1
|
Webb RJ, Cuff C, Berger L. Glutathione-Mediated Metal Tolerance in an Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1583-1591. [PMID: 38726969 DOI: 10.1002/etc.5885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 04/07/2024] [Indexed: 06/27/2024]
Abstract
The spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis, which causes the disease chytridiomycosis, has resulted in amphibian declines and extinctions worldwide. Some susceptible amphibian species can persist in contaminated habitats, prompting the hypothesis that B. dendrobatidis might be sensitive to heavy metals. We tested a panel of 12 metals to rank their toxicity to B. dendrobatidis zoospores and zoosporangia during a 6-h exposure. To better understand the mechanism for metal detoxification, we also evaluated whether glutathione is required for metal tolerance by depleting cellular glutathione before metal exposure. In addition, we investigated whether prior exposure to low metal concentrations impacted tolerance of subsequent exposure, as well as identifying metal combinations that may act synergistically. Silver (Ag), cadmium (Cd), and copper (Cu) were particularly toxic to B. dendrobatidis, with zoospore minimum lethal concentration values of 0.01 mM (Ag), 0.025 mM (Cd), and 0.5 mM (Cu). These three metals along with zinc (Zn) were also inhibitory to zoosporangia, with minimum inhibitory concentration values of 0.005 mM (Ag), 0.04 mM (Cd), 0.075 mM (Cu), and 0.04 mM (Zn). The fungicidal effects of several metals was reduced when assays were conducted in nutrient medium compared with synthetic pond water, highlighting the need for careful in vitro assay design and interpretation. Glutathione depletion strongly influenced tolerance of Cd and Ag (85% and 75% less growth, respectively) and moderately influenced tolerance of Cu, Zn, and lead (37%, 18%, and 14% less growth, respectively), indicating the importance of glutathione for metal detoxification. In general, the minimum metal concentrations that inhibited growth of B. dendrobatidis far exceeded values detected in contaminated amphibian habitats in Australia, suggesting that metal contamination alone may not have a strong protective effect against chytridiomycosis. We discuss future research directions to futher understand the potential for dissolved metals to create chytrid refuges. Environ Toxicol Chem 2024;43:1583-1591. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rebecca J Webb
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| | | | - Lee Berger
- Melbourne Veterinary School, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
2
|
Hourtané O, Gonzalez P, Feurtet-Mazel A, Kochoni E, Fortin C. Potential cellular targets of platinum in the freshwater microalgae Chlamydomonas reinhardtii and Nitzschia palea revealed by transcriptomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:281-295. [PMID: 38478139 DOI: 10.1007/s10646-024-02746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Platinum group element levels have increased in natural aquatic environments in the last few decades, in particular as a consequence of the use of automobile catalytic converters on a global scale. Concentrations of Pt over tens of μg L-1 have been observed in rivers and effluents. This raises questions regarding its possible impacts on aquatic ecosystems, as Pt natural background concentrations are extremely low to undetectable. Primary producers, such as microalgae, are of great ecological importance, as they are at the base of the food web. The purpose of this work was to better understand the impact of Pt on a cellular level for freshwater unicellular algae. Two species with different characteristics, a green alga C. reinhardtii and a diatom N. palea, were studied. The bioaccumulation of Pt as well as its effect on growth were quantified. Moreover, the induction or repression factors of 16 specific genes were determined and allowed for the determination of possible intracellular effects and pathways of Pt. Both species seemed to be experiencing copper deficiency as suggested by inductions of genes linked to copper transporters. This is an indication that Pt might be internalized through the Cu(I) metabolic pathway. Moreover, Pt could possibly be excreted using an efflux pump. Other highlights include a concentration-dependent negative impact of Pt on mitochondrial metabolism for C. reinhardtii which is not observed for N. palea. These findings allowed for a better understanding of some of the possible impacts of Pt on freshwater primary producers, and also lay the foundations for the investigation of pathways for Pt entry at the base of the aquatic food web.
Collapse
Affiliation(s)
- O Hourtané
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| | - P Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - A Feurtet-Mazel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - E Kochoni
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - C Fortin
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
3
|
Webb RJ, Rush C, Berger L, Skerratt LF, Roberts AA. Glutathione is required for growth and cadmium tolerance in the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Biochimie 2023; 220:22-30. [PMID: 38104714 DOI: 10.1016/j.biochi.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Batrachochytrium dendrobatidis (Bd) is a lethal amphibian pathogen, partly due to its ability to evade the immune system of susceptible frog species. In many pathogenic fungi, the antioxidant glutathione is a virulence factor that helps neutralise oxidative stressors generated from host immune cells, as well as other environmental stressors such as heavy metals. The role of glutathione in stress tolerance in Bd has not been investigated. Here, we examine the changes in the glutathione pool after stress exposure and quantify the effect of glutathione depletion on cell growth and stress tolerance. Depletion of glutathione repressed growth and release of zoospores, suggesting that glutathione is essential for life cycle completion in Bd. Supplementation with <2 mM exogenous glutathione accelerated zoospore development, but concentrations >2 mM were strongly inhibitory to Bd cells. While hydrogen peroxide exposure lowered the total cellular glutathione levels by 42 %, glutathione depletion did not increase the sensitivity to hydrogen peroxide. Exposure to cadmium increased total cellular glutathione levels by 93 %. Glutathione-depleted cells were more sensitive to cadmium, and this effect was attenuated by glutathione supplementation, suggesting that glutathione plays an important role in cadmium tolerance. The effects of heat and salt were exacerbated by the addition of exogenous glutathione. The impact of glutathione levels on Bd stress sensitivity may help explain differences in host susceptibility to chytridiomycosis and may provide opportunities for synergistic therapeutics.
Collapse
Affiliation(s)
- Rebecca J Webb
- James Cook University, Townsville, QLD, 4811, Australia; Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia.
| | | | - Lee Berger
- Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia
| | | |
Collapse
|
4
|
Zhang H, Zhang W, Huang S, Xu P, Cao Z, Chen M, Lin X. The potential role of plasma membrane proteins in response to Zn stress in rice roots based on iTRAQ and PRM under low Cd condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128324. [PMID: 35091190 DOI: 10.1016/j.jhazmat.2022.128324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Cd pollution had already caused serious threats to crop growth and development, food safety and human health, and become a potential agricultural and global environmental problem. Zn had been used to reduce Cd accumulation in soil and plants. Proteins located in plasma membrane (PM) played important roles in transferring stress signals in plants. To further elucidate how PM proteins modulated Zn/Cd transport under low-Cd condition, quantitative proteomics was employed to identify and verify the differentially expressed proteins (DEPs) and their biological functions at proteome level. A total of 4008 proteins were identified, and 332 DEPs (192 up and 140 down, fold >1.50 or <0.66, p < 0.01) were screened. Functional analysis showed that DEPs were mainly catalytic active and binding proteins, involved in glutathione metabolism, phenylpropanoid biosynthesis, etc. DEPs involved in ion transport played key roles in regulating transmembrane transport, resisting stress and alleviating toxicity of heavy metals to rice roots. DEPs were as the marker proteins in rice root responding to heavy metal stress. This study had important guiding significances for metal ions transport mechanism and screening of biomarkers responding to abiotic stress, and provided references for further researches underlying abiotic stress and detoxication in rice and other plants.
Collapse
Affiliation(s)
- Hantong Zhang
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Weixing Zhang
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Siqi Huang
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Xu
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhenzhen Cao
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Mingxue Chen
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaoyan Lin
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
5
|
Li M, Barbaro E, Bellini E, Saba A, Sanità di Toppi L, Varotto C. Ancestral function of the phytochelatin synthase C-terminal domain in inhibition of heavy metal-mediated enzyme overactivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6655-6669. [PMID: 32936292 PMCID: PMC7586750 DOI: 10.1093/jxb/eraa386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/17/2020] [Indexed: 05/03/2023]
Abstract
Phytochelatin synthases (PCSs) play essential roles in detoxification of a broad range of heavy metals in plants and other organisms. Until now, however, no PCS gene from liverworts, the earliest branch of land plants and possibly the first one to acquire a PCS with a C-terminal domain, has been characterized. In this study, we isolated and functionally characterized the first PCS gene from a liverwort, Marchantia polymorpha (MpPCS). MpPCS is constitutively expressed in all organs examined, with stronger expression in thallus midrib. The gene expression is repressed by Cd2+ and Zn2+. The ability of MpPCS to increase heavy metal resistance in yeast and to complement cad1-3 (the null mutant of the Arabidopsis ortholog AtPCS1) proves its function as the only PCS from M. polymorpha. Site-directed mutagenesis of the most conserved cysteines of the C-terminus of the enzyme further uncovered that two twin-cysteine motifs repress, to different extents, enzyme activation by heavy metal exposure. These results highlight an ancestral function of the PCS elusive C-terminus as a regulatory domain inhibiting enzyme overactivation by essential and non-essential heavy metals. The latter finding may be relevant for obtaining crops with decreased root to shoot mobility of cadmium, thus preventing its accumulation in the food chain.
Collapse
Affiliation(s)
- Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Enrico Barbaro
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Erika Bellini
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Alessandro Saba
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, Pisa, Italy
| | | | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Correspondence: ,
| |
Collapse
|
6
|
Thapa G, Das D, Gunupuru LR. Expression of Echmr gene from Eichhornia offers multiple stress tolerance to Cd sensitive Escherichia coli Δgsh mutants. Biochem Biophys Res Commun 2016; 478:101-109. [PMID: 27457806 DOI: 10.1016/j.bbrc.2016.07.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022]
Abstract
The detoxification of heavy metals frequently involves conjugation to glutathione prior to compartmentalization and eflux in higher plants. We have expressed a heavy metal stress responsive (Echmr) gene from water hyacinth, which conferred tolerance to Cd sensitive Escherichia coli Δgsh mutants against heavy metals and abiotic stresses. The recombinant E. coli Δgsh mutant cells showed better growth recovery and survival than control cells under Cd (200 μM), Pb(200 μM), heat shock (50 °C), cold stress at 4 °C for 4 h, and UV-B (20 min) exposure. The enhanced expression of Echmr gene revealed by northern analysis during above stresses further advocates its role in multi-stress tolerance. Heterologous expression of EcHMR from Eichhornia rescued Cd(2+) sensitive E. coli mutants from Cd(2+) toxicity and induced better recovery post abiotic stresses. This may suggests a possible role of Echmr in Cd(II) and desiccation tolerance in plants for enhanced stress response.
Collapse
Affiliation(s)
- G Thapa
- Department of Biotechnology, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India; Earth Institute, Molecular Plant Pathogen Interactions Group, School of Biology and Environmental Science, University College Dublin, Ireland.
| | - D Das
- Utrecht University, The Netherlands
| | - L R Gunupuru
- Earth Institute, Molecular Plant Pathogen Interactions Group, School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
7
|
Tripathi A, Indoliya Y, Tiwari M, Tiwari P, Srivastava D, Verma PK, Verma S, Gautam N, Chakrabarty D. Transformed yeast (Schizosaccharomyces pombe) overexpressing rice Tau class glutathione S-transferase (OsGSTU30 and OsGSTU41) shows enhanced resistance to hexavalent chromium. Metallomics 2014; 6:1549-1557. [PMID: 24968244 DOI: 10.1039/c4mt00083h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Extensive use of hexavalent chromium [Cr(VI)] in leather tanning, stainless-steel production, wood preservatives and electroplating industries has resulted in widespread environmental pollution and poses a serious threat to human health. A plant's response to Cr(VI) stress results in growth inhibition and toxicity leading to changes in components of antioxidant systems. In a previous study, we observed that a large number of glutathione S-transferase (GST) genes were up-regulated under Cr(VI) stress in rice. In this study, two rice root-specific Tau class GST genes (OsGSTU30 and OsGSTU41) were introduced into yeast (Schizosaccharomyces pombe). Transformed yeast cells overexpressing OsGSTU30 and OsGSTU41 had normal growth, but had much higher levels of GST activities and showed enhanced resistance to Cr(VI) as compared to control cells (transformed with empty vector). Also, a higher accumulation of chromium was found in the transformed yeast cells as compared to the control cells. Manipulation of glutathione biosynthesis by exogenous application of buthionine sulfoximine abolishes the protective effect of OsGSTs against Cr(VI) stress. These results suggest that Tau class OsGSTs play a significant role in detoxification of Cr(VI), probably by chelating and sequestrating glutathione-Cr(VI) complexes into vacuoles.
Collapse
Affiliation(s)
- Ankita Tripathi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 2014; 4:5784. [PMID: 25048298 PMCID: PMC4105706 DOI: 10.1038/srep05784] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/17/2022] Open
Abstract
Recent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In this study, in order to restrict As in the rice roots as a detoxification mechanism, a transgenic approach has been followed through expression of phytochelatin synthase, CdPCS1, from Ceratophyllum demersum, an aquatic As-accumulator plant. CdPCS1 expressing rice transgenic lines showed marked increase in PCS activity and enhanced synthesis of PCs in comparison to non-transgenic plant. Transgenic lines showed enhanced accumulation of As in root and shoot. This enhanced metal accumulation potential of transgenic lines was positively correlated to the content of PCs, which also increased several-fold higher in transgenic lines. However, all the transgenic lines accumulated significantly lower As in grain and husk in comparison to non-transgenic plant. The higher level of PCs in transgenic plants relative to non-transgenic presumably allowed sequestering and detoxification of higher amounts of As in roots and shoots, thereby restricting its accumulation in grain.
Collapse
Affiliation(s)
- Manju Shri
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Richa Dave
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
| | - Sanjay Diwedi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
| | - Devesh Shukla
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
| | - Ravi Kesari
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
| | - Rudra Deo Tripathi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| |
Collapse
|
9
|
In silico and in vivo studies of molecular structures and mechanisms of AtPCS1 protein involved in binding arsenite and/or cadmium in plant cells. J Mol Model 2014; 20:2104. [DOI: 10.1007/s00894-014-2104-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
|
10
|
Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P, Trivedi PK. Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. PROTOPLASMA 2013; 250:1263-72. [PMID: 23702817 DOI: 10.1007/s00709-013-0508-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/02/2013] [Indexed: 05/08/2023]
Abstract
Phytochelatin synthase (PCS) gene encoding key enzyme for heavy metal detoxification and accumulation has been characterised from different sources and used to develop a technology for bioremediation. Past efforts provided limited success and contradictory results. Therefore, functional characterisation of PCS gene from new sources into different target systems is considered as an important task in the area of bioremediation. Earlier, we isolated and functionally characterised PCS gene from an aquatic macrophyte Ceratophyllum demersum L., a metal accumulator aquatic plant. Expression of this gene, CdPCS1, in tobacco enhanced PC synthesis and metal accumulation of transgenic tobacco plants. In the present study, we have expressed CdPCS1 in more diverse systems, Escherichia coli and Arabidopsis, and studied growth and metal accumulation of transgenic organisms. The expression of CdPCS1 in E. coli offered tolerance against cadmium as well as higher accumulation accompanied with PCS1 activity. The expression of CdPCS1 in Arabidopsis showed a significant enhanced accumulation of heavy metal(loid)s in aerial parts without significant difference in growth parameters in comparison to wild-type Arabidopsis plants. Our study suggests that CdPCS1 can be utilised for enhancing bioremediation potential of different organisms using biotechnological approaches.
Collapse
Affiliation(s)
- Devesh Shukla
- National Botanical Research Institute (NBRI), Council of Scientific and Industrial Research (CSIR), Rana Pratap Marg, Lucknow, 226001, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing. PLoS One 2013; 8:e66539. [PMID: 23840502 PMCID: PMC3688795 DOI: 10.1371/journal.pone.0066539] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Lead (Pb), one of the most toxic heavy metals, can be absorbed and accumulated by plant roots and then enter the food chain resulting in potential health risks for human beings. The radish (Raphanus sativus L.) is an important root vegetable crop with fleshy taproots as the edible parts. Little is known about the mechanism by which radishes respond to Pb stress at the molecular level. In this study, Next Generation Sequencing (NGS)-based RNA-seq technology was employed to characterize the de novo transcriptome of radish roots and identify differentially expressed genes (DEGs) during Pb stress. A total of 68,940 assembled unique transcripts including 33,337 unigenes were obtained from radish root cDNA samples. Based on the assembled de novo transcriptome, 4,614 DEGs were detected between the two libraries of untreated (CK) and Pb-treated (Pb1000) roots. Gene Ontology (GO) and pathway enrichment analysis revealed that upregulated DEGs under Pb stress are predominately involved in defense responses in cell walls and glutathione metabolism-related processes, while downregulated DEGs were mainly involved in carbohydrate metabolism-related pathways. The expression patterns of 22 selected genes were validated by quantitative real-time PCR, and the results were highly accordant with the Solexa analysis. Furthermore, many candidate genes, which were involved in defense and detoxification mechanisms including signaling protein kinases, transcription factors, metal transporters and chelate compound biosynthesis related enzymes, were successfully identified in response to heavy metal Pb. Identification of potential DEGs involved in responses to Pb stress significantly reflected alterations in major biological processes and metabolic pathways. The molecular basis of the response to Pb stress in radishes was comprehensively characterized. Useful information and new insights were provided for investigating the molecular regulation mechanism of heavy metal Pb accumulation and tolerance in root vegetable crops.
Collapse
Affiliation(s)
- Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yinglong Chen
- School of Earth and Environment, and The UWA’s Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Hong Shen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yiqin Gong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Cecilia Limera
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P. R. China
- College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- * E-mail:
| |
Collapse
|
12
|
Srivastava P, Kowshik M. Mechanisms of metal resistance and homeostasis in haloarchaea. ARCHAEA (VANCOUVER, B.C.) 2013; 2013:732864. [PMID: 23533331 PMCID: PMC3600143 DOI: 10.1155/2013/732864] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
Abstract
Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology.
Collapse
Affiliation(s)
- Pallavee Srivastava
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa 403 726, India
| | - Meenal Kowshik
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa 403 726, India
| |
Collapse
|
13
|
Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK. Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. PLANT CELL REPORTS 2012; 31:1687-99. [PMID: 22614255 DOI: 10.1007/s00299-012-1283-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 05/22/2023]
Abstract
UNLABELLED Phytochelatin synthase (PCS), the key enzyme involved in heavy metal detoxification and accumulation has been used from various sources to develop transgenic plants for the purpose of phytoremediation. However, some of the earlier studies provided contradictory results. Most of the PCS genes were isolated from plants that are not potential metal accumulators. In this study, we have isolated PCS gene from Ceratophyllum demersum cv. L. (CdPCS1), a submerged rootless aquatic macrophyte, which is considered as potential accumulator of heavy metals. The CdPCS1 cDNA of 1,757 bp encodes a polypeptide of 501 amino acid residues and differs from other known PCS with respect to the presence of a number of cysteine residues known for their interaction with heavy metals. Complementation of cad1-3 mutant of Arabidopsis deficient in PC (phytochelatin) biosynthesis by CdPCS1 suggests its role in the synthesis of PCs. Transgenic tobacco plants expressing CdPCS1 showed several-fold increased PC content and precursor non-protein thiols with enhanced accumulation of cadmium (Cd) and arsenic (As) without significant decrease in plant growth. We conclude that CdPCS1 encodes functional PCS and may be part of metal detoxification mechanism of the heavy metal accumulating plant C. demersum. KEY MESSAGE Heterologous expression of PCS gene from C. demersum complements Arabidopsis cad1-3 mutant and leads to enhanced accumulation of Cd and As in transgenic tobacco.
Collapse
Affiliation(s)
- Devesh Shukla
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Gundacker C, Gencik M, Hengstschläger M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutat Res 2010; 705:130-140. [PMID: 20601101 DOI: 10.1016/j.mrrev.2010.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 11/25/2022]
Abstract
The heavy metals mercury and lead are well-known and significant developmental neurotoxicants. This review summarizes the genetic factors that modify their toxicokinetics. Understanding toxicokinetics (uptake, biotransformation, distribution, and elimination processes) is a key precondition to understanding the individual health risks associated with exposure. We selected candidate susceptibility genes when evidence was available for (1) genes/proteins playing a significant role in mercury and lead toxicokinetics, (2) gene expression/protein activity being induced by these metals, and (3) mercury and lead toxicokinetics being affected by gene knockout/knockdown or (4) by functional gene polymorphisms. The genetic background is far better known for mercury than for lead toxicokinetics. Involved are genes encoding L-type amino acid transporters, organic anion transporters, glutathione (GSH)-related enzymes, metallothioneins, and transporters of the ABC family. Certain gene variants can influence mercury toxicokinetics, potentially explaining part of the variable susceptibility to mercury toxicity. Delta-aminolevulinic acid dehydratase (ALAD), vitamin D receptor (VDR) and hemochromatosis (HFE) gene variants are the only well-established susceptibility markers of lead toxicity in humans. Many gaps remain in our knowledge about the functional genomics of this issue. This calls for studies to detect functional gene polymorphisms related to mercury- and lead-associated disease phenotypes, to demonstrate the impact of functional polymorphisms and gene knockout/knockdown in relation to toxicity, to confirm the in vivo relevance of genetic variation, and to examine gene-gene interactions on the respective toxicokinetics. Another crucial aspect is knowledge on the maternal-fetal genetic background, which modulates fetal exposure to these neurotoxicants. To completely define the genetically susceptible risk groups, research is also needed on the genes/proteins involved in the toxicodynamics, i.e., in the mechanisms causing adverse effects in the brain. Studies relating the toxicogenetics to neurodevelopmental disorders are lacking (mercury) or very scarce (lead). Thus, the extent of variability in susceptibility to heavy metal-associated neurological outcomes is poorly characterized.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, A-1090 Vienna, Austria.
| | - Martin Gencik
- Praxis fur Humangenetik, Brünnlbadgasse 15, A-1090 Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, A-1090 Vienna, Austria
| |
Collapse
|
15
|
Pal R, Rai JPN. Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 2009; 160:945-63. [PMID: 19224399 DOI: 10.1007/s12010-009-8565-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/06/2009] [Indexed: 01/16/2023]
Abstract
Phytochelatins (PCs) are enzymatically synthesized peptides known to involve in heavy metal detoxification and accumulation, which have been measured in plants grown at high heavy metal concentrations, but few studies have examined the response of plants even at lower environmentally relevant metal concentrations. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species enabling molecular biological studies to untangle the mechanisms underlying PC synthesis and its regulation. The present paper embodies review on recent advances in structure of PCs, their biosynthetic regulation, roles in heavy metal detoxification and/or accumulation, and PC synthase gene expression for better understanding of mechanism involved and to improve phytoremediation efficiency of plants for wider application.
Collapse
Affiliation(s)
- Rama Pal
- Ecotechnology Laboratory, Department of Environmental Science, G.B.Pant. University of Agriculture and Technology, Pantnagar 263145, India
| | | |
Collapse
|
16
|
Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 2008; 71:391-411. [PMID: 18718564 DOI: 10.1016/j.jprot.2008.07.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
The most crucial function of plant cell is to respond against stress induced for self-defence. This defence is brought about by alteration in the pattern of gene expression: qualitative and quantitative changes in proteins are the result, leading to modulation of certain metabolic and defensive pathways. Abiotic stresses usually cause protein dysfunction. They have an ability to alter the levels of a number of proteins which may be soluble or structural in nature. Nowadays, in higher plants high-throughput protein identification has been made possible along with improved protein extraction, purification protocols and the development of genomic sequence databases for peptide mass matches. Thus, recent proteome analysis performed in the vegetal Kingdom has provided new dimensions to assess the changes in protein types and their expression levels under abiotic stress. As reported in this review, specific and novel proteins, protein-protein interactions and post-translational modifications have been identified, which play a role in signal transduction, anti-oxidative defence, anti-freezing, heat shock, metal binding etc. However, beside specific proteins production, plants respond to various stresses in a similar manner by producing heat shock proteins (HSPs), indicating a similarity in the plant's adaptive mechanisms; in plants, more than in animals, HSPs protect cells against many stresses. A relationship between ROS and HSP also seems to exist, corroborating the hypothesis that during the course of evolution, plants were able to achieve a high degree of control over ROS toxicity and are now using ROS as signalling molecules to induce HSPs.
Collapse
Affiliation(s)
- Anna Maria Timperio
- Department of Environmental Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | | | | |
Collapse
|
17
|
Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. PLANTA 2006; 223:180-90. [PMID: 16133212 DOI: 10.1007/s00425-005-0073-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 05/31/2005] [Indexed: 05/04/2023]
Abstract
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd(2+) tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd(2+) accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd(2+) accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd(2+) translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd(2+) tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd(2+) transport.
Collapse
Affiliation(s)
- Mirella Pomponi
- Dipartimento di Genetica e Biologia Molecolare, Universitá La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Changes in the chemical or physical conditions of the cell that impose a negative effect on growth demand rapid cellular responses, which are essential for survival. Molecular mechanisms induced upon exposure of cells to such adverse conditions are commonly designated as stress responses. Herein, different methods which can be used to monitor oxidative stress response in yeasts are presented including monitoring of oxygen partial pressure during yeast cultivation, cell viability determination, measuring activity of enzymatic and level of nonenzymatic primary antioxidant defense systems, and examination of transcriptome and proteome changes. Additionally, some studies are given as examples of particular method's application for studying oxidative stress response in yeasts.
Collapse
Affiliation(s)
- Polona Jamnik
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
19
|
Barazani O, Dudai N, Khadka UR, Golan-Goldhirsh A. Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium. CHEMOSPHERE 2004; 57:1213-1218. [PMID: 15504482 DOI: 10.1016/j.chemosphere.2004.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 07/14/2004] [Accepted: 08/10/2004] [Indexed: 05/24/2023]
Abstract
The ability of Allium schoenoprasum L. (chives) to accumulate and tolerate cadmium in aqueous Hoagland medium at 50microM and 250microM was tested under continuous growth or several successive harvests of shoots. After 28 days of continuous growth, chives accumulated the metal up to 0.2% and 0.5% of its dry weight, when grown in 50microM and 250microM, respectively. In experiments that the leaves were successively harvested every 16 days, there were no obvious stress symptoms after six harvests during a period of 96 days at 50microM Cd. At 250microM, after 64 days and four harvests, inhibition of growth occurred. In each treatment, a total of 1.2g kg(-1) DW and 2.4g kg(-1) DW was accumulated in the leaves, respectively. Total SH compounds concentration in leaf was found significantly higher by 3 and 7.4 times in plants treated with Cd at 50microM and 250microM in comparison to the control, respectively, while no difference in the concentration of glutathione (GSH+GSSG) was found. Thus, it is assumed that sulphur-containing compounds, yet unknown, are involved in defensive mechanisms against heavy metals in chives. The results presented, point to chives phytoremediation potential, but also on the potential risk in accumulation of heavy metals in a commonly edible plant.
Collapse
Affiliation(s)
- O Barazani
- Albert Katz Department of Dryland Biotechnologies, Desert Plant Biotechnology Laboratory, The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of The Negev, Sede Boqer Campus, 84990, Israel
| | | | | | | |
Collapse
|
20
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
21
|
Ubiyvovk VM, Nazarko TY, Stasyk OG, Sohn MJ, Kang HA, Sibirny AA. GSH2, a gene encoding γ-glutamylcysteine synthetase in the methylotrophic yeastHansenula polymorpha. FEMS Yeast Res 2002. [DOI: 10.1111/j.1567-1364.2002.tb00101.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Westwater J, McLaren NF, Dormer UH, Jamieson DJ. The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 2002; 19:233-9. [PMID: 11816031 DOI: 10.1002/yea.835] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been shown to possess a number of discrete but overlapping adaptive stress responses. We show here that yeast has an adaptive stress response towards mercury and that this response overlaps to some extent with the H(2)O(2) and cadmium-inducible stress responses. Expression of the yeast GSH1 gene, encoding gamma-glutamylcysteine synthetase, is known to be regulated by hydrogen peroxide; in this study we show that expression of a GSH1-lacZ reporter gene is shown to be regulated by exposure to heavy metals, such as mercury and cadmium. Other redox-active metals, including copper and iron, were found not to induce GSH1 expression. We show that mercury-mediated regulation of the GSH1 gene is not by the same mechanism used by cadmium. Moreover, our experiments suggest the possibility that the oxidative stress produced by mercury exposure is similar to that produced by treatment with H(2)O(2), consistent with our finding that the Yap1 protein is also involved in the response of yeast towards mercury.
Collapse
Affiliation(s)
- John Westwater
- Department of Biological Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | | | | | | |
Collapse
|
23
|
Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:159-82. [PMID: 12221971 DOI: 10.1146/annurev.arplant.53.100301.135154] [Citation(s) in RCA: 1316] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Among the heavy metal-binding ligands in plant cells the phytochelatins (PCs) and metallothioneins (MTs) are the best characterized. PCs and MTs are different classes of cysteine-rich, heavy metal-binding protein molecules. PCs are enzymatically synthesized peptides, whereas MTs are gene-encoded polypeptides. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species while the completion of the Arabidopsis genome sequence has allowed the identification of the entire suite of MT genes in a higher plant. Recent advances in understanding the regulation of PC biosynthesis and MT gene expression and the possible roles of PCs and MTs in heavy metal detoxification and homeostasis are reviewed.
Collapse
|
24
|
Abstract
The fission yeast Schizosaccharomyces pombe detoxifies cadmium by synthesizing phytochelatins, peptides of the structure (gamma-GluCys)nGly, which bind cadmium and mediate its sequestration into the vacuole. The fission yeast protein HMT2, a mitochondrial enzyme that can oxidize sulphide, appears to be essential for tolerance to multiple forms of stress, including exposure to cadmium. We found that the hmt2- mutant is unable to accumulate normal levels of phytochelatins in response to cadmium, although the cells possess a phytochelatin synthase that is active in vitro. Radioactive pulse-chase experiments demonstrated that the defect lies in two steps: the synthesis of phytochelations and the upregulation of glutathione production. Phytochelatins, once formed, are stable. hmt2- cells accumulate high levels of sulphide and, when exposed to cadmium, display bright fluorescent bodies consistent with cadmium sulphide. We propose that the precipitation of free cadmium blocks phytochelatin synthesis in vivo, by preventing upregulation of glutathione production and formation of the cadmium-glutathione thiolate required as a substrate by phytochelatin synthase. Thus, although sulphide is required for phytochelatin-mediated metal tolerance, aberrantly high sulphide levels can inhibit this pathway. Precise regulation of sulphur metabolism, mediated in part by HMT2, is essential for metal tolerance in fission yeast.
Collapse
Affiliation(s)
- J G Vande Weghe
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710, USA
| | | |
Collapse
|
25
|
Dormer UH, Westwater J, McLaren NF, Kent NA, Mellor J, Jamieson DJ. Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem 2000; 275:32611-6. [PMID: 10921921 DOI: 10.1074/jbc.m004167200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione (gamma-l-glutamyl-l-cysteinylglycine) is an important antioxidant molecule, helping to buffer the cell against free radicals and toxic electrophiles. Expression of the yeast GSH1 gene, encoding the first enzyme involved in glutathione biosynthesis, gamma-glutamylcysteine synthetase, is regulated by oxidants and the heavy metal cadmium at the level of transcription. We present evidence that the transcription factors involved in controlling the network of sulfur amino acid metabolism genes are also responsible for regulating GSH1 expression in response to cadmium. In particular the transcription factors Met-4, Met-31, and Met-32 are essential for cadmium-mediated regulation of gene expression, whereas the DNA-binding protein Cbf1 appears to play a negative role in controlling GSH1 expression.
Collapse
Affiliation(s)
- U H Dormer
- Department of Biological Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland
| | | | | | | | | | | |
Collapse
|
26
|
Penninckx M. A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 2000; 26:737-742. [PMID: 10862879 DOI: 10.1016/s0141-0229(00)00165-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glutathione (L-gamma-Glutamyl-L-Cysteinylglycine) appears as the major nonprotein thiol compound in yeasts. Recent advances have shown that glutathione (GSH) seems to be involved in the response of yeasts to different nutritional and oxidative stresses. When the yeast Saccharomyces cerevisiae is starved for sulfur or nitrogen nutrients, GSH may be mobilized to ensure cellular maintenance. Glutathione S-transferases may be involved in the detoxification of electrophilic xenobiotics. Vacuolar transport of metal derivatives of GSH ensure resistance to metal stress. Growth of methylotrophic yeasts on methanol results in the formation of an excess formaldehyde that is detoxified by a GSH-dependent formaldehyde dehydrogenase. Growth of yeasts on glycerol results in the accumulation of methylglyoxal detoxified by the glyoxalase pathway. Glutathione per se can react with oxidative agents or is involved in the oxidative stress response through glutathione peroxidase.
Collapse
Affiliation(s)
- M Penninckx
- Laboratoire de Physiologie et Ecologie Microbiennes, Université Libre de Bruxelles c/o IP. 642, Rue Engeland. B-1180, Brussels, Belgium
| |
Collapse
|
27
|
Cobbett CS, May MJ, Howden R, Rolls B. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:73-78. [PMID: 9807829 DOI: 10.1046/j.1365-313x.1998.00262.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper reports that the glutathione (GSH)-deficient mutant, cad2-1, of Arabidopsis is deficient in the first enzyme in the pathway of GSH biosynthesis, gamma-glutamylcysteine synthetase (GCS). The mutant accumulates a substrate of GCS, cysteine, and is deficient in the product, gamma-glutamylcysteine. In vitro enzyme assays showed that the cad2-1 mutant has 40% of wild-type levels of GCS activity but is unchanged in the activity of the second enzyme in the pathway, GSH synthetase. The CAD2 locus maps to chromosome 4 and is tightly linked to a gene, GSHA, identified by a previously isolated cDNA. A genomic clone of GSHA complements both the phenotypic and biochemical deficiencies of the cad2-1 mutant. The nucleotide sequence of the gene has been determined and, in the mutant, this gene contains a 6 bp deletion within an exon. These data demonstrate that the CAD2 gene encodes GCS. The cad2-1 mutation is close to the conserved cysteine which is believed to bind the substrate glutamate and the specific inhibitor L-buthionine-[S,R] sulfoximine (BSO). Both root growth and GCS activity of the cad2-1 mutant was less sensitive than the wild-type to inhibition by BSO, indicating that the mutation may alter the affinity of the inhibitor binding site.
Collapse
Affiliation(s)
- C S Cobbett
- Department of Genetics, University of Melbourne, Parkville, Australia.
| | | | | | | |
Collapse
|
28
|
Cadmium and manganese in contrast to calcium reduce yield and nutritional values of the edible mushroom Pleurotus pulmonarius. ACTA ACUST UNITED AC 1998. [DOI: 10.1017/s0953756297005728] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Coblenz A, Wolf K. Gcs1, a gene encoding gamma-glutamylcysteine synthetase in the fission yeast Schizosaccharomyces pombe. Yeast 1995; 11:1171-7. [PMID: 8619315 DOI: 10.1002/yea.320111207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
By complementation of a mutant resistant to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) we have identified the gcs1 gene, encoding a putative gamma-glutamylcysteine synthetase. The gene is possibly interrupted by two introns and has 49% identical and 80% similar amino acids compared with the homologous protein from rat. In comparison with the Saccharomyces cerevisiae homologue it possesses 41% identical and 74% similar amino acids.
Collapse
Affiliation(s)
- A Coblenz
- Institut für Biologie IV (Mikrobiologie), Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | |
Collapse
|
30
|
Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet 1994; 25:488-96. [PMID: 8082198 DOI: 10.1007/bf00351667] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sulfite-resistant and sulfite-sensitive mutants of Saccharomyces cerevisiae were isolated and characterized. Genetic analysis indicated that one and four genes were responsible for the resistant and sensitive responses, respectively, and suggested that defects in methionine and cysteine metabolism were not involved. Some resistant alleles, all of which were dominant, conferred greater resistance than others. Mutations conferring sensitivity were recessive and one co-segregated with impaired respiration. Two of the sensitive mutants exhibited cross-sensitivity to other metabolic inhibitors: sulfometuron methyl, cycloheximide, oligomycin, and antimycin A. A 50% glutathione deficiency in one sensitive mutant was not sufficient in itself to account for its sensitivity. Screening of other relevant mutants revealed that relative to wild-type, met8 and a thioredoxin null mutant are sensitive, and met3 and met14 mutants are not. Reduced production of extracellular acetaldehyde, a compound that detoxifies sulfite, was observed in three of the four sensitive mutants. However, acetaldehyde was also underproduced in the resistant mutant. Because sulfite is a reducing agent, cells were tested for coincident sensitivity or resistance to ascorbate, selenite, dithiothreitol, nitrite, thiosulfate, reduced glutathione, and cysteine. No consistent pattern of responses to these agents emerged, suggesting that the response to sulfite is not a simple function of redox potential.
Collapse
Affiliation(s)
- X Xu
- Department of Food Science and Technology, Oregon State University, Corvallis 97331-6602
| | | | | | | | | |
Collapse
|
31
|
Grey M, Brendel M. Overexpression of the SNQ3/YAP1 gene confers hyper-resistance to nitrosoguanidine in Saccharomyces cerevisiae via a glutathione-independent mechanism. Curr Genet 1994; 25:469-71. [PMID: 8082194 DOI: 10.1007/bf00351788] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The MNNG hyper-resistance of yeast transformants containing multiple copies of the SNQ3/YAP1 yeast gene is not caused by lowered MNNG activation due to depleted pools of glutathione. On the contrary, the SNQ3/YAP1-encoded protein stimulates production of GSH, apparently by promoter activation due to the AP-1 recognition element. Expression of at least one further gene, encoding a protein with a strong detoxifying activity, must also be stimulated to explain the MNNG hyper-resistance phenotype.
Collapse
Affiliation(s)
- M Grey
- Institut für Mikrobiologie, J. W. Goethe-Universität, Frankfurt/Main, Germany
| | | |
Collapse
|
32
|
Ballatori N. Glutathione mercaptides as transport forms of metals. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 27:271-98. [PMID: 8068556 DOI: 10.1016/s1054-3589(08)61036-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Among the many cellular functions of GSH, the roles of this tripeptide in metal transport, storage, and metabolism have recently received considerable attention. Although these roles had often been overlooked, they are critical for normal cellular metabolism and for protection from xenobiotics. Indeed, a number of the protective and regulatory functions of GSH are related to its ability to chelate reactive metals. GSH functions in the mobilization and delivery of metals between ligands, in the transport of metals across cell membranes, as a source of cysteine for metal binding, and as a reductant or cofactor in redox reactions involving metals. However, the interaction between GSH and metals can also produce or exacerbate cell injury. For example, GSH appears to be involved in the renal accumulation and toxicity of a number of metals, and in the carcinogenicity of chromium. Additional work is clearly needed to identify the mechanisms involved, and to better define the roles of GSH in metal homeostasis.
Collapse
Affiliation(s)
- N Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, New York 14642
| |
Collapse
|
33
|
Affiliation(s)
- M J Penninckx
- Unité de Physiologie et Ecologie Microbiennes, Faculté des Sciences, Université libre de Bruxelles, Instut Pasteur Brabant, Belgium
| | | |
Collapse
|
34
|
|