506, Japan
| | - Yuka Shibata
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara 630-8506, Japan
| | - Akiko Matsumoto
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara 630-8506, Japan
| | - Sumio Maeda
- Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara 630-8506, Japan
| |
Collapse
|
2
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
3
|
Raya RR, Klaenhammer TR. High-Frequency Plasmid Transduction by Lactobacillus gasseri Bacteriophage phiadh. Appl Environ Microbiol 2010; 58:187-93. [PMID: 16348621 PMCID: PMC195190 DOI: 10.1128/aem.58.1.187-193.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate bacteriophage phiadh mediates plasmid DNA transduction in Lactobacillus gasseri ADH at frequencies in the range of 10 to 10 transductants per PFU. BglII-generated DNA fragments from phage phiadh were cloned into the BclI site of the transducible plasmid vector pGK12 (4.4 kb). Phage phiadh lysates induced from Lactobacillus lysogens harboring pGK12 or the recombinant plasmids were used to transduce strain ADH to chloramphenicol resistance. The transduction frequencies of recombinant plasmids were 10- to 10-fold higher than that of native pGK12. The increase in frequency generally correlated with the extent of DNA-DNA homology between plasmid and phage DNAs. The highest transduction frequency was obtained with plasmid pTRK170 (6.6 kb), a pGK12 derivative containing the 1.4- and 0.8-kb BglII DNA fragments of phiadh. DNA hybridization analysis of pTRK170-transducing phage particles revealed that pTRK170 had integrated into the phiadh genome, suggesting that recombination between homologous sequences present in phage and plasmid DNAs was responsible for the formation of high-frequency transducing phage particles. Plasmid DNA analysis of 13 transductants containing pTRK170 showed that each had acquired intact plasmids, indicating that in the process of transduction a further recombination step was involved in the resolution of plasmid DNA monomers from the recombinant pTRK170::phiadh molecule. In addition to strain ADH, pTRK170 could be transduced via phiadh to eight different L. gasseri strains, including the neotype strain, F. Gasser 63 AM (ATCC 33323).
Collapse
Affiliation(s)
- R R Raya
- Departments of Food Science and Microbiology, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, North Carolina 27695-7624
| | | |
Collapse
|
4
|
Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy. J Bacteriol 2007; 190:332-42. [PMID: 17965162 DOI: 10.1128/jb.01402-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PY100 is a lytic bacteriophage with a broad host range within the genus Yersinia. The phage forms plaques on strains of the three human pathogenic species Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis at 37 degrees C. PY100 was isolated from farm manure and intended to be used in phage therapy trials. PY100 has an icosahedral capsid containing double-stranded DNA and a contractile tail. The genome consists of 50,291 bp and is predicted to contain 93 open reading frames (ORFs). PY100 gene products were found to be homologous to the capsid proteins and proteins involved in DNA metabolism of the enterobacterial phage T1; PY100 tail proteins possess homologies to putative tail proteins of phage AaPhi23 of Actinobacillus actinomycetemcomitans. In a proteome analysis of virion particles, 15 proteins of the head and tail structures were identified by mass spectrometry. The putative gene product of ORF2 of PY100 shows significant homology to the gene 3 product (small terminase subunit) of Salmonella phage P22 that is involved in packaging of the concatemeric phage DNA. The packaging mechanism of PY100 was analyzed by hybridization and sequence analysis of DNA isolated from virion particles. Newly replicated PY100 DNA is cut initially at a pac recognition site, which is located in the coding region of ORF2.
Collapse
|
5
|
Ravin V, Sasaki T, Räisänen L, Riipinen KA, Alatossava T. Effective plasmid pX3 transduction in Lactobacillus delbrueckii by bacteriophage LL-H. Plasmid 2006; 55:184-93. [PMID: 16458963 DOI: 10.1016/j.plasmid.2005.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 12/16/2005] [Accepted: 12/16/2005] [Indexed: 11/30/2022]
Abstract
High-frequency plasmid transductions in Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus strains mediated by pac-type bacteriophages were observed and further investigated. The frequency of plasmid transduction by phages LL-H and LL-S attained levels of from 0.10 to about 1 with plasmid p X 3, but only about 2 x 10(-2) with plasmid pJK650. Infection of L. delbrueckii subsp. lactis strain LKT(pX3) or ATCC 15808(pX3) with phage LL-H resulted in intensive concatemerization of plasmid pX3, and most progeny phage particles contained concatemers of plasmid DNA instead of phage LL-H DNA. The synthesis of phage LL-H DNA was depressed. No evident homology or recombination was observed between phage LL-H DNA and plasmid pX3. The unusually high frequency of plasmid pX3 transduction by phage LL-H could be considered to result from specific interaction(s) between a particular phage and plasmid. These interactions may include pX3-mediated blockage of phage LL-H DNA replication and effective use of a particular pac-like site located about 1 kb from BglII in the smaller NdeI-BglII fragment of plasmid pX3. Phage LL-H together with plasmid vector pX3 could be used as effective plasmid transduction tools for genetic engineering of L. delbrueckii subsp. lactis and subsp. bulgaricus strains.
Collapse
Affiliation(s)
- Victor Ravin
- Department of Biology, University of Oulu, Linnanmaa campus, P.O. Box 3000, FIN-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
6
|
Hertwig S, Klein I, Lurz R, Lanka E, Appel B. PY54, a linear plasmid prophage of Yersinia enterocolitica with covalently closed ends. Mol Microbiol 2003; 48:989-1003. [PMID: 12753191 DOI: 10.1046/j.1365-2958.2003.03458.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PY54 is a temperate phage isolated from Yersinia enterocolitica. Lysogenic Yersinia strains harbour the PY54 prophage as a plasmid (pY54). The plasmid has the same size (46 kb) as the PY54 genome isolated from phage particles. By electron microscopy, restriction analysis and DNA sequencing, it was demonstrated that the phage and the plasmid DNAs are linear, circularly permuted molecules. Unusually for phages of Gram-negative bacteria, the phage genome has 3'-protruding ends. The linear plasmid pY54 has covalently closed ends forming telomere-like hairpins. The equivalent DNA sequence of the phage genome is a 42 bp perfect palindrome. Downstream from the palindrome, an open reading frame (ORF) was identified that revealed strong DNA homology to the telN gene of Escherichia coli phage N15 encoding a protelomerase. Similar to PY54, the N15 prophage is a linear plasmid with telomeres. The N15 protelomerase has cleaving/joining activity generating the telomeres by processing a 56 bp palindrome (telomere resolution site tel RL). To study the activity of the PY54 protein, the telN-like gene was cloned and expressed in E. coli. A 77 kDa protein was obtained and partially purified. The protein was found to process recombinant plasmids containing the 42 bp palindrome. Telomere resolution of plasmids under in vivo conditions was also investigated in Yersinia infected with PY54. Processing required a plasmid containing the palindrome as well as adjacent DNA sequences from the phage including an additional inverted repeat. Regions on the phage genome important for plasmid maintenance were defined by the construction of linear and circular miniplasmid derivatives of pY54, of which the smallest miniplasmid comprises a 4.5 kb DNA fragment of the plasmid prophage.
Collapse
Affiliation(s)
- Stefan Hertwig
- Department of Biological Safety, Robert Koch-Institut, D-13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
7
|
Smith MCM, Rees CED. 3 Exploitation of Bacteriophages and their Components. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70114-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 1998; 29:527-43. [PMID: 9720870 DOI: 10.1046/j.1365-2958.1998.00947.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tst, the gene for toxic shock syndrome toxin-1 (TSST-1), is part of a 15.2 kb genetic element in Staphylococcus aureus that is absent in TSST-1-negative strains. The prototype, in RN4282, is flanked by a 17 nucleotide direct repeat and contains genes for a second possible superantigen toxin, a Dichelobacter nodosus VapE homologue and a putative integrase. It is readily transferred to a recA recipient, and it always inserts into a unique chromosomal copy of the 17 nucleotide sequence in the same orientation. It is excised and circularized by staphylococcal phages phi13 and 80alpha and replicates during the growth of the latter, which transduces it at very high frequency. Because of its site and orientation specificity and because it lacks other identifiable phage-like genes, we consider it to be a pathogenicity island (PI) rather than a transposon or a defective phage. The tst element in RN4282, near tyrB, is designated SaPI1. That in RN3984 in the trp region is only partially homologous to SaPI1 and is excised by phage 80 but not by 80alpha. It is designated SaPI2. These PIs are the first in any gram-positive species and the first for which mobility has been demonstrated. Their mobility may be responsible for the spread of TSST-1 production among S. aureus strains.
Collapse
Affiliation(s)
- J A Lindsay
- Skirball Institute of Biomolecular Medicine, New York University Medical Centre, New York 10016, USA
| | | | | | | | | |
Collapse
|
9
|
Kinner E, Pocta D, Ströer S, Schmieger H. Sequence analysis of cohesive ends of the actinophage RP3 genome and construction of a transducible shuttle vector. FEMS Microbiol Lett 1994; 118:283-9. [PMID: 7545934 DOI: 10.1111/j.1574-6968.1994.tb06842.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The sequence of the cohesive ends of actinophage RP3 DNA has been determined. As with all other phages of Gram-positive bacteria that have been studied sofar, RP3 DNA has 3'-protruding ends. A shuttle cosmid has been constructed containing this cos area which can be efficiently transduced by phage RP3 to host cells of Streptomyces rimosus.
Collapse
Affiliation(s)
- E Kinner
- Institut für Genetik und Mikrobiologie, Universität München, FRG
| | | | | | | |
Collapse
|
10
|
Mahan MJ, Slauch JM, Mekalanos JJ. Bacteriophage P22 transduction of integrated plasmids: single-step cloning of Salmonella typhimurium gene fusions. J Bacteriol 1993; 175:7086-91. [PMID: 8226650 PMCID: PMC206837 DOI: 10.1128/jb.175.21.7086-7091.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transcriptional fusions to Salmonella typhimurium chromosomal genes were constructed by integration of a suicide fusion vector into the chromosome by homologous recombination with random cloned chromosomal fragments. We describe here a transductional method using the generalized transducing phage of S. typhimurium, P22, to clone these fusions directly from the bacterial chromosome, in a single step, without the use of restriction enzymes. In this transduction, the phage packages the chromosomal fragment containing the integrated plasmid. Once introduced into the recipient, the plasmid circularizes by homologous recombination between the duplicated region determined by the cloned fragment. Although RecA mediates the majority of these events, the plasmid can circularize in a recA recipient. However, in this case, the event occurs at a much lower frequency and only when the transduction is done at a high multiplicity of infection. In addition to integrated fusion constructs, we also show that autonomously replicating low-copy-number plasmids can be transduced. In this case, transduction is dependent on homologous recombination between the plasmid and the donor chromosome via cloned sequences, in which the transducing particle effectively traps the integrated plasmid.
Collapse
Affiliation(s)
- M J Mahan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
11
|
Yancey RJ, Kotarski SF, Thurn KK, Lepley RA, Mott JE. Absence of persistence and transfer of genetic material by recombinant Escherichia coli in conventional, antibiotic-treated mice. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1993; 11:259-71. [PMID: 7763898 DOI: 10.1007/bf01569599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Strain BST-1 is a derivative of Escherichia coli K-12 that carries a plasmid designated pURA-4 and is the expression system used by The Upjohn Company in the production of recombinant bovine somatotropin (rbSt). This plasmid also encodes an ampicillin resistance gene. The plasmidless carrier strain, BST-1C, contains a gene for tetracycline resistance which is provided by the chromosomal insertion of the transposon Tn10. Therefore, BST-1 is resistant to ampicillin and tetracycline, while BST-1C is resistant only to tetracycline. The Food and Drug Administration requested that we conduct an environmental assessment study to monitor the 'persistence of the recombinant live K-12 E. coli organism compared to the host E. coli organism'. In addition, we were requested to monitor 'the potential transfer of genetic material from (our) recombinant organism to the indigenous microflora' of the mouse gastrointestinal (GI) tract. The differences in persistence were determined by monitoring shedding of BST-1 and BST-1C in the feces of conventionally reared, outbred mice inoculated with either of the two strains. Even with antibiotic selective pressure applied (tetracycline in the water), BST-1 did not persist as well as the non-plasmid carrying parental stain, BST-1C. In the gene transfer experiments, transfer of pURA-4 was monitored by the appearance of the ampicillin resistance marker and/or by hybridization assays for the rbSt gene in indigenous, mouse-colonizing E. coli strains which had been made streptomycin resistant. At the limit of detection, no transfer of pURA-4 was detected either in vitro or in vivo. These data support an interpretation that BST-1 does not present an environmental hazard as measured by colonization/persistence in the gut of conventionally reared mammals.
Collapse
|
12
|
Casjens S, Sampson L, Randall S, Eppler K, Wu H, Petri JB, Schmieger H. Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J Mol Biol 1992; 227:1086-99. [PMID: 1433288 DOI: 10.1016/0022-2836(92)90523-m] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bacteriophage P22 DNA packaging events occur in processive series on concatemeric phage DNA molecules. At the point where such series initiate, the DNA is recognized at a site called pac, and most molecular left ends are generated within six short regions called end sites, which are present in a 120 base-pair region surrounding the pac site. The bacteriophage P22 genes 2 and 3 proteins are required for successful generation of these ends and DNA packaging during progeny virion assembly. Mutants lacking the 162-amino-acid gene 3 protein replicate DNA and assemble functional procapsids. In this report we describe the nucleotide changes and DNA packaging phenotypes of a number of missense mutations of gene 3, which give the phage a higher than normal frequency of generalized transduction. In cells infected by these mutants, more packaging events initiate on the host chromosome than in wild-type infections, so the mutations are thought to affect the specificity of packaging initiation. In addition to having this phenotype, these mutations affect the process of phage DNA packaging in detectable ways. They may: (1) alter the target site specificity for packaging; (2) make target site recognition more promiscuous; (3) affect end site utilization; (4) alter the pac site; and (5) cause apparent random DNA packaging series initiation on phage DNA.
Collapse
Affiliation(s)
- S Casjens
- Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | | | | | |
Collapse
|
13
|
Spanová A. Comparison of permuted region lengths in the genomes of related Salmonella typhimurium phages P22 and L. Folia Microbiol (Praha) 1992; 37:188-92. [PMID: 1505880 DOI: 10.1007/bf02933145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lengths of permuted regions in the P22 and L phage genomes were estimated from the relative yields of DNA in many electrophoretic bands obtained using several restriction endonucleases. It was found that 3.6 kb (8.7%) of P22-DNA and 7.2 kb (17.8%) of L-DNA were circularly permuted. In both phages the sequential packaging process proceeded in the same direction and four headful-size DNA molecules were, on the average, cleaved in one packaging series. The differences in circular permutation may originate from different genome lengths because their average headful portions are very similar (42.5 kb in P22 and 42.3 kb in L).
Collapse
Affiliation(s)
- A Spanová
- Institute of Biophysics, Czechoslovak Academy of Sciences, Brno
| |
Collapse
|
14
|
Abstract
The replication of covalently closed circular supercoiled (form I) DNA in prokaryotes is generally controlled at the initiation level by a rate-limiting effector. Once initiated, replication proceeds via one of two possible modes (theta or sigma replication) which do not rely on functions involved in DNA repair and general recombination. Recently, a novel plasmid replication mode, leading to the accumulation of linear multigenome-length plasmid concatemers in both gram-positive and gram-negative bacteria, has been described. Unlike form I DNA replication, an intermediate recombination step is most probably involved in the initiation of concatemeric plasmid DNA replication. On the basis of structural and functional studies, we infer that recombination-dependent plasmid replication shares important features with phage late replication modes and, in several aspects, parallels the synthesis of plasmid concatemers in phage-infected cells. The characterization of the concatemeric plasmid replication mode has allowed new insights into the mechanisms of DNA replication and recombination in prokaryotes.
Collapse
Affiliation(s)
- J F Viret
- Max-Planck-Institut für molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
15
|
Kobler L, Schwertfirm G, Schmieger H, Bolotin A, Sladkova I. Construction and transduction of a shuttle vector bearing thecossite ofStreptomycesphage ΦC31 and determination of its cohesive ends. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04468.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Sternberg NL, Maurer R. Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol 1991; 204:18-43. [PMID: 1943777 DOI: 10.1016/0076-6879(91)04004-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Sizmann D, Keilmann C, Böck A. Primary structure requirements for the maturation in vivo of penicillin acylase from Escherichia coli ATCC 11105. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:143-51. [PMID: 2205499 DOI: 10.1111/j.1432-1033.1990.tb19207.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The two constituent subunits of the enzyme penicillin acylase from Escherichia coli strain ATCC 11105 are derived from a single precursor polypeptide by post-translational processing. Mutant penicillin acylase precursors were constructed carrying insertions and deletions in various domains and they were analysed for their processing behaviour. It was found that an endopeptide region of appropriate size and an intact C-terminus were absolutely necessary for the maturation process. Internal deletions within the beta-subunit domain also prevented post-translational cleavage. Processing competence, therefore, was not merely determined by the amino acid sequence in the vicinity of the processing sites but relied on a correct overall conformation of the protein. The processing pathway in vivo proceeds via an intermediate comprising the alpha subunits plus endopeptide and is thus identical to the pathway which has been determined previously by in vitro analysis. The post-translational modification of the precursor is probably not carried out by a specific processing enzyme(s) as the heterologous expression of the penicillin acylase (pac) structural gene yielded processed and active enzyme in different enterobacteria and in a Pseudomonas species.
Collapse
Affiliation(s)
- D Sizmann
- Lehrstuhl für Mikrobiologie, Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
18
|
Bravo A, Alonso JC. The generation of concatemeric plasmid DNA in Bacillus subtilis as a consequence of bacteriophage SPP1 infection. Nucleic Acids Res 1990; 18:4651-7. [PMID: 2118621 PMCID: PMC331908 DOI: 10.1093/nar/18.16.4651] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage SPP1 infection of Bacillus subtilis cells bearing plasmids induces the synthesis of multigenome-length plasmid molecules. Two independent pathways can account for this synthesis. In one of those, homology to the phage genome is required, whereas in the other such homology is not a prerequisite. In wild type cells both modes overlap. In dnaB(Ts), at non permissive temperature, or in recE polA strains the main concatemeric plasmid replication mode is the homology-dependent plasmid (hdp) mode. The rate of recombination-dependent concatemeric plasmid DNA synthesis is a consequence of a phage-plasmid interaction which leads to chimeric phage::plasmid DNA. The second mode, which is an homology-independent plasmid (hip) mode seems to be triggered upon the synthesis of a phage encoded product(s) (e.g. inactivation of the exonuclease V enzyme).
Collapse
Affiliation(s)
- A Bravo
- Max-Planck-Institut für Molekulare Genetik, Berlin, FRG
| | | |
Collapse
|
19
|
Petri JB, Schmieger H. Isolation of fragments with pac function for phage P22 from phage LP7 DNA and comparison of packaging gene 3 sequences. Gene 1990; 88:47-55. [PMID: 2341038 DOI: 10.1016/0378-1119(90)90058-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three PstI DNA fragments of the P22-related Salmonella phage, LP7, have been cloned. They contain sequences recognized as pac signals by the packaging apparatus of P22. One of these fragments corresponds to the P22 DNA fragment carrying gene 3 which comprises the pac signal of phage P22. The product of gene 3, Gp3, is involved in the recognition of pac and the packaging process. Gene 3 of LP7 and most of the adjacent gene 2 have been sequenced. The pac analogous segments of the other two PstI fragments have been narrowed down by subcloning and by transduction of the resulting hybrid plasmids under recombination-defective conditions.
Collapse
Affiliation(s)
- J B Petri
- Institut für Genetik und Mikrobiologie, Universität München, F.R.G
| | | |
Collapse
|
20
|
Sawers G, Böck A. Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 1989; 171:2485-98. [PMID: 2651404 PMCID: PMC209925 DOI: 10.1128/jb.171.5.2485-2498.1989] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The sequence of the 5' regulatory region of the gene encoding pyruvate formate-lyase is presented together with a detailed analysis of the transcriptional signals required for its expression. The sequence data revealed that a gene coding for an open reading frame (orf) of unknown function is situated just upstream of the pfl gene. Analysis of RNA transcripts by Northern blot hybridization demonstrated that the genes for orf and pfl were cotranscribed as an operon but that the pfl gene was also transcribed alone. S1 nuclease protection analysis, primer extension, and construction of lacZ fusions with sequential deletions in the pfl 5' regulatory sequence revealed that transcription initiated from at least six promoters which spanned 1.2 kilobases of DNA. Three of these lay within the orf structural gene and were responsible for the high expression of pfl. All transcripts originating from these promoters terminated in the 3' untranslated region of the pfl gene at a strong rho-independent transcription terminator. All of the promoters were coordinately regulated by anaerobiosis, pyruvate, nitrate, and the fnr gene product, and the sequences thought to be responsible for this regulation lay 0.8 to 1.3 kilobases upstream of the translational initiation codon of the pfl gene. There were two sequences within this region which showed strong homology with that proposed to be required for recognition by the Fnr protein.
Collapse
Affiliation(s)
- G Sawers
- Lehrstuhl für Mikrobiologie, Universität München, Federal Republic of Germany
| | | |
Collapse
|
21
|
Bhakdi S, Greulich S, Muhly M, Eberspächer B, Becker H, Thiele A, Hugo F. Potent leukocidal action of Escherichia coli hemolysin mediated by permeabilization of target cell membranes. J Exp Med 1989; 169:737-54. [PMID: 2538544 PMCID: PMC2189255 DOI: 10.1084/jem.169.3.737] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The contribution of Escherichia coli hemolysin (ECH) to bacterial virulence has been considered mainly in context with its hemolytic properties. We here report that this prevalent bacterial cytolysin is the most potent leukocidin known to date. Very low concentrations (approximately 1 ng/ml) of ECH evoke membrane permeability defects in PMN (2-10 x 10(6) cells/ml) leading to an efflux of cellular ATP and influx of propidium iodide. The attacked cells do not appear to repair the membrane lesions. Human serum albumin, high density and low density lipoprotein, and IgG together protect erythrocytes and platelets against attack by even high doses (5-25 micrograms/ml) of ECH. In contrast, PMN are still permeabilized by ECH at low doses (50-250 ng/ml) in the presence of these plasma inactivators. Thus, PMN become preferred targets for attack by ECH in human blood and protein-rich body fluids. Kinetic studies demonstrate that membrane permeabilization is a rapid process, ATP-release commencing within seconds after application of toxin to leukocytes. It is estimated that membrane permeabilization ensues upon binding of approximately 300 molecules ECH/PMN. This process is paralleled by granule exocytosis, and by loss of phagocytic killing capacity of the cells. The recognition that ECH directly counteracts a major immune defence mechanism of the human organism through its attack on granulocytes under physiological conditions sheds new light on its possible role and potential importance as a virulence factor of E. coli.
Collapse
Affiliation(s)
- S Bhakdi
- Institute of Medical Microbiology, University of Giessen, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Hahn DR, Myers RS, Kent CR, Maloy SR. Regulation of proline utilization in Salmonella typhimurium: molecular characterization of the put operon, and DNA sequence of the put control region. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:125-33. [PMID: 2851701 DOI: 10.1007/bf00333408] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The two genes required for proline utilization (put) in Salmonella typhimurium form a divergent operon. Extensive genetic evidence suggests that transcription of the put operon is autoregulated by the putA gene product, a membrane-associated dehydrogenase. In order to understand the mechanism of regulation, we characterized plasmid clones of the put operon. A 7.5 kb clone contains both of the put structural genes and regulatory sites. This clone only expressed two unique proteins corresponding to the putA and putP gene products. By comparing the physical and genetic maps of the put operon, the position of the put regulatory region was defined and the DNA sequence of this region was determined. Analysis of the DNA sequence indicated several potential regulatory sites for the put genes. Based on genetic and physical mapping studies, the most likely regulatory sites are two convergent promoters approximately 30 bp apart. A 27 bp palindrome located between the two promoters may be the operator for autoregulation by the PutA protein. The putA translational start site is 40 bp downstream of its putative mRNA start site. The putP promoter and its translational start site are separated by a 400 bp untranslated region.
Collapse
Affiliation(s)
- D R Hahn
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|
24
|
Monroe RS, Kredich NM. Isolation of Salmonella typhimurium cys genes by transduction with a library of recombinant plasmids packaged in bacteriophage P22HT capsids. J Bacteriol 1988; 170:42-7. [PMID: 3275623 PMCID: PMC210603 DOI: 10.1128/jb.170.1.42-47.1988] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have prepared a library of Salmonella typhimurium genomic fragments cloned in pBR322 and packaged in P22HT capsids. Plasmids carrying 24 of 26 specific genes searched for were isolated by transduction at frequencies of 1 to 344 per 10(6) plasmid transductants. All 11 known genes of the cysteine regulon were isolated from this library, including cysK, which we had previously been unable to clone in a recombinant plasmid with an Escherichia coli host. This library provides a simple and rapid method for isolating most S. typhimurium genes by using S. typhimurium itself as a host and should be particularly useful for cloning genes that might be deleterious to E. coli.
Collapse
Affiliation(s)
- R S Monroe
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina
| | | |
Collapse
|
25
|
Abstract
The T1 pac site has been cloned into a plasmid vector. This recombinant plasmid was tested for T1-mediated transduction efficiency in comparison with a plasmid containing the phage lambda T1-pac-like site esp-lambda, plasmids containing T1 sequences other than the pac site, and plasmids containing neither T1 sequences nor known pac sites. The data obtained indicate that there are at least two distinct mechanisms of T1-mediated plasmid transduction. One requires the presence of any T1 sequence on the plasmid and probably takes place via cointegrate formation with the homologous region of an infecting T1 genome. The other is specifically dependent on the presence of a pac site on the plasmid. Plasmids are packaged as head-to-tail multimers that have one heterogeneous molecular end and the other terminated at pac, and the direction of packaging with respect to the pac site is the same for plasmids as for T1. Possible roles of pac in plasmid packaging and their implications with regard to the packaging of phage DNA are discussed.
Collapse
|
26
|
Vogel W, Schmieger H. Spot-transformation with plasmids. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:561-2. [PMID: 3550389 DOI: 10.1007/bf00338099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method is described which allows transformation of bacterial cells on the surface of agar plates. It is suitable for transferring large numbers of different plasmids, such as gene libraries, into a new genetic background. One nanogram of plasmid DNA is sufficient for transformation.
Collapse
|
27
|
Vogel W, Schmieger H. Selection of bacterial pac sites recognized by Salmonella phage P22. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:563-7. [PMID: 3550390 DOI: 10.1007/bf00338100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A gene library of chromosomal PstI fragments from Salmonella typhimurium strain DB5575 has been established. By means of phage P22 mediated transduction, ten different clones which contained inserts that promoted plasmid transduction were selected out of a total of about 7,000 clones. Seven of these clones carried inserts that stimulated transduction independently of general and int-promoted recombination and were interpreted as carrying pac analogous signals. The remaining three clones carried inserts that promoted transduction under recombination proficient conditions, whereas transduction occurred at reduced rate in the absence of recombination. These were believed to have short regions of homology with P22 DNA.
Collapse
|
28
|
Novick RP, Edelman I, Lofdahl S. Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. J Mol Biol 1986; 192:209-20. [PMID: 2951524 DOI: 10.1016/0022-2836(86)90360-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular processes involved in the transduction of small staphylococcal plasmids by a generalized transducing phage, phi 11, have been analysed. The plasmids are transduced in the form of linear concatemers containing only plasmid DNA; plasmid-initiated replication is required for their generation but additive interplasmid recombination is not. Concatemers are probably generated by the interaction of one or more phage functions with replicating plasmid DNA. Insertion of any restriction fragment of the phage into the plasmid causes an approximately 10(5)-fold increase in transduction frequency, regardless of the size or genetic content of the fragment. The resulting transducing particles (Hft particles) contain mostly pure linear concatemers composed of tandem repeats of the plasmid::phage chimera, and their production requires active plasmid-initiated replication. The high frequency of transduction is a consequence of homologous recombination between the linear chimeric and phage concatemers, which has the effect of introducing an efficient pac site into the former. Following introduction into lysogenic recipient bacteria, the transducing DNA is first converted to the supercoiled form, then processed to monomers by a mechanism that requires the active participation of the plasmid replication system.
Collapse
|
29
|
Abstract
Restriction endonuclease cleavage site mapping was used to locate the regions of highest sequence homology in the chromosomes of Salmonella typhimurium bacteriophages L and P22. These lie in the DNA packaging, tail, early transcription antitermination, and perhaps integration "gene modules." Other regions of the two genomes are substantially less closely related. Phage L, which has no functional immunity I region, lacks approximately 1300 bp of DNA when compared to P22 in this section of the chromosome. At least some of the virion structural proteins are interchangeable between the two phages, which suggests that the two phage structural protein genes are very closely related. In addition, the apparent molecular weights of most P22 and L phage structural proteins are very similar. However, the phage L virion contains about 140 molecules of a 15K capsid protein which apparently has no P22 analog.
Collapse
|
30
|
Behnisch W, Schmieger H. In vitro packaging of plasmid DNA oligomers by Salmonella phage P22: independence of the pac site, and evidence for the termination cut in vitro. Virology 1985; 144:310-7. [PMID: 2998050 DOI: 10.1016/0042-6822(85)90273-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In vitro packaging experiments with phage P22 using artificially ligated plasmid concatemers have shown that the pac site is not necessary for DNA packaging although in vivo this initiation signal is indispensable. This indicates that the phage-coded protein gp3 also executes other important functions during phage maturation in addition to the recognition of pac, or that its site specificity is lost in vitro. It has been shown previously that gp3 is necessary for in vitro packaging. Further, it was demonstrated that DNA which is only 74% of headful size cannot be packaged. Oversized DNA, however, is cut in vitro to unit length.
Collapse
|
31
|
Deichelbohrer I, Alonso JC, Lüder G, Trautner TA. Plasmid transduction by Bacillus subtilis bacteriophage SPP1: effects of DNA homology between plasmid and bacteriophage. J Bacteriol 1985; 162:1238-43. [PMID: 3922945 PMCID: PMC215909 DOI: 10.1128/jb.162.3.1238-1243.1985] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Any SPP1 DNA restriction fragment cloned into Bacillus subtilis plasmid pC194 or pUB110 increased the transduction frequency of the plasmid by SPP1 100- to 1,000-fold over the transduction level of the plasmid alone. This increment was observed irrespective of whether a fragment contained the SPP1 packaging origin (pac). Furthermore, an SPP1 derivative into whose genome pC194 DNA had been integrated transduced pC194 DNA with a greatly enhanced frequency. Transduction enhancement mediated by DNA-DNA homology between plasmid and SPP1 was independent of the extent of homology (size range analyzed, 0.5 to 3.9 kilobases) and the recombination proficiency of donor or recipient.
Collapse
|