1
|
Luchetti A, Castellani LG, Toscani AM, Lagares A, Del Papa MF, Torres Tejerizo G, Pistorio M. Characterization of an accessory plasmid of Sinorhizobium meliloti and its two replication-modules. PLoS One 2023; 18:e0285505. [PMID: 37200389 PMCID: PMC10194956 DOI: 10.1371/journal.pone.0285505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Rhizobia are Gram-negative bacteria known for their ability to fix atmospheric N2 in symbiosis with leguminous plants. Current evidence shows that rhizobia carry in most cases a variable number of plasmids, containing genes necessary for symbiosis or free-living, a common feature being the presence of several plasmid replicons within the same strain. For many years, we have been studying the mobilization properties of pSmeLPU88b from the strain Sinorhizobium meliloti LPU88, an isolate from Argentina. To advance in the characterization of pSmeLPU88b plasmid, the full sequence was obtained. pSmeLPU88b is 35.9 kb in size, had an average GC % of 58.6 and 31 CDS. Two replication modules were identified in silico: one belonging to the repABC type, and the other to the repC. The replication modules presented high DNA identity to the replication modules from plasmid pMBA9a present in an S. meliloti isolate from Canada. In addition, three CDS presenting identity with recombinases and with toxin-antitoxin systems were found downstream of the repABC system. It is noteworthy that these CDS present the same genetic structure in pSmeLPU88b and in other rhizobial plasmids. Moreover, in all cases they are found downstream of the repABC operon. By cloning each replication system in suicide plasmids, we demonstrated that each of them can support plasmid replication in the S. meliloti genetic background, but with different stability behavior. Interestingly, while incompatibility analysis of the cloned rep systems results in the loss of the parental module, both obtained plasmids can coexist together.
Collapse
Affiliation(s)
- Abril Luchetti
- Proteome and Metabolome Research, Faculty of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucas G. Castellani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrés Martin Toscani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Antonio Lagares
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano Pistorio
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
2
|
Bañuelos-Vazquez LA, Castellani LG, Luchetti A, Romero D, Torres Tejerizo GA, Brom S. Role of plant compounds in the modulation of the conjugative transfer of pRet42a. PLoS One 2020; 15:e0238218. [PMID: 32845909 PMCID: PMC7449395 DOI: 10.1371/journal.pone.0238218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023] Open
Abstract
One of the most studied mechanisms involved in bacterial evolution and diversification is conjugative transfer (CT) of plasmids. Plasmids able to transfer by CT often encode beneficial traits for bacterial survival under specific environmental conditions. Rhizobium etli CFN42 is a Gram-negative bacterium of agricultural relevance due to its symbiotic association with Phaseolus vulgaris through the formation of Nitrogen-fixing nodules. The genome of R. etli CFN42 consists of one chromosome and six large plasmids. Among these, pRet42a has been identified as a conjugative plasmid. The expression of the transfer genes is regulated by a quorum sensing (QS) system that includes a traI gene, which encodes an acyl-homoserine lactone (AHL) synthase and two transcriptional regulators (TraR and CinR). Recently, we have shown that pRet42a can perform CT on the root surface and inside nodules. The aim of this work was to determine the role of plant-related compounds in the CT of pRet42a. We found that bean root exudates or root and nodule extracts induce the CT of pRet42a in the plant rhizosphere. One possibility is that these compounds are used as nutrients, allowing the bacteria to increase their growth rate and reach the population density leading to the activation of the QS system in a shorter time. We tested if P. vulgaris compounds could substitute the bacterial AHL synthesized by TraI, to activate the conjugation machinery. The results showed that the transfer of pRet42a in the presence of the plant is dependent on the bacterial QS system, which cannot be substituted by plant compounds. Additionally, individual compounds of the plant exudates were evaluated; among these, some increased and others decreased the CT. With these results, we suggest that the plant could participate at different levels to modulate the CT, and that some compounds could be activating genes in the conjugation machinery.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lucas G. Castellani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gonzalo A. Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail: (SB); (GATT)
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (SB); (GATT)
| |
Collapse
|
3
|
Castellani LG, Nilsson JF, Wibberg D, Schlüter A, Pühler A, Brom S, Pistorio M, Torres Tejerizo G. Insight into the structure, function and conjugative transfer of pLPU83a, an accessory plasmid of Rhizobium favelukesii LPU83. Plasmid 2019; 103:9-16. [DOI: 10.1016/j.plasmid.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
|
4
|
Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Appl Microbiol Biotechnol 2018; 102:7963-7979. [PMID: 29984394 DOI: 10.1007/s00253-018-9189-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1β plasmid pBAM1. Information about the genes and degradation steps involved in 2,6-DCBA metabolism in MSH1 or any other organism is currently lacking. Here, we show that the genes for 2,6-DCBA degradation in strain MSH1 reside on a second catabolic plasmid in MSH1, designated as pBAM2. The complete sequence of pBAM2 was determined revealing that it is a 53.9 kb repABC family plasmid. The 2,6-DCBA catabolic genes on pBAM2 are organized in two main clusters bordered by IS elements and integrase genes and encode putative functions like Rieske mono-/dioxygenase, meta-cleavage dioxygenase, and reductive dehalogenases. The putative mono-oxygenase encoded by the bbdD gene was shown to convert 2,6-DCBA to 3-hydroxy-2,6-dichlorobenzoate (3-OH-2,6-DCBA). 3-OH-DCBA was degraded by wild-type MSH1 and not by a pBAM2-free MSH1 variant indicating that it is a likely intermediate in the pBAM2-encoded DCBA catabolic pathway. Based on the activity of BbdD and the putative functions of the other catabolic genes on pBAM2, a metabolic pathway for BAM/2,6-DCBA in strain MSH1 was suggested.
Collapse
|
5
|
|
6
|
Chirak ER, Kopat’ VV, Kimeklis AK, Safronova VI, Belimov AA, Chirak EL, Tupikin AE, Andronov EE, Provorov NA. Structural and functional organization of the plasmid regulons of Rhizobium leguminosarum symbiotic genes. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716060072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Reyes-González A, Talbi C, Rodríguez S, Rivera P, Zamorano-Sánchez D, Girard L. Expanding the regulatory network that controls nitrogen fixation in Sinorhizobium meliloti: elucidating the role of the two-component system hFixL-FxkR. MICROBIOLOGY-SGM 2016; 162:979-988. [PMID: 27010660 DOI: 10.1099/mic.0.000284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Sinorhizobium meliloti, nitrogen fixation is regulated in response to oxygen concentration through the FixL-FixJ two-component system (TCS). Besides this conserved TCS, the field isolate SM11 also encodes the hFixL-FxkR TCS, which is responsible for the microoxic response in Rhizobium etli. Through genetic and physiological assays, we evaluated the role of the hFixL-FxkR TCS in S. meliloti SM11. Our results revealed that this regulatory system activates the expression of a fixKf orthologue (fixKa), in response to low oxygen concentration. Null mutations in either hFixL or FxkR promote upregulation of fixK1, a direct target of FixJ. Furthermore, the absence of this TCS translates into higher nitrogen fixation values as well as higher expression of fixN1 in nodules. Individual mutations in each of the fixK-like regulators encoded in the S. meliloti SM11 genome do not completely restrict fixN1 or fixN2 expression, pointing towards redundancy among these regulators. Both copies of fixN are necessary to achieve optimal levels of nitrogen fixation. This work provides evidence that the hFixL-FxkR TCS is activated in response to low oxygen concentration in S. meliloti SM11 and that it negatively regulates the expression of fixK1, fixN1 and nitrogen fixation.
Collapse
Affiliation(s)
- Alma Reyes-González
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Instituto de Investigaciones Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Chouhra Talbi
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana Rodríguez
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Rivera
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - David Zamorano-Sánchez
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, USA
| | - Lourdes Girard
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
The Plasmid Mobilome of the Model Plant-Symbiont Sinorhizobium meliloti: Coming up with New Questions and Answers. Microbiol Spectr 2016; 2. [PMID: 26104371 DOI: 10.1128/microbiolspec.plas-0005-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are Gram-negative Alpha- and Betaproteobacteria living in the underground which have the ability to associate with legumes for the establishment of nitrogen-fixing symbioses. Sinorhizobium meliloti in particular-the symbiont of Medicago, Melilotus, and Trigonella spp.-has for the past decades served as a model organism for investigating, at the molecular level, the biology, biochemistry, and genetics of a free-living and symbiotic soil bacterium of agricultural relevance. To date, the genomes of seven different S. meliloti strains have been fully sequenced and annotated, and several other draft genomic sequences are also available. The vast amount of plasmid DNA that S. meliloti frequently bears (up to 45% of its total genome), the conjugative ability of some of those plasmids, and the extent of the plasmid diversity has provided researchers with an extraordinary system to investigate functional and structural plasmid molecular biology within the evolutionary context surrounding a plant-associated model bacterium. Current evidence indicates that the plasmid mobilome in S. meliloti is composed of replicons varying greatly in size and having diverse conjugative systems and properties along with different evolutionary stabilities and biological roles. While plasmids carrying symbiotic functions (pSyms) are known to have high structural stability (approaching that of chromosomes), the remaining plasmid mobilome (referred to as the non-pSym, functionally cryptic, or accessory compartment) has been shown to possess remarkable diversity and to be highly active in conjugation. In light of the modern genomic and current biochemical data on the plasmids of S. meliloti, the current article revises their main structural components, their transfer and regulatory mechanisms, and their potential as vehicles in shaping the evolution of the rhizobial genome.
Collapse
|
9
|
Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 2015; 38:287-91. [DOI: 10.1016/j.syapm.2014.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/21/2022]
|
10
|
Broaders E, Gahan CG, Marchesi JR. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 2013; 4:271-80. [PMID: 23651955 PMCID: PMC3744512 DOI: 10.4161/gmic.24627] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human intestine is an important location for horizontal gene transfer (HGT) due to the presence of a densely populated community of microorganisms which are essential to the health of the human superorganism. HGT in this niche has the potential to influence the evolution of members of this microbial community and to mediate the spread of antibiotic resistance genes from commensal organisms to potential pathogens. Recent culture-independent techniques and metagenomic studies have provided an insight into the distribution of mobile genetic elements (MGEs) and the extent of HGT in the human gastrointestinal tract. In this mini-review, we explore the current knowledge of mobile genetic elements in the gastrointestinal tract, the progress of research into the distribution of antibiotic resistance genes in the gut and the potential role of MGEs in the spread of antibiotic resistance. In the face of reduced treatment options for many clinical infections, understanding environmental and commensal antibiotic resistance and spread is critical to the future development of meaningful and long lasting anti-microbial therapies.
Collapse
Affiliation(s)
- Eileen Broaders
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland
| | - Cormac G.M. Gahan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland,School of Pharmacy; University College Cork; Cork, Ireland
| | - Julian R. Marchesi
- School of Biosciences; Cardiff University; Cardiff, United Kingdom,Correspondence to: Julian R. Marchesi,
| |
Collapse
|
11
|
Degefu T, Wolde-meskel E, Frostegård Å. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia. Syst Appl Microbiol 2013; 36:272-80. [PMID: 23643092 DOI: 10.1016/j.syapm.2013.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/16/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
The taxonomic diversity of thirty-seven Rhizobium strains, isolated from nodules of leguminous trees and herbs growing in Ethiopia, was studied using multilocus sequence analyses (MLSA) of six core and two symbiosis-related genes. Phylogenetic analysis based on the 16S rRNA gene grouped them into five clusters related to nine Rhizobium reference species (99-100% sequence similarity). In addition, two test strains occupied their own independent branches on the phylogenetic tree (AC86a2 along with R. tibeticum; 99.1% similarity and AC100b along with R. multihospitium; 99.5% similarity). One strain from Milletia ferruginea was closely related (>99%) to the genus Shinella, further corroborating earlier findings that nitrogen-fixing bacteria are distributed among phylogenetically unrelated taxa. Sequence analyses of five housekeeping genes also separated the strains into five well-supported clusters, three of which grouped with previously studied Ethiopian common bean rhizobia. Three of the five clusters could potentially be described into new species. Based on the nifH genes, most of the test strains from crop legumes were closely related to several strains of Ethiopian common bean rhizobia and other symbionts of bean plants (R. etli and R. gallicum sv. phaseoli). The grouping of the test strains based on the symbiosis-related genes was not in agreement with the housekeeping genes, signifying differences in their evolutionary history. Our earlier studies revealing a large diversity of Mesorhizobium and Ensifer microsymbionts isolated from Ethiopian legumes, together with the results from the present analysis of Rhizobium strains, suggest that this region might be a potential hotspot for rhizobial biodiversity.
Collapse
Affiliation(s)
- Tulu Degefu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| | | | | |
Collapse
|
12
|
López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramírez MA, Rosenblueth M, Martínez-Romero J, Martínez-Romero E. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 2012; 68:149-58. [PMID: 22813963 DOI: 10.1016/j.plasmid.2012.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
In bacteria, niche adaptation may be determined by mobile extrachromosomal elements. A remarkable characteristic of Rhizobium and Ensifer (Sinorhizobium) but also of Agrobacterium species is that almost half of the genome is contained in several large extrachromosomal replicons (ERs). They encode a plethora of functions, some of them required for bacterial survival, niche adaptation, plasmid transfer or stability. In spite of this, plasmid loss is common in rhizobia upon subculturing. Rhizobial gene-expression studies in plant rhizospheres with novel results from transcriptomic analysis of Rhizobium phaseoli in maize and Phaseolus vulgaris roots highlight the role of ERs in natural niches and allowed the identification of common extrachromosomal genes expressed in association with plant rootlets and the replicons involved.
Collapse
|
13
|
First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group. J Biotechnol 2011; 155:3-10. [DOI: 10.1016/j.jbiotec.2011.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 01/13/2011] [Indexed: 11/20/2022]
|
14
|
Torres Tejerizo G, Florencia Del Papa M, de los Ángeles Giusti M, Draghi W, Lozano M, Lagares A, Pistorio M. Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83. Plasmid 2010; 64:177-85. [DOI: 10.1016/j.plasmid.2010.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/05/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
|
15
|
Pistorio M, Giusti MA, Del Papa MF, Draghi WO, Lozano MJ, Torres Tejerizo G, Lagares A. Conjugal properties of the Sinorhizobium meliloti plasmid mobilome. FEMS Microbiol Ecol 2008; 65:372-82. [DOI: 10.1111/j.1574-6941.2008.00509.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Kuhn S, Stiens M, Pühler A, Schlüter A. Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S. meliloti strains. FEMS Microbiol Ecol 2008; 63:118-31. [DOI: 10.1111/j.1574-6941.2007.00399.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Pérez-Mendoza D, Lucas M, Muñoz S, Herrera-Cervera JA, Olivares J, de la Cruz F, Sanjuán J. The relaxase of the Rhizobium etli symbiotic plasmid shows nic site cis-acting preference. J Bacteriol 2006; 188:7488-99. [PMID: 16916896 PMCID: PMC1636270 DOI: 10.1128/jb.00701-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical characterization of TraA, the relaxase of symbiotic plasmid pRetCFN42d from Rhizobium etli, is described. After purifying the relaxase domain (N265TraA), we demonstrated nic binding and cleavage activity in vitro and thus characterized for the first time the nick site (nic) of a plasmid in the family Rhizobiaceae. We studied the range of N265TraA relaxase specificity in vitro by testing different oligonucleotides in binding and nicking assays. In addition, the ability of pRetCFN42d to mobilize different Rhizobiaceae plasmid origins of transfer (oriT) was examined. Data obtained with these approaches allowed us to establish functional and phylogenetic relationships between different plasmids of this family. Our results suggest novel characteristics of the R. etli pSym relaxase for previously described conjugative systems, with emphasis on the oriT cis-acting preference of this enzyme and its possible biological relevance.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E. Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 2006; 14:4033-50. [PMID: 16262857 DOI: 10.1111/j.1365-294x.2005.02721.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used phylogenetic and population genetics approaches to evaluate the importance of the evolutionary forces on shaping the genetic structure of Rhizobium gallicum and related species. We analysed 54 strains from several populations distributed in the Northern Hemisphere, using nucleotide sequences of three 'core' chromosomal genes (rrs, glnII and atpD) and two 'auxiliary' symbiotic genes (nifH and nodB) to elucidate the biogeographic history of the species and symbiotic ecotypes (biovarieties) within species. The analyses revealed that strains classified as Rhizobium mongolense and Rhizobium yanglingense belong to the chromosomal evolutionary lineage of R. gallicum and harbour symbiotic genes corresponding to a new biovar; we propose their reclassification as R. gallicum bv. orientale. The comparison of the chromosomal and symbiotic genes revealed evidence of lateral transfer of symbiotic information within and across species. Genetic differentiation analyses based on the chromosomal protein-coding genes revealed a biogeographic pattern with three main populations, whereas the 16S rDNA sequences did not resolve that biogeographic pattern. Both the phylogenetic and population genetic analyses showed evidence of recombination at the rrs locus. We discuss our results in the light of the contrasting views of bacterial species expressed by microbial taxonomist and evolutionary biologists.
Collapse
Affiliation(s)
- Claudia Silva
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP 565A, Cuernavaca, Morelos, México.
| | | | | | | | | |
Collapse
|
19
|
Alexandre A, Laranjo M, Oliveira S. Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods. MICROBIAL ECOLOGY 2006; 51:128-36. [PMID: 16389465 DOI: 10.1007/s00248-005-0085-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/11/2005] [Indexed: 05/06/2023]
Abstract
The aims of this study were to investigate the hypothesis that intrinsic antibiotic resistance (IAR) profiles of chickpea rhizobia are correlated with the isolates site of origin, and to compare the discriminating power of IAR profiles with molecular approaches in rhizobial strain identification and differentiation. Rhizobial diversity from five Portuguese soils was assessed by IAR profiles and molecular methods [16S rDNA restriction fragment length polymorphism (RFLP) analysis, direct amplified polymorphic DNA (DAPD) fingerprinting, and SDS-PAGE analysis of protein profiles]. For each analysis, a dendrogram was generated using the software BioNumerics. All three molecular methods generated analogous clustering of the isolates, supporting previous results on 16S rDNA sequence-based phylogeny. Clusters obtained with IAR profile are similar to the species groups generated with the molecular methods used. IAR groups do not correlate significantly with the geographic origin of the isolates. These results may indicate a chromosomal location of antibiotic resistance genes, and suggest that IAR is species related. DAPD and IAR profiles proved to be the most discriminating approaches in strain differentiation and can be used as fast methods to screen diversity in new isolates.
Collapse
Affiliation(s)
- Ana Alexandre
- Departamento de Biologia, Universidade de Evora, Apartado 94, 7002-554 Evora, Portugal
| | | | | |
Collapse
|
20
|
Pérez-Mendoza D, Sepúlveda E, Pando V, Muñoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuán J. Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 2005; 187:7341-50. [PMID: 16237017 PMCID: PMC1272987 DOI: 10.1128/jb.187.21.7341-7350.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An analysis of the conjugative transfer of pRetCFN42d, the symbiotic plasmid (pSym) of Rhizobium etli, has revealed a novel gene, rctA, as an essential element of a regulatory system for silencing the conjugative transfer of R. etli pSym by repressing the transcription of conjugal transfer genes in standard laboratory media. The rctA gene product lacks sequence conservation with other proteins of known function but may belong to the winged-helix DNA-binding subfamily of transcriptional regulators. Similar to that of many transcriptional repressors, rctA transcription seems to be positively autoregulated. rctA expression is greatly reduced upon overexpression of another gene, rctB, previously identified as a putative activator of R. etli pSym conjugal transfer. Thus, rctB seems to counteract the repressive action of rctA. rctA homologs are present in at least three other bacterial genomes within the order Rhizobiales, where they are invariably located adjacent to and divergently transcribed from putative virB-like operons. We show that similar to that of R. etli pSym, conjugative transfer of the 1.35-Mb symbiotic megaplasmid A of Sinorhizobium meliloti is also subjected to the inhibitory action of rctA. Our data provide strong evidence that the R. etli and S. meliloti pSym plasmids are indeed self-conjugative plasmids and that this property would only be expressed under optimal, as yet unknown conditions that entail inactivation of the rctA function. The rctA gene seems to represent novel but probably widespread regulatory systems controlling the transfer of conjugative elements within the order Rhizobiales.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Edgardo Sepúlveda
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Victoria Pando
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Socorro Muñoz
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Joaquina Nogales
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - José Olivares
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Maria J. Soto
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - José A. Herrera-Cervera
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - David Romero
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Susana Brom
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Juan Sanjuán
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
- Corresponding author. Mailing address: Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Profesor Albareda 1, 18008 Granada, Spain. Phone: 34-958181600, ext. 219. Fax: 34-958129600. E-mail:
| |
Collapse
|
21
|
Brom S, Girard L, Tun-Garrido C, García-de los Santos A, Bustos P, González V, Romero D. Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 2004; 186:7538-48. [PMID: 15516565 PMCID: PMC524903 DOI: 10.1128/jb.186.22.7538-7548.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid p42a from Rhizobium etli CFN42 is self-transmissible and indispensable for conjugative transfer of the symbiotic plasmid (pSym). Most pSym transconjugants also inherit p42a. pSym transconjugants that lack p42a always contain recombinant pSyms, which we designated RpSyms*. RpSyms* do not contain some pSym segments and instead have p42a sequences, including the replication and transfer regions. These novel recombinant plasmids are compatible with wild-type pSym, incompatible with p42a, and self-transmissible. The symbiotic features of derivatives simultaneously containing a wild-type pSym and an RpSym* were analyzed. Structural analysis of 10 RpSyms* showed that 7 shared one of the two pSym-p42a junctions. Sequencing of this common junction revealed a 53-bp region that was 90% identical in pSym and p42a, including a 5-bp central region flanked by 9- to 11-bp inverted repeats reminiscent of bacterial and phage attachment sites. A gene encoding an integrase-like protein (intA) was localized downstream of the attachment site on p42a. Mutation or the absence of intA abolished pSym transfer from a recA mutant donor. Complementation with the wild-type intA gene restored transfer of pSym. We propose that pSym-p42a cointegration is required for pSym transfer; cointegration may be achieved either through homologous recombination among large reiterated sequences or through IntA-mediated site-specific recombination between the attachment sites. Cointegrates formed through the site-specific system but resolved through RecA-dependent recombination or vice versa generate RpSyms*. A site-specific recombination system for plasmid cointegration is a novel feature of these large plasmids and implies that there is unique regulation which affects the distribution of pSym in nature due to the role of the cointegrate in conjugative transfer.
Collapse
Affiliation(s)
- Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|
22
|
Pérez-Mendoza D, Domínguez-Ferreras A, Muñoz S, Soto MJ, Olivares J, Brom S, Girard L, Herrera-Cervera JA, Sanjuán J. Identification of functional mob regions in Rhizobium etli: evidence for self-transmissibility of the symbiotic plasmid pRetCFN42d. J Bacteriol 2004; 186:5753-61. [PMID: 15317780 PMCID: PMC516833 DOI: 10.1128/jb.186.17.5753-5761.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An approach originally designed to identify functional origins of conjugative transfer (oriT or mob) in a bacterial genome (J. A. Herrera-Cervera, J. M. Sanjuán-Pinilla, J. Olivares, and J. Sanjuán, J. Bacteriol. 180:4583-4590, 1998) was modified to improve its reliability and prevent selection of undesired false mob clones. By following this modified approach, we were able to identify two functional mob regions in the genome of Rhizobium etli CFN42. One corresponds to the recently characterized transfer region of the nonsymbiotic, self-transmissible plasmid pRetCFN42a (C. Tun-Garrido, P. Bustos, V. González, and S. Brom, J. Bacteriol. 185:1681-1692, 2003), whereas the second mob region belongs to the symbiotic plasmid pRetCFN42d. The new transfer region identified contains a putative oriT and a typical conjugative (tra) gene cluster organization. Although pRetCFN42d had not previously been shown to be self-transmissible, mobilization of cosmids containing this tra region required the presence of a wild-type pRetCFN42d in the donor cell; the presence of multiple copies of this mob region in CFN42 also promoted conjugal transfer of the Sym plasmid pRetCFN42d. The overexpression of a small open reading frame, named yp028, located downstream of the putative relaxase gene traA, appeared to be responsible for promoting the conjugal transfer of the R. etli pSym under laboratory conditions. This yp028-dependent conjugal transfer required a wild-type pRetCFN42d traA gene. Our results suggest for the first time that the R. etli symbiotic plasmid is self-transmissible and that its transfer is subject to regulation. In wild-type CFN42, pRetCFN42d tra gene expression appears to be insufficient to promote plasmid transfer under standard laboratory conditions; gene yp028 may play some role in the activation of conjugal transfer in response to as-yet-unknown environmental conditions.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín. Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Del Carmen Vargas M, Encarnación S, Dávalos A, Reyes-Pérez A, Mora Y, García-de Los Santos A, Brom S, Mora J. Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1165-1176. [PMID: 12724378 DOI: 10.1099/mic.0.25909-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The plasmid-borne Rhizobium etli katG gene encodes a dual-function catalase-peroxidase (KatG) (EC 1.11.1.7) that is inducible and heat-labile. In contrast to other rhizobia, katG was shown to be solely responsible for catalase and peroxidase activity in R. etli. An R. etli mutant that did not express catalase activity exhibited increased sensitivity to hydrogen peroxide (H(2)O(2)). Pre-exposure to a sublethal concentration of H(2)O(2) allowed R. etli to adapt and survive subsequent exposure to higher concentrations of H(2)O(2). Based on a multiple sequence alignment with other catalase-peroxidases, it was found that the catalytic domains of the R. etli KatG protein had three large insertions, two of which were typical of KatG proteins. Like the katG gene of Escherichia coli, the R. etli katG gene was induced by H(2)O(2) and was important in sustaining the exponential growth rate. In R. etli, KatG catalase-peroxidase activity is induced eightfold in minimal medium during stationary phase. It was shown that KatG catalase-peroxidase is not essential for nodulation and nitrogen fixation in symbiosis with Phaseolus vulgaris, although bacteroid proteome analysis indicated an alternative compensatory mechanism for the oxidative protection of R. etli in symbiosis. Next to, and divergently transcribed from the catalase promoter, an ORF encoding the regulator OxyR was found; this is the first plasmid-encoded oxyR gene described so far. Additionally, the katG promoter region contained sequence motifs characteristic of OxyR binding sites, suggesting a possible regulatory mechanism for katG expression.
Collapse
Affiliation(s)
- María Del Carmen Vargas
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Sergio Encarnación
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Araceli Dávalos
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Agustín Reyes-Pérez
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Yolanda Mora
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Alejandro García-de Los Santos
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Jaime Mora
- Programa de Ingeniería Metabólica, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| |
Collapse
|
24
|
Tun-Garrido C, Bustos P, González V, Brom S. Conjugative transfer of p42a from rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 2003; 185:1681-92. [PMID: 12591886 PMCID: PMC148057 DOI: 10.1128/jb.185.5.1681-1692.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli CFN42 contains six plasmids. Only one of them, p42a, is self-conjugative at high frequency. This plasmid is strictly required for mobilization of the symbiotic plasmid (pSym). To study the transfer mechanism of p42a, a self-transmissible cosmid clone containing its transfer region was isolated. Its sequence showed that most of the tra genes are highly similar to genes of Agrobacterium tumefaciens pTiC58 and other related plasmids. Four putative regulatory genes were identified; three of these (traI, traR, and cinR) belong to the LuxR-LuxI family. Mutagenesis of these genes confirmed their requirement for p42a transfer. We found that the conjugative transfer of p42a is dependent on quorum sensing, and consequently pSym transfer also was found to be similarly regulated, establishing a complex link between environmental conditions and pSym transfer. Although R. etli has been shown to produce different N-acyl-homoserine lactones, only one of them, a 3-oxo-C(8)-homoserine lactone encoded by the traI gene described here, was involved in transfer. Mutagenesis of the fourth regulatory gene, traM, had no effect on transfer. Analysis of transcriptional fusions of the regulatory genes to a reporter gene suggests a complex regulation scheme for p42a conjugative transfer. Conjugal transfer gene expression was found to be directly upregulated by TraR and the 3-oxo-C(8)-homoserine lactone synthesized by TraI. The traI gene was autoregulated by these elements and positively regulated by CinR, while cinR expression required traI. Finally, we did not detect expression of traM, indicating that in p42a TraM may be expressed so weakly that it cannot inhibit conjugal transfer, leading to the unrepressed transfer of p42a.
Collapse
Affiliation(s)
- Cristina Tun-Garrido
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación Sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
25
|
Silva C, Vinuesa P, Eguiarte LE, Martínez-Romero E, Souza V. Rhizobium etli and Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: population genetics and biogeographic implications. Appl Environ Microbiol 2003; 69:884-93. [PMID: 12571008 PMCID: PMC143635 DOI: 10.1128/aem.69.2.884-893.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.
Collapse
Affiliation(s)
- Claudia Silva
- Laboratorio de Evolución Molecular y Experimental, Instituto de Ecología, Universidad Nacional Autónoma de México, México D. F. 04510, Mexico.
| | | | | | | | | |
Collapse
|
26
|
Yost CK, Clark KT, Del Bel KL, Hynes MF. Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiol 2003; 3:1. [PMID: 12553885 PMCID: PMC149452 DOI: 10.1186/1471-2180-3-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Accepted: 01/28/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In general, chemotaxis in Rhizobium has not been well characterized. Methyl accepting chemotaxis proteins are sensory proteins important in chemotaxis of numerous bacteria, but their involvement in Rhizobium chemotaxis is unclear and merits further investigation. RESULTS A putative methyl accepting chemotaxis protein gene (mcpG) of Rhizobium leguminosarum VF39SM was isolated and characterized. The gene was found to reside on the nodulation plasmid, pRleVF39d. The predicted mcpG ORF displayed motifs common to known methyl-accepting chemotaxis proteins, such as two transmembrane domains and high homology to the conserved methylation and signaling domains of well-characterized MCPs. Phenotypic analysis of mcpG mutants using swarm plates did not identify ligands for this putative receptor. Additionally, gene knockouts of mcpG did not affect a mutant strain's ability to compete for nodulation with the wild type. Notably, mcpG was found to be plasmid-encoded in all strains of R. leguminosarum and R. etli examined, though it was found on the nodulation plasmid only in a minority of strains. CONCLUSIONS Based on sequence homology R. leguminosarum mcpG gene codes for a methyl accepting chemotaxis protein. The gene is plasmid localized in numerous Rhizobium spp. Although localized to the sym plasmid of VF39SM mcpG does not appear to participate in early nodulation events. A ligand for McpG remains to be found. Apparent McpG orthologs appear in a diverse range of proteobacteria. Identification and characterization of mcpG adds to the family of mcp genes already identified in this organism.
Collapse
Affiliation(s)
- Christopher K Yost
- Department of Biological Sciences, University of Calgary, Alberta, Canada, T2N 1N4.
| | | | | | | |
Collapse
|
27
|
Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, García-de-los-Santos A, Dávila G, Brom S. Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 2002; 48:104-16. [PMID: 12383728 DOI: 10.1016/s0147-619x(02)00119-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this paper, we report the identification of replication/partition regions of plasmid p42a and p42b of Rhizobium etli CFN42. Sequence analysis reveals that both replication/partition regions belong to the repABC family. Phylogenetic analysis of all the complete repABC replication/partition regions reported to date, shows that repABC plasmids coexisting in the same strain arose most likely by lateral transfer instead of by duplication followed by divergence. A model explaining how new incompatibility groups originate, is proposed.
Collapse
Affiliation(s)
- Miguel A Cevallos
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|
28
|
Brom S, Girard L, García-de los Santos A, Sanjuan-Pinilla JM, Olivares J, Sanjuan J. Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species. Appl Environ Microbiol 2002; 68:2555-61. [PMID: 11976134 PMCID: PMC127552 DOI: 10.1128/aem.68.5.2555-2561.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not only the pSym plasmid but also other plasmids containing symbiosis-related genes, with a similar organization. In contrast, strains belonging to other bean-nodulating species seem to have acquired only the pSym plasmid from R. etli.
Collapse
Affiliation(s)
- Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | |
Collapse
|
29
|
Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E. Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 2001; 67:3264-8. [PMID: 11425750 PMCID: PMC93009 DOI: 10.1128/aem.67.7.3264-3268.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ensifer adhaerens is a soil bacterium that attaches to other bacteria and may cause lysis of these other bacteria. Based on the sequence of its small-subunit rRNA gene, E. adhaerens is related to Sinorhizobium spp. E. adhaerens ATCC 33499 did not nodulate Phaseolus vulgaris (bean) or Leucaena leucocephala, but with symbiotic plasmids from Rhizobium tropici CFN299 it formed nitrogen-fixing nodules on both hosts. The nodule isolates were identified as E. adhaerens isolates by growth on selective media.
Collapse
Affiliation(s)
- M A Rogel
- Centro de Investigación sobre Fijación de Nitrógeno, UNAM. Ap. P. 565-A, Cuernavaca, México
| | | | | | | | | |
Collapse
|
30
|
Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. MICROBIOLOGY (READING, ENGLAND) 2001; 147:981-993. [PMID: 11283294 DOI: 10.1099/00221287-147-4-981] [Citation(s) in RCA: 398] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nodC and nifH genes were characterized in a collection of 83 rhizobial strains which represented 23 recognized species distributed in the genera Rhizobium, Sinorhizobium, Mesorhizobium and Bradyrhizobium, as well as unclassified rhizobia from various host legumes. Conserved primers were designed from available nucleotide sequences and were able to amplify nodC and nifH fragments of about 930 bp and 780 bp, respectively, from most of the strains investigated. RFLP analysis of the PCR products resulted in a classification of these rhizobia which was in general well-correlated with their known host range and independent of their taxonomic status. The nodC and nifH fragments were sequenced for representative strains belonging to different genera and species, most of which originated from Phaselous vulgaris nodules. Phylogenetic trees were constructed and revealed close relationships among symbiotic genes of the Phaseolus symbionts, irrespective of their 16S-rDNA-based classification. The nodC and nifH phylogenies were generally similar, but cases of incongruence were detected, suggesting that genetic rearrangements have occurred in the course of evolution. The results support the view that lateral genetic transfer across rhizobial species and, in some instances, across Rhizobium and Sinorhizobium genera plays a role in diversification and in structuring the natural populations of rhizobia.
Collapse
Affiliation(s)
- Gisèle Laguerre
- Laboratoire de Microbiologie des Sols, Centre de Microbiologie du Sol et de l'Environnement, INRA, 17 rue Sully, BP 86510,F-21065 Dijon Cedex, France1
| | - Sarah M Nour
- Laboratoire de Microbiologie des Sols, Centre de Microbiologie du Sol et de l'Environnement, INRA, 17 rue Sully, BP 86510,F-21065 Dijon Cedex, France1
| | - Valérie Macheret
- Laboratoire de Microbiologie des Sols, Centre de Microbiologie du Sol et de l'Environnement, INRA, 17 rue Sully, BP 86510,F-21065 Dijon Cedex, France1
| | - Juan Sanjuan
- Departamento de Microbiologı́a del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidı́n, CSIC, Profesor Albareda 1, E-18008 Granada, Spain2
| | - Pascal Drouin
- Laboratoire de Microbiologie des Sols, Centre de Microbiologie du Sol et de l'Environnement, INRA, 17 rue Sully, BP 86510,F-21065 Dijon Cedex, France1
| | - Noëlle Amarger
- Laboratoire de Microbiologie des Sols, Centre de Microbiologie du Sol et de l'Environnement, INRA, 17 rue Sully, BP 86510,F-21065 Dijon Cedex, France1
| |
Collapse
|
31
|
Zhang XX, Kosier B, Priefer UB. Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM. J Bacteriol 2001; 183:2141-4. [PMID: 11222618 PMCID: PMC95115 DOI: 10.1128/jb.183.6.2141-2144.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Accepted: 12/14/2000] [Indexed: 11/20/2022] Open
Abstract
A rearrangement between the symbiotic plasmid (pRleVF39d) and a nonsymbiotic plasmid (pRleVF39b) in Rhizobium leguminosarum bv. viciae VF39 was observed. The rearranged derivative showed the same plasmid profile as its parent strain, but hybridization to nod, fix, and nif genes indicated that most of the symbiotic genes were now present on a plasmid corresponding in size to pRleVF39b instead of pRleVF39d. On the other hand, some DNA fragments originating from pRleVF39b now hybridized to the plasmid band at the position of pRleVF39d. These results suggest that a reciprocal but unequal DNA exchange between the two plasmids had occurred.
Collapse
Affiliation(s)
- X X Zhang
- Okologie des Bodens, Institut für Botanik, RWTH Aachen, 52060 Aachen, Germany
| | | | | |
Collapse
|
32
|
Girard L, Brom S, Dávalos A, López O, Soberón M, Romero D. Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:1283-1292. [PMID: 11106020 DOI: 10.1094/mpmi.2000.13.12.1283] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Among the complexities in the regulation of nitrogen fixation in the Rhizobiaceae are reiteration of regulatory components as well as variant roles for each component between species. For Rhizobium etli CFN42, we reported that the symbiotic plasmid (pCFN42d) contains a key regulatory gene (fixKd) and genes for a symbiotic cytochrome oxidase (fixNOQPd). Here we discuss the occurrence of reiteration of these genes (fixKf and fixNOQPf) and the finding of an unusual fixL homolog on a plasmid previously considered cryptic (pCFN42f). The structure of the deduced FixL polypeptide is suggestive of a fusion of the receiver and transmitter modules of a two-component regulatory system as described in R. leguminosarum bv. viciae VF39. Gene fusion analysis, coupled with mutation of each regulatory element, revealed that free-living expression of FixKf was dependent fully on FixL. In contrast, synthesis of FixKd was not detected under the conditions tested. The FixKf protein is needed for microaerobic expression of both fixN reiterations, whereas the FixKd protein appears to be dispensable. Interestingly, expression of the fixN reiterations exhibits a differential dependence for FixL, where transcription of fixNf was suppressed in the absence of FixL but expression of fixNd still showed significant levels. This suggests the existence of a FixL-independent mechanism for expression of the fixNd reiteration. Surprisingly, mutations in fixL, fixKd, or fixKf (either singly or in combination) did not alter symbiotic effectiveness. A mutation in fixNd (but not in fixNf) was, however, severely affected, indicating a differential role for these reiterations in nitrogen fixation.
Collapse
Affiliation(s)
- L Girard
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | | | | | |
Collapse
|
33
|
Brom S, García-de los Santos A, Cervantes L, Palacios R, Romero D. In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 2000; 44:34-43. [PMID: 10873525 DOI: 10.1006/plas.2000.1469] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria belonging to the genus Rhizobium are able to develop two different lifestyles, in symbiotic association with plant roots or through saprophytic growth. The genome of Rhizobium strains is constituted by a chromosome and several large plasmids, one of them containing most of the genes involved in symbiosis (symbiotic plasmid or pSym). Our model strain Rhizobium etli CFN42 contains six plasmids. We have constructed multiple plasmid-cured derivatives of this strain and used them to analyze the contribution of these plasmids to free-living cellular viability, competitivity for nodulation, plasmid transfer, and utilization of diverse carbon sources. Our results show that the transfer of the pSym is strictly dependent on the presence of another plasmid; consequently under conditions where pSym transfer is required, nodulation relies on the presence of a plasmid devoid of nodulation genes. We also found a drastic decrease in competitivity for nodulation in multiple plasmid-cured derivatives when compared with single plasmid-cured strains. Cellular growth and viability were greatly diminished in some multiple plasmid-cured strains. The utilization of a number of carbon sources depends on the presence of specific plasmids. The results presented in this work indicate that functional interactions among sequences scattered in the different plasmids are required for successful completion of both lifestyles.
Collapse
Affiliation(s)
- S Brom
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | | | | | |
Collapse
|
34
|
Ramírez-Romero MA, Soberón N, Pérez-Oseguera A, Téllez-Sosa J, Cevallos MA. Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J Bacteriol 2000; 182:3117-24. [PMID: 10809690 PMCID: PMC94497 DOI: 10.1128/jb.182.11.3117-3124.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Accepted: 02/25/2000] [Indexed: 11/20/2022] Open
Abstract
The symbiotic plasmid of Rhizobium etli CE3 belongs to the RepABC family of plasmid replicons. This family is characterized by the presence of three conserved genes, repA, repB, and repC, encoded by the same DNA strand. A long intergenic sequence (igs) between repB and repC is also conserved in all members of the plasmid family. In this paper we demonstrate that (i) the repABC genes are organized in an operon; (ii) the RepC product is essential for replication; (iii) RepA and RepB products participate in plasmid segregation and in the regulation of plasmid copy number; (iv) there are two cis-acting incompatibility regions, one located in the igs (incalpha) and the other downstream of repC (incbeta) (the former is essential for replication); and (v) RepA is a trans-acting incompatibility factor. We suggest that incalpha is a cis-acting site required for plasmid partitioning and that the origin of replication lies within incbeta.
Collapse
Affiliation(s)
- M A Ramírez-Romero
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
35
|
Abstract
Studies in several organisms show that recombination and replication interact closely. Recombinational repair usually requires associated replication at some stage; moreover, additional replication can induce recombination through either homologous or illegitimate events. In prokaryotes, stimulation of recombination by replication is more dramatic when rolling circle replication is employed. In contrast, theta-type replication induces only a modest increase in recombination frequency. In this article, we show that induction of theta-type replication from a supernumerary origin in the symbiotic plasmid (pSym) of Rhizobium etli leads to a 1000-fold increase in deletion formation on this plasmid. These deletions span 120 kb (the symbiotic region) and have as endpoints the reiterated nitrogenase operons. We have named this phenomenon RER, for recombination enhancement by replication. RER is not affected by the position of the replication origin in the pSym, the direction of advance of the replication fork, or the distance from the origin to the recombining repeats. On the other hand, RER is dependent on an active recA allele, indicating that it is due to homologous recombination. RER displays a strong regionality restricted to the symbiotic region. The similarities and differences of RER with the recombination process observed at the terminus of replication of the Escherichia coli chromosome are discussed.
Collapse
Affiliation(s)
- E Valencia-Morales
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México
| | | |
Collapse
|
36
|
Martinez-Salazar JM, Romero D. Role of the ruvB gene in homologous and homeologous recombination in Rhizobium etli. Gene 2000; 243:125-31. [PMID: 10675620 DOI: 10.1016/s0378-1119(99)00548-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Rhizobium etli ruvA and ruvB genes were cloned through a PCR-based approach, using degenerate primers matching conserved sectors in the amino acid sequences of RuvB from eight bacterial species. Comparative analysis of the predicted polypeptides for RuvA and RuvB of R. etli showed highly conserved blocks with the corresponding homologs in other bacteria; RuvB depicts characteristic motifs for DNA helicases (ATP-binding and DEXH-box motifs). An R. etli ruvB::loxP Sp mutant was constructed by interposon mutagenesis. This mutant was highly sensitive to DNA-damaging agents, such as methyl methanesulfonate and nitrofurantoin, implying a deficiency in DNA repair. Homologous and homeologous conjugational recombination was reduced almost tenfold in the ruvB::loxP Sp mutant; a recombination defect was also observed in assays employing recombination between small plasmids, albeit at a smaller magnitude. Although the ruvA and ruvB genes are contiguous in R. etli, complementation studies suggest that they are expressed independently.
Collapse
Affiliation(s)
- J M Martinez-Salazar
- Programa de Genetica Molecular de Plasmidos Bacterianos, Centro de Investigacion sobre Fijacion de Nitrogeno, Universidad Nacional Autonoma de Mexico, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
37
|
Caballero-Mellado J, López-Reyes L, Bustillos-Cristales R. Presence of 16S rRNA genes in multiple replicons inAzospirillum brasilense. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb08689.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Guerreiro N, Stepkowski T, Rolfe BG, Djordjevic MA. Determination of plasmid-encoded functions in Rhizobium leguminosarum biovar trifolii using proteome analysis of plasmid-cured derivatives. Electrophoresis 1998; 19:1972-9. [PMID: 9740057 DOI: 10.1002/elps.1150191115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have used proteome analysis of derivatives of R. leguminosarum biovar trifolii strain ANU843, cured of indigenous plasmids by a direct selection system, to investigate plasmid-encoded functions. Under the conditions used, the plasmid-encoded gene products contributed to only a small proportion of the 2000 proteins visualised in the two-dimensional (2-D) protein map of strain ANU843. The level of synthesis of thirty-nine proteins was affected after curing of either plasmid a, c or e. The differences observed upon plasmid curing included: protein loss, up/down-regulation of specific proteins and novel synthesis of some proteins. This suggests that a complex interplay between the cured plasmid and the remaining replicons is occurring. Twenty-two proteins appeared to be absent in the cured strains and these presumably are encoded by plasmid genes. Of these, a small heat shock protein, a cold shock protein, a hypothetical YTFG-29.7 kDa protein, and the alpha and beta subunits of the electron transfer flavoprotein were identified by N-terminal microsequencing and predicted to be encoded by plasmid e. Four of the sequenced proteins putatively encoded on plasmid e and two encoded on plasmid c were novel. In addition, curing of plasmid e and c consistently decreased the levels of 3-isopropylmalate dehydratase and malate dehydrogenase, respectively, suggesting that levels of these proteins may be influenced by plasmid-encoded functions. A protein with homology to 4-oxalocrotonate tautomerase, which is involved in the biodegradation of phenolic compounds, was found to be newly synthesised in the strain cured of plasmid e. Proteome analysis provides a sensitive tool to examine the functional organisation of the Rhizobium genome and the global gene interactions which occur between the different replicons.
Collapse
Affiliation(s)
- N Guerreiro
- Plant-Microbe Interaction Group, Research School of Biological Sciences, Australian National University, Canberra City
| | | | | | | |
Collapse
|
39
|
García-de los Santos A, Brom S. Characterization of two plasmid-borne lps beta loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:891-902. [PMID: 9304861 DOI: 10.1094/mpmi.1997.10.7.891] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In Rhizobium etli CFN42, both the symbiotic plasmid (pd) and plasmid b (pb) are required for effective bean nodulation. This is due to the presence on pb of a region (lps beta) involved in lipopolysaccharide (LPS) biosynthesis. We report here the genetic array and functional features of this plasmid-borne region. The sequence analysis of a 3,595-bp fragment revealed the presence of a transcriptional unit integrated by two open reading frames (lps beta 1 and lps beta 2) essential for LPS biosynthesis and symblosis. The lps beta 1 encodes a putative 193 amino acid polypeptide that shows strong homology with glucosyl-1P and galactosyl-1P transferases. The deduced amino acid sequence of the protein encoded by lps beta 2 was very similar to that of proteins involved in surface polysaccharide biosynthesis, such as Pseudomonas aeruginosa WpbM, Bordetella pertussis BpIL, and Yersinia enterocolitica TrsG. DNA sequences homologous to lps beta 1 and lps beta 2 of R. etli CFN42 were consistently found in functionally equivalent plasmids of R. etli, R. leguminosarum bv. viciae, and R. leguminosarum hv. trifolii strains, but not in R. meliloti, R. loti, R. tropici, R. fredii, Bradyrhizobium, Azorhizobium, and Agrobacterium tumefaciens. Even though Rhizobium and Agrobacterium do not share lps beta sequences, their presence is required for crown-gall tumor induction by R. etli transconjugants carrying the Ti plasmid.
Collapse
Affiliation(s)
- A García-de los Santos
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuemavaca, Morelos, México
| | | |
Collapse
|
40
|
Ramírez-Romero MA, Bustos P, Girard L, Rodríguez O, Cevallos MA, Dávila G. Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2825-2831. [PMID: 9274036 DOI: 10.1099/00221287-143-8-2825] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The replicator region of the symbiotic plasmid of Rhizobium etli CFN42 was cloned and sequenced. A plasmid derivative (pH3) harbouring a 5-6 kb HindIII fragment from the symbiotic plasmid was found to be capable of independent replication and eliminated the symbiotic plasmid when introduced into a R. etli CFNX101 strain (a recA derivative). The stability and the copy number of pH3 were the same as that of the symbiotic plasmid, indicating that the information required for stable replication and incompatibility resides in the 5.6 kb HindIII fragment. The sequence analysis of this fragment showed the presence of three ORFs similar in sequence analysis of this fragment showed the presence of three ORFs similar in sequence and organization to repA, repB and repC described for the replicator regions of the Agrobacterium plasmids pTiB653 and pRiA4b and for the R. leguminosarum cryptic plasmid pRL8JI. Hybridization studies showed that p42d-like replicator sequences are found in the symbiotic plasmids of other R. etli strains and in a 'cryptic' plasmid of R. tropici.
Collapse
Affiliation(s)
- Miguel A Ramírez-Romero
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Patricia Bustos
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Oscar Rodríguez
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Miguel A Cevallos
- Departamento de Ecología Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Guillermo Dávila
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| |
Collapse
|
41
|
Mazurier SI, Laguerre G. Unusual localization of nod and nif genes in Rhizobium leguminosarum bv. viciae. Can J Microbiol 1997. [DOI: 10.1139/m97-056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic DNA from seven strains of Rhizobium leguminosarum bv. viciae isolated from nodules of field-grown lentils showed homology to nod and nif gene probes, whereas plasmid DNA did not hybridize with these probes. The results suggest that symbiotic genes could be located on the chromosome or perhaps on a very large plasmid that could not be resolved in Eckhardt gels. Each strain contained one plasmid that hybridized with a pSym isolated from a R. leguminosarum strain of the same field population. This finding led us to hypothesize that the nod and nif genes of the seven strains might have originated from a Sym plasmid and have been integrated into another replicon. The ability to nodulate vetch was confirmed for all of the seven strains. Thus, wild strains of R. leguminosarum bv. viciae that nodulate vetch carry nod and nif genes either on the chromosome or on an extrachromosomal replicon of size much larger than the pSyms hitherto described.Key words: Rhizobium leguminosarum, nod genes, nif genes, chromosome, symbiotic plasmid, megaplasmid.
Collapse
|