1
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
2
|
White L, Erbay B, Blair GE. The Cajal body protein p80-coilin forms a complex with the adenovirus L4-22K protein and facilitates the nuclear export of adenovirus mRNA. mBio 2023; 14:e0145923. [PMID: 37795984 PMCID: PMC10653806 DOI: 10.1128/mbio.01459-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE The architecture of sub-nuclear structures of eucaryotic cells is often changed during the infectious cycle of many animal and plant viruses. Cajal bodies (CBs) form a major sub-nuclear structure whose functions may include the regulation of cellular RNA metabolism. During the lifecycle of human adenovirus 5 (Ad5), CBs are reorganized from their spherical-like structure into smaller clusters termed microfoci. The mechanism of this reorganization and its significance for virus replication has yet to be established. Here we show that the major CB protein, p80-coilin, facilitates the nuclear export of Ad5 transcripts. Depletion of p80-coilin by RNA interference led to lowered levels of viral proteins and infectious virus. p80-coilin was found to form a complex with the viral L4-22K protein in Ad5-infected cells and in some reorganized microfoci. These findings assign a new role for p80-coilin as a potential regulator of infection by a human DNA virus.
Collapse
Affiliation(s)
- Laura White
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - G. Eric Blair
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
Lobaina Y, Perera Y. Implication of B23/NPM1 in Viral Infections, Potential Uses of B23/NPM1 Inhibitors as Antiviral Therapy. Infect Disord Drug Targets 2019; 19:2-16. [PMID: 29589547 DOI: 10.2174/1871526518666180327124412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND B23/nucleophosmin (B23/NPM1) is an abundant multifunctional protein mainly located in the nucleolus but constantly shuttling between the nucleus and cytosol. As a consequence of its constitutive expression, intracellular dynamics and binding capacities, B23/NPM1 interacts with multiple cellular factors in different cellular compartments, but also with viral proteins from both DNA and RNA viruses. B23/NPM1 influences overall viral replication of viruses like HIV, HBV, HCV, HDV and HPV by playing functional roles in different stages of viral replication including nuclear import, viral genome transcription and assembly, as well as final particle formation. Of note, some virus modify the subcellular localization, stability and/or increases B23/NPM1 expression levels on target cells, probably to foster B23/NPM1 functions in their own replicative cycle. RESULTS This review summarizes current knowledge concerning the interaction of B23/NPM1 with several viral proteins during relevant human infections. The opportunities and challenges of targeting this well-conserved host protein as a potentially new broad antiviral treatment are discussed in detail. Importantly, although initially conceived to treat cancer, a handful of B23/NPM1 inhibitors are currently available to test on viral infection models. CONCLUSION As B23/NPM1 partakes in key steps of viral replication and some viral infections remain as unsolved medical needs, an appealing idea may be the expedite evaluation of B23/NPM1 inhibitors in viral infections. Furthermore, worth to be addressed is if the up-regulation of B23/NPM1 protein levels that follows persistent viral infections may be instrumental to the malignant transformation induced by virus like HBV and HCV.
Collapse
Affiliation(s)
- Yadira Lobaina
- Therapeutic Hepatitis B Vaccine Group, Vaccine Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| | - Yasser Perera
- Molecular Oncology Group, Pharmaceuticals Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| |
Collapse
|
4
|
Hebert MD, Poole AR. Towards an understanding of regulating Cajal body activity by protein modification. RNA Biol 2016; 14:761-778. [PMID: 27819531 DOI: 10.1080/15476286.2016.1243649] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biogenesis of small nuclear ribonucleoproteins (snRNPs), small Cajal body-specific RNPs (scaRNPs), small nucleolar RNPs (snoRNPs) and the telomerase RNP involves Cajal bodies (CBs). Although many components enriched in the CB contain post-translational modifications (PTMs), little is known about how these modifications impact individual protein function within the CB and, in concert with other modified factors, collectively regulate CB activity. Since all components of the CB also reside in other cellular locations, it is also important that we understand how PTMs affect the subcellular localization of CB components. In this review, we explore the current knowledge of PTMs on the activity of proteins known to enrich in CBs in an effort to highlight current progress as well as illuminate paths for future investigation.
Collapse
Affiliation(s)
- Michael D Hebert
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Aaron R Poole
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
5
|
Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells. J Virol 2016; 90:3411-27. [PMID: 26764008 DOI: 10.1128/jvi.00033-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.
Collapse
|
6
|
Nuclear actin and myosins in adenovirus infection. Exp Cell Res 2015; 338:170-82. [PMID: 26226218 DOI: 10.1016/j.yexcr.2015.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 11/21/2022]
Abstract
Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host's transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus.
Collapse
|
7
|
Abstract
Recent advances in proteomics have been combined with traditional methods for isolation of nucleoli from mammalian and plant cells. This approach has confirmed the growing body of data showing a wide role for the nucleolus in eukaryotic cell biology beyond ribosome generation into many areas of cell function from regulation of the cell cycle, modulation of the cell stress response to innate immune responses. This has been reflected in the growing body of evidence that viruses specifically target the nucleolus by sequestering cellular nucleolar proteins or by targeting viral proteins to the nucleolus in order to maximise viral replication. This review covers those key areas and looks at the latest approaches using high‐throughput quantitative proteomics of the nucleolus in virus infected cells to gain an insight into the role of this fascinating compartment in viral infection.
Collapse
Affiliation(s)
- Julian A Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
8
|
Hebert MD. Phosphorylation and the Cajal body: modification in search of function. Arch Biochem Biophys 2010; 496:69-76. [PMID: 20193656 PMCID: PMC2850958 DOI: 10.1016/j.abb.2010.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/24/2010] [Indexed: 12/25/2022]
Abstract
The Cajal body (CB) is a subnuclear domain that contains proteins and factors involved in a diverse range of activities including ribonucleoprotein maturation, histone gene transcription and telomerase assembly. Among these activities, the CBs' role in small nuclear ribonucleoprotein (snRNP) biogenesis is best characterized. Although CBs are found in plants, flies and mammals, not all cell types contain CBs. Rather, CBs are most prominent in transcriptionally active cells, such as cancer and neuronal cells. Many CB components, including the CB marker protein coilin, are phosphorylated in humans. The functional consequence of phosphorylation on CB assembly, activity and disassembly is largely unknown. Also unknown are the signaling pathways, kinases and phosphatases that act upon proteins which localize in the CB. The goal of this review is to demonstrate the need for a concerted effort towards elucidating the functional consequence of phosphorylation on CB formation and activity.
Collapse
Affiliation(s)
- Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
9
|
James NJ, Howell GJ, Walker JH, Blair GE. The role of Cajal bodies in the expression of late phase adenovirus proteins. Virology 2010; 399:299-311. [PMID: 20137801 DOI: 10.1016/j.virol.2010.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/10/2009] [Accepted: 01/07/2010] [Indexed: 11/17/2022]
Abstract
Cajal bodies (CBs) are subnuclear structures involved in RNA metabolism. Here we show that, following infection of HeLa cells by adenovirus type 5 (Ad5), CBs fragment and form ordered structures, which we have termed "rosettes". Formation of CB rosettes was prevented by inhibition of viral DNA synthesis and preceded expression of the L4-33K protein. CB rosettes localised to the periphery of E2A-72K-containing replication centers and to the edges of ASF/SF2 and hnRNP A1 ring structures that demarcate sites of viral transcription and splicing. At later times of infection, CB rosettes were undetectable. Furthermore, knock-down of p80-coilin (the major structural protein of CBs) by RNA interference reduced the yield of infectious Ad5 and expression of the late proteins IIIa (from L1), hexon (from L3) and fiber (from L5), whereas the E2A-72K protein was unaffected. We conclude that CBs have an important role in the expression of adenovirus major late gene products.
Collapse
Affiliation(s)
- Nicola J James
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, Garstang Building, Room 8.52d, Mount Preston Street, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
10
|
Lam YW, Evans VC, Heesom KJ, Lamond AI, Matthews DA. Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 2009; 9:117-30. [PMID: 19812395 PMCID: PMC2808258 DOI: 10.1074/mcp.m900338-mcp200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adenoviruses replicate primarily in the host cell nucleus, and it is well
established that adenovirus infection affects the structure and function of host
cell nucleoli in addition to coding for a number of nucleolar targeted viral
proteins. Here we used unbiased proteomics methods, including high throughput
mass spectrometry coupled with stable isotope labeling by amino acids in cell
culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify
quantitative changes in the protein composition of the nucleolus during
adenovirus infection. Two-dimensional gel analysis revealed changes in six
proteins. By contrast, SILAC-based approaches identified 351 proteins with 24
proteins showing at least a 2-fold change after infection. Of those, four were
previously reported to have aberrant localization and/or functional relevance
during adenovirus infection. In total, 15 proteins identified as changing in
amount by proteomics methods were examined in infected cells using confocal
microscopy. Eleven of these proteins showed altered patterns of localization in
adenovirus-infected cells. Comparing our data with the effects of actinomycin D
on the nucleolar proteome revealed that adenovirus infection apparently
specifically targets a relatively small subset of nucleolar antigens at the time
point examined.
Collapse
Affiliation(s)
- Yun W Lam
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | | | | | | | | |
Collapse
|
11
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
12
|
Salsman J, Zimmerman N, Chen T, Domagala M, Frappier L. Genome-wide screen of three herpesviruses for protein subcellular localization and alteration of PML nuclear bodies. PLoS Pathog 2008; 4:e1000100. [PMID: 18617993 PMCID: PMC2438612 DOI: 10.1371/journal.ppat.1000100] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 06/11/2008] [Indexed: 01/22/2023] Open
Abstract
Herpesviruses are large, ubiquitous DNA viruses with complex host interactions, yet many of the proteins encoded by these viruses have not been functionally characterized. As a first step in functional characterization, we determined the subcellular localization of 234 epitope-tagged proteins from herpes simplex virus, cytomegalovirus, and Epstein-Barr virus. Twenty-four of the 93 proteins with nuclear localization formed subnuclear structures. Twelve of these localized to the nucleolus, and five at least partially localized with promyelocytic leukemia (PML) bodies, which are known to suppress viral lytic infection. In addition, two proteins disrupted Cajal bodies, and 19 of the nuclear proteins significantly decreased the number of PML bodies per cell, including six that were shown to be SUMO-modified. These results have provided the first functional insights into over 120 previously unstudied proteins and suggest that herpesviruses employ multiple strategies for manipulating nuclear bodies that control key cellular processes.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Zimmerman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tricia Chen
- Affinium Pharmaceuticals Inc., Toronto, Ontario, Canada
| | | | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Laakkonen JP, Kaikkonen MU, Ronkainen PHA, Ihalainen TO, Niskanen EA, Häkkinen M, Salminen M, Kulomaa MS, Ylä-Herttuala S, Airenne KJ, Vihinen-Ranta M. Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cell Microbiol 2007; 10:667-81. [PMID: 18042259 DOI: 10.1111/j.1462-5822.2007.01074.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), has the ability to transduce mammalian cell lines without replication. The general objective of this study was to detect the transcription and expression of viral immediate-early genes in human cells and to examine the interactions between viral components and subnuclear structures. Viral capsids were seen in large, discrete foci in nuclei of both dividing and non-dividing human cells. Concurrently, the transcription of viral immediate-early transregulator genes (ie-1, ie-2) and translation of IE-2 protein were detected. Quantitative microscopy imaging and analysis showed that virus transduction altered the size of promyelocytic leukaemia nuclear bodies, which are suggested to be involved in replication and transcription of various viruses. Furthermore, altered distribution of the chromatin marker Draq5 and histone core protein (H2B) in transduced cells indicated that the virus was able to induce remodelling of the host cell chromatin. To conclude, this study shows that the non-replicative insect virus, baculovirus and its proteins can induce multiple changes in the cellular machinery of human cells.
Collapse
Affiliation(s)
- Johanna P Laakkonen
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Matthews DA. Study of nucleolar localization of adenovirus core proteins. METHODS IN MOLECULAR MEDICINE 2007; 131:73-81. [PMID: 17656776 DOI: 10.1007/978-1-59745-277-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This chapter describes the techniques used to study nucleolar-localized proteins. The chapter starts with cloning of viral proteins for expression in mammalian cells as fusion proteins to well-characterized tags such as enhanced green fluorescence protein (EGFP). This follows on to techniques for transient expression in mammalian cells and immunofluorescence techniques used to examine subcellular localization. Finally there is guidance on the types of antigens and metabolic features of the nucleolus that can be used as markers to confirm that the protein in question is indeed localized in the nucleolus and determine whether it affects gross rRNA synthesis.
Collapse
|
15
|
Lawrence FJ, McStay B, Matthews DA. Nucleolar protein upstream binding factor is sequestered into adenovirus DNA replication centres during infection without affecting RNA polymerase I location or ablating rRNA synthesis. J Cell Sci 2006; 119:2621-31. [PMID: 16763197 DOI: 10.1242/jcs.02982] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
When human adenovirus infects human cells there is disruption of rRNA biogenesis. This report examines the effect of adenovirus infection on the nucleolar protein, upstream binding factor (UBF) which plays a major role in regulating rRNA synthesis. We determined that early after infection, UBF associates with the replication of viral DNA, preferentially associating with the ends of the linear viral genome, and that addition of anti-UBF serum to in vitro replication assays markedly reduced viral DNA replication. Regions of UBF important to these observations are also established. Interestingly, sequestering the majority of UBF from the nucleolus did not lead to the ablation of rRNA synthesis or the sequestration of RNA pol I. In infected cells the bulk of RNA synthesis was RNA pol I associated and distinct from the location of most of the detectable UBF. We propose that UBF plays a role in viral DNA replication, further strengthening the role of nucleolar antigens in the adenovirus life cycle.
Collapse
Affiliation(s)
- Fiona J Lawrence
- Division of Virology, Department of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
16
|
Abstract
This review surveys what is known about the structure and function of the subnuclear domains called Cajal bodies (CBs). The major focus is on CBs in mammalian cells but we provide an overview of homologous CB structures in other organisms. We discuss the protein and RNA components of CBs, including factors recently found to associate in a cell cycle-dependent fashion or under specific metabolic or stress conditions. We also consider the dynamic properties of both CBs and their molecular components, based largely on recent data obtained thanks to the advent of improved in vivo detection and imaging methods. We discuss how these data contribute to an understanding of CB functions and highlight major questions that remain to be answered. Finally, we consider the interesting links that have emerged between CBs and alterations in nuclear structure apparent in a range of human pathologies, including cancer and inherited neurodegenerative diseases. We speculate on the relationship between CB function and molecular disease.
Collapse
Affiliation(s)
- Mario Cioce
- IRBM (Merck Research Laboratories Rome), Rome, Italy.
| | | |
Collapse
|
17
|
Gedge LJE, Morrison EE, Blair GE, Walker JH. Nuclear actin is partially associated with Cajal bodies in human cells in culture and relocates to the nuclear periphery after infection of cells by adenovirus 5. Exp Cell Res 2005; 303:229-39. [PMID: 15652338 DOI: 10.1016/j.yexcr.2004.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/11/2004] [Accepted: 06/18/2004] [Indexed: 11/25/2022]
Abstract
Cajal bodies are intra-nuclear structures enriched in proteins involved in transcription and mRNA processing. In this study, immunofluorescence microscopy experiments using a highly specific antibody to actin revealed nuclear actin spots that colocalized in part with p80 coilin-positive Cajal bodies. Actin remained associated with Cajal bodies in cells extracted to reveal the nuclear matrix. Adenovirus infection, which is known to disassemble Cajal bodies, resulted in loss of actin from these structures late in infection. In infected cells, nuclear actin was observed to relocate to structures at the periphery of the nucleus, inside the nuclear envelope. Based on these findings, it is suggested that actin may play an important role in the organization or function of the Cajal body.
Collapse
Affiliation(s)
- L J E Gedge
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
18
|
Silva NP, Christofolini DM, Mortara RA, Andrade LEC. Colocalization of coilin and nucleolar proteins in Cajal body-like structures of micronucleated PtK2 cells. Braz J Med Biol Res 2004; 37:997-1003. [PMID: 15264006 DOI: 10.1590/s0100-879x2004000700008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cajal bodies (CB) are ubiquitous nuclear structures involved in the biogenesis of small nuclear ribonucleoproteins and show narrow association with the nucleolus. To identify possible relationships between CB and the nucleolus, the localization of coilin, a marker of CB, and of a set of nucleolar proteins was investigated in cultured PtK2 cells undergoing micronucleation. Nocodazol-induced micronucleated cells were examined by double indirect immunofluorescence with antibodies against coilin, fibrillarin, NOR-90/hUBF, RNA polymerase I, PM/Scl, and To/Th. Cells were imaged on a BioRad 1024-UV confocal system attached to a Zeiss Axiovert 100 microscope. Since PtK2 cells possess only one nucleolus organizer region, micronucleated cells presented only one or two micronuclei containing nucleolus. By confocal microscopy we showed that in most micronuclei lacking a typical nucleolus a variable number of round structures were stained by antibodies against fibrillarin, NOR-90/hUBF protein, and coilin. These bodies were regarded as CB-like structures and were not stained by anti-PM/Scl and anti-To/Th antibodies. Anti-RNA polymerase I antibodies also reacted with CB-like structures in some micronuclei lacking nucleolus. The demonstration that a set of proteins involved in RNA/RNP biogenesis, namely coilin, fibrillarin, NOR-90/hUBF, and RNA polymerase I gather in CB-like structures present in nucleoli-devoid micronuclei may contribute to shed some light into the understanding of CB function.
Collapse
Affiliation(s)
- N P Silva
- Disciplina de Reumatologia, Departamento de Medicina, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
19
|
Abstract
Adenoviruses are processed and assembled in the nuclei of infected cells and thereby produce significant perturbations to their structure and function. As the complex interactions that occur in the nuclei of uninfected cells are not yet fully understood many of the changes seen on infection have been described mainly in morphological terms. This chapter attempts to place more recent findings into this context and demonstrates that adenoviruses are able to hijack many cellular processes and enzymes to their advantage. In particular, modifications to nuclear PODs and nucleoli have more recently been explored in greater detail.
Collapse
Affiliation(s)
- W C Russell
- BMS Building, University of St Andrews, Fife KY16 9ST, Fife, Scotland, UK.
| | | |
Collapse
|
20
|
Matthews DA. Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm. J Virol 2001; 75:1031-8. [PMID: 11134316 PMCID: PMC113999 DOI: 10.1128/jvi.75.2.1031-1038.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Accepted: 10/21/2000] [Indexed: 11/20/2022] Open
Abstract
Adenovirus infection inhibits synthesis and processing of rRNA and redistributes nucleolar antigens. Adenovirus protein V associates with nucleoli in infected cells. This study delineates regions of protein V independently capable of nucleolar targeting. Also, evidence is presented that protein V has the unique property of relocating nucleolin and B23 to the cytoplasm when transiently expressed on its own in uninfected cells. Point mutation analysis indicates a role for the C terminus of protein V in the redirection of nucleolin and B23 to the cytoplasm. This is the first time an adenovirus protein has been shown to have a direct effect on nucleolar antigens in isolation from viral infection. Moreover, adenovirus protein V is the first protein demonstrated to be capable of redirecting nucleolin and B23 to the cytoplasm.
Collapse
Affiliation(s)
- D A Matthews
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom.
| |
Collapse
|