1
|
Kurylenko OO, Ruchala J, Vasylyshyn RV, Stasyk OV, Dmytruk OV, Dmytruk KV, Sibirny AA. Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:197. [PMID: 30034524 PMCID: PMC6052537 DOI: 10.1186/s13068-018-1203-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ogataea (Hansenula) polymorpha is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by O. polymorpha. Further improvement of ethanol production from xylose in O. polymorpha depends on the identification of bottlenecks in the xylose conversion pathway to ethanol. RESULTS Involvement of peroxisomal enzymes in xylose metabolism has not been described to date. Here, we found that peroxisomal transketolase (known also as dihydroxyacetone synthase) and peroxisomal transaldolase (enzyme with unknown function) in the thermotolerant methylotrophic yeast, Ogataea (Hansenula) polymorpha, are required for xylose alcoholic fermentation, but not for growth on this pentose sugar. Mutants with knockout of DAS1 and TAL2 coding for peroxisomal transketolase and peroxisomal transaldolase, respectively, normally grow on xylose. However, these mutants were found to be unable to support ethanol production. The O. polymorpha mutant with the TAL1 knockout (coding for cytosolic transaldolase) normally grew on glucose and did not grow on xylose; this defect was rescued by overexpression of TAL2. The conditional mutant, pYNR1-TKL1, that expresses the cytosolic transketolase gene under control of the ammonium repressible nitrate reductase promoter did not grow on xylose and grew poorly on glucose media supplemented with ammonium. Overexpression of DAS1 only partially restored the defects displayed by the pYNR1-TKL1 mutant. The mutants defective in peroxisome biogenesis, pex3Δ and pex6Δ, showed normal growth on xylose, but were unable to ferment this sugar. Moreover, the pex3Δ mutant of the non-methylotrophic yeast, Scheffersomyces (Pichia) stipitis, normally grows on and ferments xylose. Separate overexpression or co-overexpression of DAS1 and TAL2 in the wild-type strain increased ethanol synthesis from xylose 2 to 4 times with no effect on the alcoholic fermentation of glucose. Overexpression of TKL1 and TAL1 also elevated ethanol production from xylose. Finally, co-overexpression of DAS1 and TAL2 in the best previously isolated O. polymorpha xylose to ethanol producer led to increase in ethanol accumulation up to 16.5 g/L at 45 °C; or 30-40 times more ethanol than is produced by the wild-type strain. CONCLUSIONS Our results indicate the importance of the peroxisomal enzymes, transketolase (dihydroxyacetone synthase, Das1), and transaldolase (Tal2), in the xylose alcoholic fermentation of O. polymorpha.
Collapse
Affiliation(s)
- Olena O. Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Roksolana V. Vasylyshyn
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Oleh V. Stasyk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Olena V. Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Kostyantyn V. Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Andriy A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
2
|
Abstract
Peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity in response to cellular and environmental conditions. Novel proteins and pathways that mediate and control peroxisome formation, growth, and division continue to be discovered, and the cellular machineries that act together to regulate peroxisome number and size are under active investigation. Here, advances in the field of peroxisomal dynamics and proliferation in mammals and yeast are reviewed. The authors address the signals, conditions, and proteins that affect, regulate, and control the number and size of this essential organelle, especially the components involved in the division of peroxisomes. Special emphasis is on the function of dynamin-related proteins (DRPs), on Fis1, a putative adaptor for DRPs, on the role of the Pex11 family of peroxisomal membrane proteins, and the cytoskeleton.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
3
|
Abstract
Peroxisomes are essential organelles that may be involved in various functions, dependent on organism, cell type, developmental stage of the cell, and the environment. Until recently, peroxisomes were viewed as a class of static organelles that developed by growth and fission from pre-existing organelles. Recent observations have challenged this view by providing evidence that peroxisomes may be part of the endomembrane system and constitute a highly dynamic population of organelles that arises and is removed upon environmental demands. Additionally, evidence is now accumulating that peroxisomes may arise by alternative methods. This review summarizes relevant recent data on this subject. In addition, the progress in the understanding of the principles of the peroxisomal matrix protein import machinery is discussed.
Collapse
Affiliation(s)
- Marten Veenhuis
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NL-9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
4
|
van Dijk R, Lahchev KL, Kram AM, van der Klei IJ, Veenhuis M. Isolation of mutants of Hansenula polymorpha defective in the assembly of octameric alcohol oxidase. FEMS Yeast Res 2002; 1:257-63. [PMID: 12702328 DOI: 10.1111/j.1567-1364.2002.tb00043.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Alcohol oxidase (AO) is a peroxisomal enzyme that catalyses the first step in methanol metabolism in yeast. Monomeric, inactive AO protein is synthesised in the cytosol and subsequently imported into peroxisomes, where the enzymatically active, homo-octameric form is found. The mechanisms involved in AO octamer assembly are largely unclear. Here we describe the isolation of Hansenula polymorpha mutants specifically affected in AO assembly. These mutants are unable to grow on methanol and display reduced AO activities. Based on their phenotypes, three major classes of mutants were isolated. Three additional mutants were isolated that each displayed a unique phenotype. Complementation analysis revealed that the isolated AO assembly mutants belonged to 10 complementation groups.
Collapse
Affiliation(s)
- Ralf van Dijk
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Biological Centre, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
5
|
Smith JJ, Brown TW, Eitzen GA, Rachubinski RA. Regulation of peroxisome size and number by fatty acid beta -oxidation in the yeast yarrowia lipolytica. J Biol Chem 2000; 275:20168-78. [PMID: 10787422 DOI: 10.1074/jbc.m909285199] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Yarrowia lipolytica MFE2 gene encodes peroxisomal beta-oxidation multifunctional enzyme type 2 (MFE2). MFE2 is peroxisomal in a wild-type strain but is cytosolic in a strain lacking the peroxisomal targeting signal-1 (PTS1) receptor. MFE2 has a PTS1, Ala-Lys-Leu, that is essential for targeting to peroxisomes. MFE2 lacking a PTS1 can apparently oligomerize with full-length MFE2 to enable targetting to peroxisomes. Peroxisomes of an oleic acid-induced MFE2 deletion strain, mfe2-KO, are larger and more abundant than those of the wild-type strain. Under growth conditions not requiring peroxisomes, peroxisomes of mfe2-KO are larger but less abundant than those of the wild-type strain, suggesting a role for MFE2 in the regulation of peroxisome size and number. A nonfunctional version of MFE2 did not restore normal peroxisome morphology to mfe2-KO cells, indicating that their phenotype is not due to the absence of MFE2. mfe2-KO cells contain higher amounts of beta-oxidation enzymes than do wild-type cells. We also show that increasing the level of the beta-oxidation enzyme thiolase results in enlarged peroxisomes. Our results implicate peroxisomal beta-oxidation in the control of peroxisome size and number in yeast.
Collapse
Affiliation(s)
- J J Smith
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
6
|
Sakai Y, Yoshida H, Yurimoto H, Yoshida N, Fukuya H, Takabe K, Kato N. Production of fungal fructosyl amino acid oxidase useful for diabetic diagnosis in the peroxisome of Candida boidinii. FEBS Lett 1999; 459:233-7. [PMID: 10518026 DOI: 10.1016/s0014-5793(99)01245-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A high-level production of fructosyl amino acid oxidase (FAOD), whose production was toxic in Escherichia coli, was investigated through attempts to utilize the peroxisome of Candida boidinii as the place for protein accumulation. The alcohol oxidase-depleted strain (strain aod1Delta) produced FAOD at a four to five times higher level than the wild type strain in terms of protein amount and enzyme activity, although the transcriptional level was similar. As a result of this study, we could improve FAOD productivity approximately 47-fold from the original transformant, and FAOD accumulated within membrane-bound peroxisomes up to 18% of the total soluble proteins.
Collapse
Affiliation(s)
- Y Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Faber KN, Harder W, Ab G, Veenhuis M. Review: methylotrophic yeasts as factories for the production of foreign proteins. Yeast 1995; 11:1331-44. [PMID: 8585317 DOI: 10.1002/yea.320111402] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this contribution we discuss the potential of methylotrophic yeasts as hosts for the high level production of valuable foreign proteins. Recent relevant achievements on the intracellular production or secretion of proteins are summarized. Special attention is paid to a specific advantage of the use of methylotrophic yeasts, namely the possibility of accumulating the foreign gene products inside peroxisomes. This approach may be of major advantage when the protein product is toxic for the host cell and, also, to protect these proteins from undesired side-effects such as proteolysis or aggregation.
Collapse
Affiliation(s)
- K N Faber
- Department of Microbiology, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
8
|
Kos W, Kal AJ, van Wilpe S, Tabak HF. Expression of genes encoding peroxisomal proteins in Saccharomyces cerevisiae is regulated by different circuits of transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:79-86. [PMID: 7578261 DOI: 10.1016/0167-4781(95)00127-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In Saccharomyces cerevisiae induction of the FOX3 gene, encoding peroxisomal 3-oxoacyl-CoA thiolase, by growth on oleate as sole carbon source, is exerted via the cis-acting DNA element designated oleate response element (ORE) (Einerhand et al. (1991) Eur. J. Biochem. 200, 113-122). The transcription factor(s) binding to this upstream activation site (UAS) are still unknown, however. Induction of another peroxisomal enzyme, citrate synthase (CIT2) is dependent on the products of two genes called RTG1 and RTG2 (Liao and Butow (1993) Cell 72, 61-71). In the present study we have investigated whether RTG1 controls other genes coding for peroxisomal proteins, and whether such control takes place via the ORE. A number of genes coding for a variety of peroxisomal proteins such as: thiolase and catalase (peroxisomal matrix proteins), PAS3p (a peroxisomal membrane protein) and PAS10p (a protein involved in the import of peroxisomal proteins) were studied in their response to RTG1. Although the RTG1 and 2 products proved to be required for the increase in number and volume of peroxisomes upon induction by oleate, the single promoter output of the chosen set of genes remained practically unchanged in a rtg1 mutant strain. In addition gel retardation experiments indicated that RTG1 does not bind to the ORE. The behavior of genes coding for the various proteins also varied during repression, derepression and induction, indicating that probably a number of proteins are involved in tuning the output of each gene to cellular demand.
Collapse
Affiliation(s)
- W Kos
- E.C. Slater Institute, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
9
|
Hill PE, Walton PA. Import of microinjected proteins bearing the SKL peroxisomal targeting sequence into the peroxisomes of a human fibroblast cell line: evidence that virtually all peroxisomes are import-competent. J Cell Sci 1995; 108 ( Pt 4):1469-76. [PMID: 7615667 DOI: 10.1242/jcs.108.4.1469] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisomes import virtually all of their membrane and matrix proteins post-translationally. It is presently unknown whether, in mammalian cells, their exists a pool of mature peroxisomes which have received their complement of proteins and are import-incompetent. Previous work has shown that fibroblasts are capable of importing microinjected peroxisomal proteins into peroxisomes. This report describes the import of a hybrid peroxisomal protein into virtually all peroxisomes of the microinjected cell. The peroxisomal import was uniform in both short and long incubations. Pretreatment of the cells with cycloheximide did not affect the import of the peroxisomal protein, nor was there any difference in the distribution of the imported protein. Sequential microinjection experiments demonstrated that peroxisomes that had imported luciferase were capable of importing another peroxisomal protein injected 24 hours later. These results suggest that, in fibroblasts, all peroxisomes have associated protein-import machinery; this evidence does not support the hypothesis that there exists a pool of import-incompetent peroxisomes.
Collapse
Affiliation(s)
- P E Hill
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
10
|
Tan X, Waterham HR, Veenhuis M, Cregg JM. The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J Biophys Biochem Cytol 1995; 128:307-19. [PMID: 7844145 PMCID: PMC2120355 DOI: 10.1083/jcb.128.3.307] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We previously described the isolation of mutants of the methylotrophic yeast Hansenula polymorpha that are defective in peroxisome biogenesis. Here, we describe the characterization of one of these mutants, per8, and the cloning of the PER8 gene. In either methanol or methylamine medium, conditions that normally induce the organelles, per8 cells contain no peroxisome-like structures and peroxisomal enzymes are located in the cytosol. The sequence of PER8 predicts that its product (Per8p) is a novel polypeptide of 34 kD, and antibodies against Per8p recognize a protein of 31 kD. Analysis of the primary sequence of Per8p revealed a 39-amino-acid cysteine-rich segment with similarity to the C3HC4 family of zinc-finger motifs. Overexpression of PER8 results in a markedly enhanced increase in peroxisome numbers. We show that Per8p is an integral membrane protein of the peroxisome and that it is concentrated in the membranes of newly formed organelles. We propose that Per8p is a component of the molecular machinery that controls the proliferation of this organelle.
Collapse
Affiliation(s)
- X Tan
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000
| | | | | | | |
Collapse
|
11
|
Eitzen GA, Aitchison JD, Szilard RK, Veenhuis M, Nuttley WM, Rachubinski RA. The Yarrowia lipolytica gene PAY2 encodes a 42-kDa peroxisomal integral membrane protein essential for matrix protein import and peroxisome enlargement but not for peroxisome membrane proliferation. J Biol Chem 1995; 270:1429-36. [PMID: 7836411 DOI: 10.1074/jbc.270.3.1429] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PAY genes are required for peroxisome assembly in the yeast Yarrowia lipolytica. Here we show that a mutant strain, pay2, is disrupted for the import of proteins targeted by either peroxisomal targeting signal-1 or -2. Electron microscopy of pay2 cells revealed the presence of small peroxisomal "ghosts," similar to the vesicular structures found in fibroblasts of patients with the human peroxisome assembly disorder, Zellweger syndrome. Functional complementation of pay2 with a plasmid library of Y. lipolytica genomic DNA identified a gene, PAY2, that restores growth of pay2 on oleic acid, import of catalase and multifunctional enzyme into peroxisomes, and formation of wild type peroxisomes. The PAY2 gene encodes Pay2p, a hydrophobic polypeptide of 404 amino acids. An antibody raised against Pay2p recognizes a polypeptide of approximately 42-kDa whose synthesis is induced by growth of Y. lipolytica on oleic acid. Pay2p is a peroxisomal integral membrane protein, as it localizes to carbonate-stripped peroxisomal membranes. Pay2p shows no identity to any known protein. Our results suggest that Pay2p is essential for the activity of the peroxisomal import machinery but does not affect the initial steps of peroxisomal membrane proliferation.
Collapse
Affiliation(s)
- G A Eitzen
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Nicaud JM, Raynal A, Beyou A, Merkamm M, Ito H, Labat N. Stabilization of methionine-rich protein in Saccharomyces cerevisiae: targeting of BZN protein into the peroxisome. Curr Genet 1994; 26:390-7. [PMID: 7874730 DOI: 10.1007/bf00309924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have constructed a gene coding for the 12-kDa intermediate form of the 2s methionine-rich protein from Bertholletia excelsa seeds. This protein, expressed intracellularly in yeast, is characterised by a 20-min half-life. By adding 11 amino acids corresponding to the peroxisome-targeting sequence (PTSc) of luciferase, we have significantly increased its half-life. This stabilization allowed accumulation of the BZN protein into the peroxisome as judged by cell fractionation. Accumulation of the 12-kDa protein results in a significant increase of the total methionine content in yeast cells (30%) indicating that such a microorganism could represent a practicable protected shuttle for an animal-feed additive.
Collapse
Affiliation(s)
- J M Nicaud
- Laboratoire de recherche d'EUROLYSINE, Parc club Orsay Université, France
| | | | | | | | | | | |
Collapse
|
13
|
McCollum D, Monosov E, Subramani S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol 1993; 121:761-74. [PMID: 8098333 PMCID: PMC2119792 DOI: 10.1083/jcb.121.4.761] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously described the isolation of mutants of the yeast Pichia pastoris that are deficient in peroxisome assembly (pas mutants). We describe the characterization of one of these mutants, pas8, and the cloning of the PAS8 gene. The pas8 mutant is deficient for growth, but not for division or segregation of peroxisomes, or for induction of peroxisomal proteins. Two distinct peroxisomal targeting signals, PTS1 and PTS2, have been identified that are sufficient to direct proteins to the peroxisomal matrix. We show that the pas8 mutant is deficient in the import of proteins with the PTS1, but not the PTS2, targeting signal. This is the same import deficiency as that found in cells from patients with the lethal human peroxisomal disorder Zellweger syndrome. Cloning and sequencing of the PAS8 gene reveals that it is a novel member of the tetratricopeptide repeat gene family. Antibodies raised against bacterially expressed PAS8 are used to show that PAS8 is a peroxisomal, membrane-associated protein. Also, we have found that in vitro translated PAS8 protein is capable of binding the PTS1 targeting signal specifically, raising the possibility that PAS8 is a PTS1 receptor.
Collapse
Affiliation(s)
- D McCollum
- Department of Biology, University of California, San Diego, La Jolla 92093-0322
| | | | | |
Collapse
|
14
|
Veenhuis M, van der Klei IJ, Titorenko V, Harder W. Hansenula polymorpha: an attractive model organism for molecular studies of peroxisome biogenesis and function. FEMS Microbiol Lett 1992; 100:393-403. [PMID: 1478473 DOI: 10.1111/j.1574-6968.1992.tb14068.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In wild-type Hansenula polymorpha the proliferation of peroxisomes in induced by various unconventional carbon- and nitrogen sources. Highest induction levels, up to 80% of the cytoplasmic volume, are observed in cells grown in methanol-limited chemostat cultures. Based on our accumulated experience, we are now able to precisely adjust both the level of the peroxisome induction as well as their protein composition by specific adaptations in growth conditions. During the last few years a series of "peroxisome-deficient (per) mutants of H. polymorpha have been isolated and characterized. Phenotypically these mutants are characterized by the fact that they are not able to grow on methanol. Three mutant phenotypes were defined on the basis of morphological criteria, namely: (a) mutants completely lacking peroxisomes (Per-;13 complementation groups); (b) mutants containing few small peroxisomes which are partly impaired in the peroxisomal import of matrix proteins (Pim-; five complementation groups); and (c) mutants with aberrations in the peroxisomal substructure (Pss-; two complementation groups). In addition, several conditional Per-, Pim- and Pss- mutants have been obtained. In all cases the mutant phenotype was shown to be caused by a recessive mutation in one gene. However, we observed that different mutations in one gene may cause different morphological mutant phenotypes. A detailed genetic analysis revealed that several PER genes, essential for peroxisome biogenesis, are tightly linked and organized in a hierarchical fashion. The use of both constitual and conditional per mutants in current and future studies of the molecular mechanisms controlling peroxisome biogenesis and function is discussed.
Collapse
Affiliation(s)
- M Veenhuis
- Biological Centre, University of Groningen, Netherlands
| | | | | | | |
Collapse
|
15
|
Veenhuis M, Klei I, Titorenko V, Harder W. Hansenula polymorpha: An attractive model organism for molecular studies of peroxisome biogenesis and function. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05731.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Hansen H, Didion T, Thiemann A, Veenhuis M, Roggenkamp R. Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:269-78. [PMID: 1465101 DOI: 10.1007/bf00279370] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dihydroxyacetone synthase (DAS) and methanol oxidase (MOX) are the major enzyme constituents of the peroxisomal matrix in the methylotrophic yeast Hansenula polymorpha when grown on methanol as a sole carbon source. In order to characterize their topogenic signals the localization of truncated polypeptides and hybrid proteins was analysed in transformed yeast cells by subcellular fractionation and electron microscopy. The C-terminal part of DAS, when fused to the bacterial beta-lactamase or mouse dihydrofolate reductase, directed these hybrid polypeptides to the peroxisome compartment. The targeting signal was further delimited to the extreme C-terminus, comprising the sequence N-K-L-COOH, similar to the recently identified and widely distributed peroxisomal targeting signal (PTS) S-K-L-COOH in firefly luciferase. By an identical approach, the extreme C-terminus of MOX, comprising the tripeptide A-R-F-COOH, was shown to be the PTS of this protein. Furthermore, on fusion of a C-terminal sequence from firefly luciferase including the PTS, beta-lactamase was also imported into the peroxisomes of H. polymorpha. We conclude that, besides the conserved PTS (or described variants), other amino acid sequences with this function have evolved in nature.
Collapse
Affiliation(s)
- H Hansen
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, FRG
| | | | | | | | | |
Collapse
|
17
|
Waterham HR, Titorenko VI, Van Der Klei IJ, Harder W, Veenhuis M. Isolation and characterization of peroxisomal protein import (Pim−) mutants ofHansenula polymorpha. Yeast 1992. [DOI: 10.1002/yea.320081106] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Affiliation(s)
- M J de Hoop
- Laboratory of Biochemistry, Groningen University, The Netherlands
| | | |
Collapse
|
19
|
Affiliation(s)
- R Roggenkamp
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
20
|
Affiliation(s)
- M Veenhuis
- Biological Centre, University of Groningen, The Netherlands
| |
Collapse
|
21
|
Walton PA, Gould SJ, Rachubinski RA, Subramani S, Feramisco JR. Transport of microinjected alcohol oxidase from Pichia pastoris into vesicles in mammalian cells: involvement of the peroxisomal targeting signal. J Cell Biol 1992; 118:499-508. [PMID: 1639840 PMCID: PMC2289536 DOI: 10.1083/jcb.118.3.499] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This report describes the microinjection of a purified peroxisomal protein, alcohol oxidase, from Pichia pastoris into mammalian tissue culture cells and the subsequent transport of this protein into vesicular structures. Transport was into membrane-enclosed vesicles as judged by digitonin-permeabilization experiments. The transport was time and temperature dependent. Vesicles containing alcohol oxidase could be detected as long as 6 d after injection. Coinjection of synthetic peptides containing a consensus carboxyterminal tripeptide peroxisomal targeting signal resulted in abolition of alcohol oxidase transport into vesicles in all cell lines examined. Double-label experiments indicated that, although some of the alcohol oxidase was transported into vesicles that contained other peroxisomal proteins, the bulk of the alcohol oxidase did not appear to be transported to preexisting peroxisomes. While the inhibition of transport of alcohol oxidase by peptides containing the peroxisomal targeting signal suggests a competition for some limiting component of the machinery involved in the sorting of proteins into peroxisomes, the organelles into which the majority of the protein is targeted appear to be unusual and distinct from endogenous peroxisomes by several criteria. Microinjected alcohol oxidase was transported into vesicles in normal fibroblasts and also in cell lines derived from patients with Zellweger syndrome, which are unable to transport proteins containing the ser-lys-leu-COOH peroxisomal targeting signal into peroxisomes (Walton et al., 1992). The implications of this result for the mechanism of peroxisomal protein transport are discussed.
Collapse
|
22
|
Abstract
The observation that peroxisomes of Saccharomyces cerevisiae can be induced by oleic acid has opened the possibility to investigate the biogenesis of these organelles in a biochemically and genetically well characterized organism. Only few enzymes have been identified as peroxisomal proteins in Saccharomyces cerevisiae so far; the three enzymes involved in beta-oxidation of fatty acids, enzymes of the glyoxylate cycle, catalase A and the PAS3 gene product have been unequivocally assigned to the peroxisomal compartment. However, more proteins are expected to be constituents of the peroxisomes in Saccharomyces cerevisiae. Mutagenesis of Saccharomyces cerevisiae cells gave rise to mutants unable to use oleic acid as sole carbon source. These mutants could be divided in two groups: those with defects in structural genes of beta-oxidation enzymes (fox-mutants) and those with defects in peroxisomal assembly (pas-mutants). All fox-mutants possess morphologically normal peroxisomes and can be assigned to one of three complementation groups (FOX1, 2, 3). All three FOX genes have been cloned and characterized. The pas-mutants isolated are distributed among 13 complementation groups and represent 3 different classes: peroxisomes are either morphologically not detectable (type I) or present but non-proliferating (type II). Mislocalization concerns all peroxisomal proteins in cells of these two classes. The third class of mutants contains peroxisomes normal in size and number, however, distinct peroxisomal matrix proteins are mislocalized (type III). Five additional complementation groups were found in the laboratory of H.F. Tabak. Not all PAS genes have been cloned and characterized so far, and only for few of them the function could be deduced from sequence comparisons. Proliferation of microbodies is repressed by glucose, derepressed by non-fermentable carbon sources and fully induced by oleic acid. The regulation of four genes encoding peroxisomal proteins (PAS1, CTA1, FOX2, FOX3) occurs on the transcriptional level and reflects the morphological observations: repression by glucose and induction by oleic acid. Moreover, trans-acting factors like ADR1, SNF1 and SNF4, all involved in derepression of various cellular processes, have been demonstrated to affect transcriptional regulation of genes encoding peroxisomal proteins. The peroxisomal import machinery seems to be conserved between different organisms as indicated by import of heterologous proteins into microbodies of different host cells. In addition, many peroxisomal proteins contain C-terminal targeting signals. However, more than one import route into peroxisomes does exist.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W H Kunau
- Abteilung Zellbiochemie, Medizinische Fakultät, Ruhr-Universität, Bochum, Germany
| | | |
Collapse
|
23
|
Waterham HR, Keizer-Gunnink I, Goodman JM, Harder W, Veenhuis M. Development of multipurpose peroxisomes in Candida boidinii grown in oleic acid-methanol limited continuous cultures. J Bacteriol 1992; 174:4057-63. [PMID: 1350779 PMCID: PMC206116 DOI: 10.1128/jb.174.12.4057-4063.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the development and metabolic significance of peroxisomes in the yeast Candida boidinii following adaptation of the organism to cultivation conditions which require the simultaneous presence and activity of two independent peroxisome-mediated pathways for growth. After the addition of methanol to oleic acid-grown cells at late exponentional growth, a number of new small peroxisomes developed which, apart from the presence of beta-oxidation enzymes, were characterized by the presence of enzymes involved in methanol metabolism (alcohol oxidase and dihydroxyacetone synthase). The latter proteins, however, were absent in the larger organelles which were originally present in the oleic acid-grown cells prior to the addition of methanol and which contained only enzymes of the beta-oxidation pathway. Subsequent experiments on cells from continuous cultures grown on a mixture of oleic acid and methanol at steady-state conditions revealed that both the enzymes of the beta-oxidation pathway and those involved in methanol metabolism were found in one and the same compartment. Thus, under these conditions the cells contained peroxisomes which were concurrently involved in the metabolism of two different carbon sources simultaneously used for growth. Our results indicated that the heterogeneity in the peroxisomal population of a single cell, observed in the transient state following the addition of methanol, is only temporary and due to heterogeneity among these organelles with respect to their capacity to incorporate newly synthesized matrix proteins.
Collapse
Affiliation(s)
- H R Waterham
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
De Hoop MJ, Valkema R, Kienhuis CB, Hoyer MA, Ab G. The peroxisomal import signal of amine oxidase from the yeast Hansenula polymorpha is not universal. Yeast 1992; 8:243-52. [PMID: 1514323 DOI: 10.1002/yea.320080402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M J De Hoop
- Laboratory of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Einerhand AW, Voorn-Brouwer TM, Erdmann R, Kunau WH, Tabak HF. Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:113-22. [PMID: 1715273 DOI: 10.1111/j.1432-1033.1991.tb21056.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transferring Saccharomyces cerevisiae cells from glucose- to oleate-containing growth media results in a significant increase in the number and volume of peroxisomes. To investigate this proliferation process we studied the transcriptional regulation of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase (EC 2.3.1.16) in response to the switch in carbon source. Expression was proved to be repressed during growth on glucose, derepressed during growth on glycerol, and induced during growth on oleate as the sole carbon source. By deletion and mutational analysis of sequences upstream of this gene, we have identified a region which is involved in the regulation of transcription. It is contained within a 52-base-pair sequence, UAST52 (upstream activation sequence thiolase 52), located between 203 and 151 nucleotides upstream of the translational initiation codon. This sequence proved to be required for repression, derepression and induction of transcription, and was able to activate transcription from the truncated version of the heterologous iso-1-cytochrome-c (CYC1) promoter in a similar way as in the wild-type promoter context. Sequence comparison revealed that the UAST52 contained a sequence motif ('beta-oxidation box') that is very similar to sequences located in the 5'-upstream regions of the genes coding for two other beta-oxidation enzymes of S. cerevisiae: the peroxisomal acyl-CoA oxidase and the peroxisomal trifunctional beta-oxidation enzyme of S. cerevisiae. Mutational analysis of the 'beta-oxidation box' indicates that this sequence motif acts as a UAS in vivo. Sequence comparison also revealed that just upstream of the 'beta-oxidation box', between positions -213 and -201, a potential binding site occurred for the yeast multifunctional autonomously replicating sequence binding factor ABF1. Gel-retardation-competition experiments indicate that ABF1 binds specifically to this sequence.
Collapse
Affiliation(s)
- A W Einerhand
- E.C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
van der Klei IJ, Harder W, Veenhuis M. Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 1991; 7:195-209. [PMID: 1882546 DOI: 10.1002/yea.320070302] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alcohol oxidase (AO) catalyses the first step of methanol metabolism in yeasts. In vivo the enzyme is compartmentalized in special cell compartments, called peroxisomes. The enzyme along with the organelles are induced during growth of methylotrophic yeasts on methanol as the sole carbon source. Like all other peroxisomal matrix proteins, AO is encoded by a nuclear gene. Expression of the protein is regulated by a repression/derepression mechanism, but also by induction. Inactive monomeric precursor protein is synthesized in the cytosol and subsequently imported post-translationally into peroxisomes without further processing. Assembly into the active homo-octameric enzyme and binding of the prosthetic group flavin adenine dinucleotide occurs inside the organelle. When enhanced concentration of octameric alcohol oxidase are present in the organelles, the enzyme may form a crystalloid. Oligomerization is not dependent on translocation of AO precursors into their target organelle since octameric, active AO is detected in the cytosol and nucleus of peroxisome-deficient mutants of Hansenula polymorpha: at high expression rates large cytosolic AO crystalloids are formed, which occasionally are also encountered inside the nucleus of such mutants. This paper summarizes recent findings and views on the mechanisms involved in synthesis, import, assembly and crystallization of this important peroxisomal enzyme.
Collapse
Affiliation(s)
- I J van der Klei
- Department of Microbiology, Biological Center, Kerklaan, The Netherlands
| | | | | |
Collapse
|
27
|
Abstract
This symposium marks the 15th anniversary of the discovery of microbodies in methylotrophic yeasts. In the intervening years much has been learned about the structure, function and biogenesis of these organelles and these advances are described. As our endeavours continued, unexpected results have confused commonly held views. This was for instance the case when microbody-minus mutants of yeasts became available which showed that some microbody matrix enzymes may be functional when present in the cytosol while others are not. At the molecular level, our understanding of structure/function relationships is also expanding. Examples are structural elements which relate to protein topogenesis and function of enzymes in different cell compartments. Other, perhaps more unusual, adaptations have also been encountered; some involve protein-protein interactions or even modified cofactors which possibly have helped methylotrophic yeasts to establish and/or maintain themselves in natural ecosystems.
Collapse
Affiliation(s)
- W Harder
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| |
Collapse
|