1
|
Sharma A, Liu X, Yin J, Yu PJ, Qi L, He M, Li KJ, Zheng DQ. Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae. Appl Microbiol Biotechnol 2024; 108:539. [PMID: 39702830 DOI: 10.1007/s00253-024-13382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
The halotolerant yeast Scheffersomyces spartinae, commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S. spartinae named YMxiao from seawater in Zhoushan City, China. Through scanning electron microscopy and flow cytometry, we characterized S. spartinae YMxiao cells as urn-shaped, demonstrating asymmetric division via budding, and possessing a diploid genome. Compared to the model yeast Saccharomyces cerevisiae, S. spartinae YMxiao exhibited greater tolerance to various stressful conditions. Furthermore, S. spartinae YMxiao was capable of utilizing xylose, mannitol, sorbitol, and arabinose as sole carbon sources for growth. We conducted whole-genome sequencing of S. spartinae YMxiao using a combination of Nanopore and Illumina technologies, resulting in a telomere-to-telomere complete genome assembly of 12 Mb. Genome annotation identified 5311 protein-coding genes, 214 tRNA genes, and 236 transposable elements distributed across 8 chromosomes. Comparative genomics between S. spartinae strains YMxiao and ARV011 revealed genomic variations and evolutionary patterns within this species. Notably, certain genes in S. spartinae strains were found to be under strong positive selection. Additionally, we developed a genetic manipulation protocol that successfully enabled gene knockouts in S. spartinae. Our findings not only enhance our understanding of the S. spartinae genome but also provide a foundation for future research into its potential biotechnological applications. KEY POINTS: • The unique phenotypes and genetic characteristics of S. spartinae were disclosed. • Comparative genomics showed vast genetic variations between S. spartinae strains. • Genetic manipulation protocol was established for S. spartinae strain.
Collapse
Affiliation(s)
- Awkash Sharma
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China
| | - Xing Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China
| | - Jun Yin
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China
| | - Pei-Jing Yu
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China
| | - Lei Qi
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China
| | - Min He
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China
| | - Ke-Jing Li
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China.
| | - Dao-Qiong Zheng
- National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
2
|
Grissom JH, Moody SE, Chi RJ. Marker-free genomic editing in Saccharomyces cerevisiae using universal donor templates and multiplexing CRISPR-CAS9. Yeast 2024; 41:568-579. [PMID: 39180232 DOI: 10.1002/yea.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The budding yeast Saccharomyces cerevisiae is an excellent model organism for studying a variety of critical cellular processes. Traditional methods to knock in or -out at specific yeast loci utilize polymerase chain reaction-based techniques, in which marker cassettes with gene-specific homologies are integrated into the genome via homologous recombination. While simple and cost-effective, these methods are limited by marker availability when multiple edits are desired. More recently, CRISPR-Cas9 technology has introduced methods to edit the yeast genome without the need for selectable markers. Although efficient, this method is hindered by additional reagents and lengthy protocols to design and test unique guide RNAs and donor templates for each desired edit. In this study, we have combined these two approaches and have developed a highly efficient economical method to edit the yeast genome marker-free. We have designed two universal donor templates that efficiently repair commonly used selectable markers when targeted by a novel guideRNA-Cas9 designed to promoter regions in Ashbya gossypii found in most integration modules. Furthermore, we find our newly designed guideRNA-Cas9 successfully multiplexes when multiple markers are present. Using these new tools, we have significantly improved the cost and efficiency to generate single or multiple marker-free genetic modifications. In this study, we demonstrate the effectiveness of these new tools by marker-free ablating PRC1, PEP4, and PRB1 vacuolar proteases typically inactivated before many biochemical and membrane-trafficking studies using budding yeast.
Collapse
Affiliation(s)
- J H Grissom
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - S E Moody
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - R J Chi
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
3
|
Dutta S, Smith MD. Detection of Protein-Protein Interactions Utilizing the Split-Ubiquitin Membrane-Based Yeast Two-Hybrid System. Methods Mol Biol 2023; 2690:37-57. [PMID: 37450135 DOI: 10.1007/978-1-0716-3327-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Identifying the interactors of a protein is a key step in understanding its possible cellular function(s). Among the various methods that can be used to study protein-protein interactions (PPIs), the yeast two-hybrid (Y2H) assay is one of the most standardized, sensitive, and cost-effective in vivo methods available. The most commonly used GAL4-based Y2H system utilizes the yeast transcription factor GAL4 to detect interactions between soluble proteins. By virtue of involving a transcription factor, the protein-protein interactions occur in the nucleus. The split-ubiquitin Y2H system offers an alternative to the traditional GAL4-based Y2H system and takes advantage of the reconstitution of split-ubiquitin in the cytosol to identify interactions between two proteins. Moreover, new membranous and soluble interacting partner(s) can be identified by screening a target protein against proteins produced from a cDNA library using this system.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Microbiology and Biotechnology, Sister Nivedita University, Kolkata, West Bengal, India
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
4
|
Brice C, Cubillos FA, Dequin S, Camarasa C, Martínez C. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS One 2018; 13:e0192383. [PMID: 29432462 PMCID: PMC5809068 DOI: 10.1371/journal.pone.0192383] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/20/2018] [Indexed: 11/25/2022] Open
Abstract
Saccharomyces cerevisiae strains are genetically diverse, largely as a result of human efforts to develop strains specifically adapted to various fermentation processes. These adaptive pressures from various ecological niches have generated behavioral differences among these strains, particularly in terms of their nitrogen consumption capacities. In this work, we characterize this phenotype by the specific quantity of nitrogen consumed under oenological fermentation conditions using a new approach. Indeed, unlike previous studies, our experiments were conducted in an environment containing excess nitrogen, eliminating the nitrogen limitation/starvation factor that is generally observed in fermentation processes. Using these conditions, we evaluated differences in the nitrogen consumption capacities for a set of five strains from diverse origins. The strains presented extremely different phenotypes and variations in their capacities to take up nitrogen from a wine fermentation environment. These variations reflect the differences in the nitrogen uptake capacities between wine and non-wine strains. Finally, the strains differed in their ability to adapt to the nitrogen composition of the environment, leading to variations in the cellular stress states, fermentation performances and the activity of the nitrogen sensing signaling pathway.
Collapse
Affiliation(s)
- Claire Brice
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology (MII-SSB), Santiago, Chile
| | - Sylvie Dequin
- UMR SPO: INRA, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Carole Camarasa
- UMR SPO: INRA, Université Montpellier, Montpellier SupAgro, Montpellier, France
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- * E-mail:
| |
Collapse
|
5
|
Protein interaction perturbation profiling at amino-acid resolution. Nat Methods 2017; 14:1213-1221. [PMID: 29039417 DOI: 10.1038/nmeth.4464] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
Abstract
The identification of genomic variants in healthy and diseased individuals continues to rapidly outpace our ability to functionally annotate these variants. Techniques that both systematically assay the functional consequences of nucleotide-resolution variation and can scale to hundreds of genes are urgently required. We designed a sensitive yeast two-hybrid-based 'off switch' for positive selection of interaction-disruptive variants from complex genetic libraries. Combined with massively parallel programmed mutagenesis and a sequencing readout, this method enables systematic profiling of protein-interaction determinants at amino-acid resolution. We defined >1,000 interaction-disrupting amino acid mutations across eight subunits of the BBSome, the major human cilia protein complex associated with the pleiotropic genetic disorder Bardet-Biedl syndrome. These high-resolution interaction-perturbation profiles provide a framework for interpreting patient-derived mutations across the entire protein complex and thus highlight how the impact of disease variation on interactome networks can be systematically assessed.
Collapse
|
6
|
Eaf1 Links the NuA4 Histone Acetyltransferase Complex to Htz1 Incorporation and Regulation of Purine Biosynthesis. EUKARYOTIC CELL 2015; 14:535-44. [PMID: 25841019 DOI: 10.1128/ec.00004-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022]
Abstract
Proper modulation of promoter chromatin architecture is crucial for gene regulation in order to precisely and efficiently orchestrate various cellular activities. Previous studies have identified the stimulatory effect of the histone-modifying complex NuA4 on the incorporation of the histone variant H2A.Z (Htz1) at the PHO5 promoter (A. Auger, L. Galarneau, M. Altaf, A. Nourani, Y. Doyon, R. T. Utley, D. Cronier, S. Allard, and J. Côté, Mol Cell Biol 28:2257-2270, 2008, http://dx.doi.org/10.1128/MCB.01755-07). In vitro studies with a reconstituted system also indicated an intriguing cross talk between NuA4 and the H2A.Z-loading complex, SWR-C (M. Altaf, A. Auger, J. Monnet-Saksouk, J. Brodeur, S. Piquet, M. Cramet, N. Bouchard, N. Lacoste, R. T. Utley, L. Gaudreau, J. Côté, J Biol Chem 285:15966-15977, 2010, http://dx.doi.org/10.1074/jbc.M110.117069). In this work, we investigated the role of the NuA4 scaffold subunit Eaf1 in global gene expression and genome-wide incorporation of Htz1. We found that loss of Eaf1 affects Htz1 levels mostly at the promoters that are normally highly enriched in the histone variant. Analysis of eaf1 mutant cells by expression array unveiled a relationship between NuA4 and the gene network implicated in the purine biosynthesis pathway, as EAF1 deletion cripples induction of several ADE genes. NuA4 directly interacts with Bas1 activation domain, a key transcription factor of adenine genes. Chromatin immunoprecipitation (ChIP) experiments demonstrate that nucleosomes on the inactive ADE17 promoter are acetylated already by NuA4 and enriched in Htz1. Upon derepression, these poised nucleosomes respond rapidly to activate ADE gene expression in a mechanism likely reminiscent of the PHO5 promoter, leading to nucleosome disassembly. These detailed molecular events depict a specific case of cross talk between NuA4-dependent acetylation and incorporation of histone variant Htz1, presetting the chromatin structure over ADE promoters for subsequent chromatin remodeling and activated transcription.
Collapse
|
7
|
Steiner WW, Steiner EM. Fission yeast hotspot sequence motifs are also active in budding yeast. PLoS One 2012; 7:e53090. [PMID: 23300865 PMCID: PMC3534124 DOI: 10.1371/journal.pone.0053090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/27/2012] [Indexed: 01/24/2023] Open
Abstract
In most organisms, including humans, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. There has been substantial progress recently in elucidating the factors determining the location of meiotic recombination hotspots, and it is becoming clear that simple sequence motifs play a significant role. In S. pombe, there are at least five unique sequence motifs that have been shown to produce hotspots of recombination, and it is likely that there are more. In S. cerevisiae, simple sequence motifs have also been shown to produce hotspots or show significant correlations with hotspots. Some of the hotspot motifs in both yeasts are known or suspected to bind transcription factors (TFs), which are required for the activity of those hotspots. Here we show that four of the five hotspot motifs identified in S. pombe also create hotspots in the distantly related budding yeast S. cerevisiae. For one of these hotspots, M26 (also called CRE), we identify TFs, Cst6 and Sko1, that activate and inhibit the hotspot, respectively. In addition, two of the hotspot motifs show significant correlations with naturally occurring hotspots. The conservation of these hotspots between the distantly related fission and budding yeasts suggests that these sequence motifs, and others yet to be discovered, may function widely as hotspots in many diverse organisms.
Collapse
Affiliation(s)
- Walter W. Steiner
- Department of Biology, Niagara University, Lewiston, New York, United States of America
- * E-mail:
| | - Estelle M. Steiner
- Science and Technology Division, Niagara County Community College, Sanborn, New York, United States of America
| |
Collapse
|
8
|
Koehler RN, Rachfall N, Rolfes RJ. Activation of the ADE genes requires the chromatin remodeling complexes SAGA and SWI/SNF. EUKARYOTIC CELL 2007; 6:1474-85. [PMID: 17573544 PMCID: PMC1951130 DOI: 10.1128/ec.00068-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The activation of the ADE regulon genes requires the pair of transcription factors Bas1 and Pho2. In a genome-wide screen for additional regulators of the pathway, strains with mutations in multiple subunits of the chromatin remodeling complexes SAGA and SWI/SNF were uncovered. These mutants exhibited decreased expression of an ADE5,7-lacZ reporter and native ADE compared to the wild-type strains, but the expression of the BAS1 and PHO2 genes was not substantially decreased. An unregulated Bas1-Pho2 fusion protein depended upon SAGA and SWI/SNF activity to promote transcription of a reporter. A significant but low-level association of Gcn5-myc and Snf2-myc with the ADE5,7 promoter was independent of adenine growth conditions and independent of the presence of the activator proteins Bas1 and Pho2. However, the increase in occupancy of Bas1 and Pho2 at ADE5,7 depended on both SAGA and SWI/SNF. The loss of catalytic activity of both SAGA and SWI/SNF complexes in the gcn5Delta snf2Delta double mutant was severely detrimental to ADE-lacZ reporter expression and native ADE gene expression, indicating complementary roles for these complexes. We conclude that Bas1 and Pho2 do not recruit the SAGA and SWI/SNF complexes to the ADE5,7 promoter but that the remodeling complexes are necessary to increase the binding of Bas1 and Pho2 in response to the adenine regulatory signal. Our data support the model that the SAGA and SWI/SNF complexes engage in global surveillance that is necessary for the specific response by Bas1 and Pho2.
Collapse
Affiliation(s)
- Rebecca N Koehler
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA
| | | | | |
Collapse
|
9
|
Abstract
Purine nucleotides are critically important for the normal functioning of cells due to their myriad of activities. It is important for cells to maintain a balance in the pool sizes of the adenine-containing and guanine-containing nucleotides, which occurs by a combination of de novo synthesis and salvage pathways that interconvert the purine nucleotides. This review describes the mechanism for regulation of the biosynthetic genes in the yeast Saccharomyces cerevisiae and compares this mechanism with that described in several microbial species.
Collapse
Affiliation(s)
- R J Rolfes
- Department of Biology, Reiss Science Building 406, Georgetown University, Washington, DC 20057-1229, USA.
| |
Collapse
|
10
|
Mateos L, Jiménez A, Revuelta JL, Santos MA. Purine biosynthesis, riboflavin production, and trophic-phase span are controlled by a Myb-related transcription factor in the fungus Ashbya gossypii. Appl Environ Microbiol 2006; 72:5052-60. [PMID: 16820505 PMCID: PMC1489300 DOI: 10.1128/aem.00424-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/08/2006] [Indexed: 11/20/2022] Open
Abstract
Ashbya gossypii is a natural riboflavin overproducer used in the industrial production of the vitamin. We have isolated an insertional mutant exhibiting higher levels of riboflavin production than the wild type. DNA analysis of the targeted locus in the mutant strain revealed that a syntenic homolog of the Saccharomyces cerevisiae BAS1 gene, a member of the Myb family of transcription factors, was inactivated. Directed gene disruption of AgBAS1 confirmed the phenotype observed for the insertional mutant, and the Deltabas1 mutant also showed auxotrophy for adenine and several growth defects, such as a delay in the germination of the spores and an abnormally prolonged trophic phase. Additionally, we demonstrate that the DNA-binding domain of AgBas1p is able to bind to the Bas1-binding motifs in the AgADE4 promoter; we also show a clear nuclear localization of a green fluorescent protein-Bas1 fusion protein. Real-time quantitative PCR analyses comparing the wild type and the Deltabas1 mutant revealed that AgBAS1 was responsible for the adenine-mediated regulation of the purine and glycine pathways, since the transcription of the ADE4 and SHM2 genes was virtually abolished in the Deltabas1 mutant. Furthermore, the transcription of ADE4 and SHM2 in the Deltabas1 mutant did not diminish during the transition from the trophic to the productive phase did not diminish, in contrast to what occurred in the wild-type strain. A C-terminal deletion in the AgBAS1 gene, comprising a hypothetical regulatory domain, caused constitutive activation of the purine and glycine pathways, enhanced riboflavin overproduction, and prolonged the trophic phase. Taking these results together, we propose that in A. gossypii, AgBAS1 is an important transcription factor that is involved in the regulation of different physiological processes, such as purine and glycine biosynthesis, riboflavin overproduction, and growth.
Collapse
Affiliation(s)
- Laura Mateos
- Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
11
|
Som I, Mitsch RN, Urbanowski JL, Rolfes RJ. DNA-bound Bas1 recruits Pho2 to activate ADE genes in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:1725-35. [PMID: 16215179 PMCID: PMC1265903 DOI: 10.1128/ec.4.10.1725-1735.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the genes in the ADE regulon of Saccharomyces cerevisiae is repressed by the presence of purine bases in the extracellular medium and derepressed when cells are grown in the absence of purines. Derepression requires the transcriptional activators Bas1 and Pho2, as well as the biosynthetic intermediates 5'-phosphoribosyl-4-succinocarboxamide-5-aminoimidazole (SAICAR) and 5'-phosphoribosyl-4-carboxamide- 5-aminoimidazole (AICAR). In this study, we investigated if nuclear localization and binding to promoter DNA by the activators are regulated by purines. Using indirect immunofluorescence, we found that Bas1 is localized to the nucleus under both repressing and derepressing conditions. Importantly, we detected Bas1 bound to promoter DNA under both conditions using chromatin immunoprecipitation assays at several ADE promoters (ADE1, ADE2, ADE4, and ADE5,7) and HIS4. We analyzed the binding of Bas1 to wild-type and mutant sequences of the ADE5,7 promoters in vivo, and found that Bas1 binds independently to each of its two binding sites. Pho2 was not required for the association of Bas1 with chromosomal DNA, but it was required for an increase in Bas1-immunoprecipitated DNA. The presence of Pho2 at promoters was dependent on Bas1 and occurred only under derepressing conditions when the ADE genes are transcribed at elevated levels. We propose a model for regulation of the ADE genes in which DNA-bound Bas1 is inactive due to masking of its activation domain and Pho2 binds poorly to promoters when cells have sufficient purine nucleotides. Upon limitation for purines, the SAICAR/AICAR regulatory signal is transmitted to the nucleus to increase Bas1 and Pho2 interaction, recruiting Pho2 to promoters and freeing the activation domains for transactivation.
Collapse
Affiliation(s)
- Indrani Som
- Department of Biology, Reiss Science Building 406, Georgetown University, Washington, DC 20057-1229, USA
| | | | | | | |
Collapse
|
12
|
Pries R, Bömeke K, Irniger S, Grundmann O, Braus GH. Amino acid-dependent Gcn4p stability regulation occurs exclusively in the yeast nucleus. EUKARYOTIC CELL 2002; 1:663-72. [PMID: 12455686 PMCID: PMC126753 DOI: 10.1128/ec.1.5.663-672.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The c-Jun-like transcriptional activator Gcn4p controls biosynthesis of translational precursors in the yeast Saccharomyces cerevisiae. Protein stability is dependent on amino acid limitation and cis signals within Gcn4p which are recognized by cyclin-dependent protein kinases, including Pho85p. The Gcn4p population within unstarved yeast consists of a small relatively stable cytoplasmic fraction and a larger less stable nuclear fraction. Gcn4p contains two nuclear localization signals (NLS) which function independently of the presence or absence of amino acids. Expression of NLS-truncated Gcn4p results in an increased cytoplasmic fraction and an overall stabilization of the protein. The same effect is achieved for the entire Gcn4p in a yrb1 yeast mutant strain impaired in the nuclear import machinery. In the presence of amino acids, controlled destabilization of Gcn4p is triggered by the phosphorylation activity of Pho85p. A pho85delta mutation stabilizes Gcn4p without affecting nuclear import. Pho85p is localized within the nucleus in the presence or absence of amino acids. Therefore, there is a strict spatial separation of protein synthesis and degradation of Gcn4p in yeast. Control of protein stabilization which antagonizes Gcn4p function is restricted to the nucleus.
Collapse
Affiliation(s)
- Ralph Pries
- Institute of Microbiology and Genetics, Georg-August-University, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
13
|
Hiraoka M, Watanabe K, Umezu K, Maki H. Spontaneous loss of heterozygosity in diploid Saccharomyces cerevisiae cells. Genetics 2000; 156:1531-48. [PMID: 11102355 PMCID: PMC1461370 DOI: 10.1093/genetics/156.4.1531] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To obtain a broad perspective of the events leading to spontaneous loss of heterozygosity (LOH), we have characterized the genetic alterations that functionally inactivated the URA3 marker hemizygously or heterozygously situated either on chromosome III or chromosome V in diploid Saccharomyces cerevisiae cells. Analysis of chromosome structure in a large number of LOH clones by pulsed-field gel electrophoresis and PCR showed that chromosome loss, allelic recombination, and chromosome aberration were the major classes of genetic alterations leading to LOH. The frequencies of chromosome loss and chromosome aberration were significantly affected when the marker was located in different chromosomes, suggesting that chromosome-specific elements may affect the processes that led to these alterations. Aberrant-sized chromosomes were detected readily in approximately 8% of LOH events when the URA3 marker was placed in chromosome III. Molecular mechanisms underlying the chromosome aberrations were further investigated by studying the fate of two other genetic markers on chromosome III. Chromosome aberration caused by intrachromosomal rearrangements was predominantly due to a deletion between the MAT and HMR loci that occurred at a frequency of 3.1 x 10(-6). Another type of chromosome aberration, which occurred at a frequency slightly higher than that of the intrachromosomal deletion, appeared to be caused by interchromosomal rearrangement, including unequal crossing over between homologous chromatids and translocation with another chromosome.
Collapse
Affiliation(s)
- M Hiraoka
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
14
|
Park Y, Lustig AJ. Telomere structure regulates the heritability of repressed subtelomeric chromatin in Saccharomyces cerevisiae. Genetics 2000; 154:587-98. [PMID: 10655213 PMCID: PMC1460967 DOI: 10.1093/genetics/154.2.587] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomeres, the protein-DNA structures present at the termini of linear chromosomes, are capable of conferring a reversible repression of Pol II- and Pol III-transcribed genes positioned in adjacent subtelomeric regions. This phenomenon, termed telomeric silencing, is likely to be the consequence of a more global telomere position effect at the level of chromatin structure. To understand the role of telomere structure in this position effect, we have developed an assay to distinguish between the heritability of transcriptionally repressed and derepressed states in yeast. We have previously demonstrated that an elongated telomeric tract leads to hyperrepression of telomere-adjacent genes. We show here that the predominant effect of elongated telomeres is to increase the inheritance of the repressed state in cis. Interestingly, the presence of elongated telomeres overcomes the partial requirement of yCAF-1 in silencing. We propose that the formation of a specific telomeric structure is necessary for the heritability of repressed subtelomeric chromatin.
Collapse
Affiliation(s)
- Y Park
- Department of Biochemistry, Tulane University Medical Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
15
|
Balmelli-Gallacchi P, Schoumacher F, Liu JW, Eppenberger U, Mueller H, Picard D. A yeast-based bioassay for the determination of functional and non-functional estrogen receptors. Nucleic Acids Res 1999; 27:1875-81. [PMID: 10101196 PMCID: PMC148396 DOI: 10.1093/nar/27.8.1875] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The response to endocrine therapy of breast cancer is not entirely predictable from hormone receptor status alone since some point mutated or splicing variants of the estrogen receptor (ER) show altered biological activities. In order to characterize the activities of all forms of ER in a heterogeneous breast tumor, a functional assay in Saccharomyces cerevisiae was developed. Total RNA isolated from breast cancer cells and one breast cancer specimen was reverse transcribed and the ER cDNA was amplified by PCR. The products were then cloned into an expression vector by in vivo homologous recombination in yeast. The yeast strain carries a reporter gene ( ADE2 ) coupled to an estrogen response element. Activation of the reporter by ER yielded white colonies whereas lack of ER activity produced red colonies. This permitted the testing for functionality of individual ER molecules and subsequent analysis by rescuing of the ER expression plasmids and complete DNA sequencing. This simple visual test allows discrimination between wild-type ER, constitutively active ER and inactive ER.
Collapse
Affiliation(s)
- P Balmelli-Gallacchi
- Biochemistry/Endocrinology and Biomolecular Tumordiagnostics, Department of Research, University Women's Clinic Basel and Stiftung Tumorbank Basel, CH-4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Denis V, Boucherie H, Monribot C, Daignan-Fornier B. Role of the myb-like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol Microbiol 1998; 30:557-66. [PMID: 9822821 DOI: 10.1046/j.1365-2958.1998.01087.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of extracellular adenine and the role of the transcriptional activator Bas1p on expression of the yeast genome was assessed by two-dimensional (2D) analysis of the yeast proteome. These data combined with LacZ fusions and northern blot analysis allow us to show that synthesis of enzymes for all 10 steps involved in purine de novo synthesis is repressed in the presence of adenine and requires BAS1 and BAS2 for optimal expression. We also show that expression of ADE12 and ADE13, the two genes required for synthesis of AMP from inosine 5'monophosphate (IMP), is co-regulated with the de novo pathway genes. The same combined approach, used to study histidine biosynthesis gene expression, showed that HIS1 and HIS4 expression is co-regulated with purine biosynthesis genes whereas HIS2, HIS3, HIS5 and HIS6 expression is not. This work, together with previously published data, gives the first comprehensive overview of the regulation of purine and histidine pathways in a eukaryotic organism. Finally, the expression of two pyrimidine biosynthesis genes URA1 and URA3 was found to be severely affected by bas1 and bas2 mutations in the absence of adenine, establishing a regulatory link between the two nucleotide biosynthesis pathways.
Collapse
Affiliation(s)
- V Denis
- Institut de Biochimie et Génétique Cellulaires, CNRS UPR9026, 1, rue Camille Saint-Saëns 33077 Bordeaux Cedex France
| | | | | | | |
Collapse
|
17
|
Schmuke JJ, Davisson VJ, Bonar SL, Gheesling Mullis K, Dotson SB. Sequence analysis of the Candida albicans ADE2 gene and physical separation of the two functionally distinct domains of the phosphoribosylaminoimidazole carboxylase. Yeast 1997; 13:769-76. [PMID: 9219341 DOI: 10.1002/(sici)1097-0061(19970630)13:8<769::aid-yea133>3.0.co;2-p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An ADE2 genomic clone from the pathogenic fungus, Candida albicans, was isolated by complementation of an Escherichia coli purK mutant and the gene was analysed by DNA sequencing. A 1707 bp open reading frame was identified encoding a polypeptide of 569 amino acids with significant homology to all the known yeast ADE2 genes. Sequence homology to both the E. coli purE and purK genes suggests that the C. albicans ADE2 gene is the result of an evolutionary fusion. The amino-acid sequence comparison showed that the N-terminal domain of the Ade2 protein has a 52.5% identity to purK, whereas the C-terminal domain has a distinct 64.3% identity to purE. In order to establish the functional relationship of these two regions, deletion mutants of the Ade2 protein were prepared by recombinant expression of the functional domains, which were tested by complementation of their respective E. coli auxotrophs.
Collapse
Affiliation(s)
- J J Schmuke
- Searle Research and Development, A Unit of Monsanto Company, Saint Louis, Missouri 63167, USA
| | | | | | | | | |
Collapse
|
18
|
Rolfes RJ, Zhang F, Hinnebusch AG. The transcriptional activators BAS1, BAS2, and ABF1 bind positive regulatory sites as the critical elements for adenine regulation of ADE5,7. J Biol Chem 1997; 272:13343-54. [PMID: 9148957 DOI: 10.1074/jbc.272.20.13343] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adenine repression of the purine nucleotide biosynthetic genes in Saccharomyces cerevisiae involves down-regulation of the activator protein BAS1 or BAS2 by an unknown mechanism. To determine the minimal cis-acting requirements for adenine regulation, hybrid promoter constructs were made between ADE5,7 promoter fragments and a CYC1-lacZ reporter. A 139-nucleotide fragment containing two BAS1 binding sites was sufficient to confer adenine regulation on the CYC1-lacZ reporter. Analysis of deletion and substitution mutations led to the conclusion that the proximal BAS1 binding site is both necessary and sufficient for regulation, whereas the distal site augments the function of the proximal site. By performing saturation mutagenesis, we found two essential regions that flank the proximal site. An ABF1 consensus sequence is within one of these regions, and mutations that impaired in vitro ABF1 binding impaired promoter activity in vivo. A second region is AT-rich and appears to bind BAS2. No substitution mutations led to high level constitutive promoter activity as would be expected from removal of an upstream repression sequence. Our results indicate that ABF1, BAS1, and BAS2 are required for ADE5,7 promoter function and that adenine repression most likely involves activator modification or a negative regulator that does not itself bind DNA.
Collapse
Affiliation(s)
- R J Rolfes
- Department of Biology, Georgetown University, Washington, D. C. 20057, USA.
| | | | | |
Collapse
|
19
|
Gourdon P, Janatova I, Meilhoc E, Klein RD, Costaglioli P, Masson JM. Sequence analysis of the ADE2 gene coding for phosphoribosylaminoimidazole carboxylase in Schwanniomyces occidentalis. Yeast 1995; 11:1289-93. [PMID: 8553700 DOI: 10.1002/yea.320111309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have determined the nucleotide sequence of a 3.3 kb fragment containing the gene (ADE2) encoding phosphoribosylaminoimidazole carboxylase (AIRC) from the yeast Schwanniomyces occidentalis. Translation of a 1671 bp open reading frame predicts a protein of 557 amino acids which has significant homology to AIRC from Saccharomyces cerevisiae and Schizosaccharomyces pombe. The 5' untranslated region of the S. occidentalis gene contains a sequence corresponding to the consensus binding site of the S. cerevisiae transcription regulatory proteins GCN4, BAS1 and BAS2.
Collapse
Affiliation(s)
- P Gourdon
- Institut National des Sciences Appliquées, CNRS, Toulouse, France
| | | | | | | | | | | |
Collapse
|