1
|
Balasubramanian S, Osburne MS, BrinJones H, Tai AK, Leong JM. Prophage induction, but not production of phage particles, is required for lethal disease in a microbiome-replete murine model of enterohemorrhagic E. coli infection. PLoS Pathog 2019; 15:e1007494. [PMID: 30629725 PMCID: PMC6328086 DOI: 10.1371/journal.ppat.1007494] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) colonize intestinal epithelium by generating characteristic attaching and effacing (AE) lesions. They are lysogenized by prophage that encode Shiga toxin 2 (Stx2), which is responsible for severe clinical manifestations. As a lysogen, prophage genes leading to lytic growth and stx2 expression are repressed, whereas induction of the bacterial SOS response in response to DNA damage leads to lytic phage growth and Stx2 production both in vitro and in germ-free or streptomycin-treated mice. Some commensal bacteria diminish prophage induction and concomitant Stx2 production in vitro, whereas it has been proposed that phage-susceptible commensals may amplify Stx2 production by facilitating successive cycles of infection in vivo. We tested the role of phage induction in both Stx production and lethal disease in microbiome-replete mice, using our mouse model encompassing the murine pathogen Citrobacter rodentium lysogenized with the Stx2-encoding phage Φstx2dact. This strain generates EHEC-like AE lesions on the murine intestine and causes lethal Stx-mediated disease. We found that lethal mouse infection did not require that Φstx2dact infect or lysogenize commensal bacteria. In addition, we detected circularized phage genomes, potentially in the early stage of replication, in feces of infected mice, confirming that prophage induction occurs during infection of microbiota-replete mice. Further, C. rodentium (Φstx2dact) mutants that do not respond to DNA damage or express stx produced neither high levels of Stx2 in vitro or lethal infection in vivo, confirming that SOS induction and concomitant expression of phage-encoded stx genes are required for disease. In contrast, C. rodentium (Φstx2dact) mutants incapable of prophage genome excision or of packaging phage genomes retained the ability to produce Stx in vitro, as well as to cause lethal disease in mice. Thus, in a microbiome-replete EHEC infection model, lytic induction of Stx-encoding prophage is essential for lethal disease, but actual phage production is not.
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Haley BrinJones
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Albert K. Tai
- Department of Immunology at Tufts University School of Medicine, Boston, MA, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
2
|
Trinh JT, Székely T, Shao Q, Balázsi G, Zeng L. Cell fate decisions emerge as phages cooperate or compete inside their host. Nat Commun 2017; 8:14341. [PMID: 28165024 PMCID: PMC5303824 DOI: 10.1038/ncomms14341] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023] Open
Abstract
The system of the bacterium Escherichia coli and its virus, bacteriophage lambda, is paradigmatic for gene regulation in cell-fate development, yet insight about its mechanisms and complexities are limited due to insufficient resolution of study. Here we develop a 4-colour fluorescence reporter system at the single-virus level, combined with computational models to unravel both the interactions between phages and how individual phages determine cellular fates. We find that phages cooperate during lysogenization, compete among each other during lysis, and that confusion between the two pathways occasionally occurs. Additionally, we observe that phage DNAs have fluctuating cellular arrival times and vie for resources to replicate, enabling the interplay during different developmental paths, where each phage genome may make an individual decision. These varied strategies could separate the selection for replication-optimizing beneficial mutations during lysis from sequence diversification during lysogeny, allowing rapid adaptation of phage populations for various environments.
Collapse
Affiliation(s)
- Jimmy T. Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas 77843, USA
| | - Tamás Székely
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Qiuyan Shao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas 77843, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
3
|
Kazakov T, Yang F, Ramanathan HN, Kohlway A, Diamond MS, Lindenbach BD. Hepatitis C virus RNA replication depends on specific cis- and trans-acting activities of viral nonstructural proteins. PLoS Pathog 2015; 11:e1004817. [PMID: 25875808 PMCID: PMC4395149 DOI: 10.1371/journal.ppat.1004817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3-5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3-5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally.
Collapse
Affiliation(s)
- Teymur Kazakov
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Feng Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Harish N. Ramanathan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Bernhardsson S, Mitarai N, Sneppen K. Protein localization with flexible DNA or RNA. PLoS One 2012; 7:e29218. [PMID: 22347995 PMCID: PMC3277508 DOI: 10.1371/journal.pone.0029218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/22/2011] [Indexed: 11/24/2022] Open
Abstract
Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers.
Collapse
|
5
|
Abstract
Tn5 transposase (Tnp) binds to Tn5 and IS50 end inverted repeats, the outside end (OE) and the inside end (IE), to initiate transposition. We report the isolation of four Tnp mutants (YH41, TP47, EK54 and EV54) that increase the OE-mediated transposition frequency and enhance the binding affinity of Tnp for OE DNA. In addition, two of the Tnp mutants (TP47 and EK54) appear to be change-of-specificity mutants, since they alter the recognition of OE versus IE relative to the wild-type Tnp. EK54 enhances OE recognition but decreases IE recognition. TP47 enhances both OE and IE recognition but with a much greater enhancement for IE than for OE. This change-of-specificity effect of TP47 is observed only when TP47 Tnp is synthesized in cis to the DNA that contains the ends. We propose that Lys54 makes a favorable interaction with an OE-specific nucleotide pair(s), while Pro47 may cause a more favorable interaction with an IE-specific nucleotide pair(s) than it does with the corresponding OE-specific nucleotide pair(s). A model to explain the preference of TP47 Tnp for the IE in cis but not in trans is proposed.
Collapse
Affiliation(s)
- M Zhou
- Department of Biochemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
6
|
Weinreich MD, Gasch A, Reznikoff WS. Evidence that the cis preference of the Tn5 transposase is caused by nonproductive multimerization. Genes Dev 1994; 8:2363-74. [PMID: 7958902 DOI: 10.1101/gad.8.19.2363] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The transposase (Tnp) of the bacterial transposon Tn5 acts 50- to 100-fold more efficiently on elements located cis to the site of its synthesis compared with those located in trans. In an effort to understand the basis for this cis preference, we have screened for Tnp mutants that exhibit increased transposition activity in a trans assay. Two mutations in the carboxyl terminus were isolated repeatedly. The EK345 mutation characterized previously increases Tnp activity eightfold both in cis and in trans. The novel LP372 mutation, however, increases Tnp activity 10-fold specifically in trans. Combining both mutations increases Tnp activity 80-fold. Interestingly, the LP372 mutation maps to a region shown previously to be critical for interaction with Inh, an inhibitor of Tn5 transposition, and results in reduced inhibition activity by both Tnp and Inh. Tnp also inhibits Tn5 transposition in trans, and this has been suggested to occur by the formation of inactive Tnp multimers. Because Inh and (presumably) Tnp inhibit Tn5 transposition by forming defective multimers with Tnp, the inhibition defect of the trans-active LP372 mutant suggests that the cis preference of Tnp may also be attributable to nonproductive Tnp-Tnp multimerization. In addition, we show that increasing the synthesis of EK345/LP372 Tnp, but not wild-type Tnp, leads to very high levels of transposition, presumably because this altered Tnp is defective in the inhibitory activity of the wild type protein.
Collapse
Affiliation(s)
- M D Weinreich
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
7
|
Abstract
A number of bacterial DNA-binding proteins, including IS element transposases, act preferentially in cis. We show below that the degree of preferential cis action by IS10 transposase depends upon its mode of synthesis at steps subsequent to transcription initiation. Cis preference is increased several fold by mutations that decrease translation initiation, by the presence of IS10-specific antisense RNA and by plasmids that increase the level of cellular RNases. Conversely, cis preference is decreased by mutations that increase translation initiation; in some cases, cis preference is nearly abolished. Mutations that alter the rate of transcription initiation have no effect. In light of other observations, we suggest that cis preference is strongly dependent upon the rate at which transcripts are released from their templates and/or the half-life of the transposase message. These observations provide further evidence that inefficient translation plays multiple roles in the biology of IS10.
Collapse
Affiliation(s)
- C Jain
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
8
|
Derbyshire KM, Kramer M, Grindley ND. Role of instability in the cis action of the insertion sequence IS903 transposase. Proc Natl Acad Sci U S A 1990; 87:4048-52. [PMID: 2161528 PMCID: PMC54044 DOI: 10.1073/pnas.87.11.4048] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An unusual subset of DNA-binding proteins, termed cis-acting proteins, has been shown to act preferentially at their site of synthesis; the transposases of several bacterial insertion sequences (ISs) fall into this class. The transposase of IS903 exhibits a strong preference for action in cis: complementation of defective transposons in trans occurs at less than 1%. Furthermore, transposition mediated by transposase acting in cis is extremely sensitive to the distance between the 3' end of the transposase gene and the nearest transposon inverted repeat; we find that an insertion of 1 kilobase of DNA reduces transposition to 1-2% of control levels. Here we show that there is a strong correlation between the stability of transposase and its ability to act in trans. We found that the wild-type transposase is a very unstable protein with a physical half-life of about 3 min. However, a transposase-beta-galactosidase fusion protein has a much greater half-life and can act equally well in cis or in trans. In addition, the native transposase is stabilized in lon- strains of Escherichia coli, and, in these protease-deficient strains, trans action of transposase is increased 10- to 100-fold. These results suggest that instability of the IS903 transposase is a major determinant of its cis action and that the La protease, product of the lon gene, is an important determinant of transposase instability.
Collapse
Affiliation(s)
- K M Derbyshire
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510
| | | | | |
Collapse
|
9
|
Bacteriophage 82 gene Q and Q protein. Sequence, overproduction, and activity as a transcription antiterminator in vitro. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)60870-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Somasekhar G, Szybalski W. The functional boundaries of the Q-utilization site required for antitermination of late transcription in bacteriophage lambda. Virology 1987; 158:414-26. [PMID: 2954301 DOI: 10.1016/0042-6822(87)90213-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of the late genes of bacteriophage lambda requires, in addition to the host functions, the lambda p'R promoter, the antiterminator sequence qut, and the product of gene Q which interacts with the Q utilization (qut) site. In the absence of the Q function or qut site, the p'R-initiated transcription is blocked by the t'R terminator at the 194th nucleotide downstream of the start point, s'R, producing a short 6 S mRNA. In this study the position and boundaries of the qut site were deduced by constructing plasmids containing various portions of the p'R-qut region, the t'R1 terminator, and the reporter gene galK. We measured galK gene expression in response to the gamma Q gene product supplied in trans by a prophage or Q-expression plasmid. We show that among the lambda proteins, the Q gene product alone is necessary and sufficient for complete qut-mediated transcription antitermination in vivo. These antitermination experiments, employing plasmids that contain different lengths of lambda p'R-qut sequence, identified the right boundary of the qut site, which is located between +4 and +18 (for s'R = +1). The functional left boundary of qut does not extend upstream from the -26th nucleotide of the p'R promoter, as based on the following experiments. The promoter function of the truncated (-26)p'R-s'R-(+18) sequence can be restored by fusion to the complete but qut-less p'R, pp, or PLac promoter; however, no antitermination was observed for such a p-(-26)p'R-s'R-(+18)-t'R-galK plasmid. Thus we conclude that the qut site partially overlaps with the p'R promoter sequence. However, promoters that contain the -10 region of p'R, s'R, and the +1 to +18 qut sequence did mediate Q-dependent antitermination when properly fused to the homologous or heterologous -35 promoter regions. Only those transcripts that start at s'R (+1 or very near to it) and also contain at least the first 18 nucleotides (actually greater than 4 and less than or equal to 18) of 6 S RNA appear to be a target for the Q-qut-mediated transcription antitermination, which acts not only at t'R but also at other Rho-independent or Rho-dependent terminators.
Collapse
|
11
|
Morisato D, Way JC, Kim HJ, Kleckner N. Tn10 transposase acts preferentially on nearby transposon ends in vivo. Cell 1983; 32:799-807. [PMID: 6299577 DOI: 10.1016/0092-8674(83)90066-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transposition of Tn10 requires sites at the termini of the element and one essential transposon-encoded function, "transposase", which acts at those termini. Genetic complementation experiments reveal that this "transposase" function works much more efficiently on transposon ends located near the gene from which they are expressed than on transposon ends located at a distance. This property accounts for the failure of mutant Tn10 elements to be efficiently complemented in trans. The failure of transposase protein to move freely in three dimensions could be explained by one-dimensional diffusion, energy-dependent translocation and/or extreme protein lability. Additional genetic analyses demonstrate that the rate of Tn10 transposition in vivo depends upon the length of the transposon and the amount of transposase protein. Function dependence and length dependence are independent aspects of the transposition process that could correspond to the break/join and replication aspects into which transposition has been separated conceptually.
Collapse
|
12
|
Transposon Tn10. Mob Genet Elements 1983. [DOI: 10.1016/b978-0-12-638680-6.50010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|