1
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Cai
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-Fang Shen
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet Biol 2018; 117:21-29. [PMID: 29763675 DOI: 10.1016/j.fgb.2018.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 01/25/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) is an economically important group of pathogenic filamentous fungi that are able to infect both animals and plants. Reverse genetic techniques, including gene disruption/deletion methods, to study these fungi are available although limitations exist resulting in decreased efficiency. Herein we describe a gene editing system developed using a F. oxysporum-optimized Cas9 ribonucleoprotein (RNP) and protoplast transformation method. The Cas9 protein and sgRNA were assembled to form a stable RNP in vitro and this complex was transferred into fungal protoplasts for gene editing with PEG-mediated transformation. In order to determine if the Cas9 RNP system is functional in the FOSC protoplasts and assess the efficacy of the system, two genes, URA5 and URA3, were selected for targeted disruption generating uracil auxotroph mutants that are resistant to 5-fluoroorotic acid, 5-FOA. In addition, a gene in a secondary metabolite biosynthetic cluster, the ortholog of BIK1, was mutated using this system and the maximum efficiency of this gene disruption was about 50%. Further analysis of the bik1 mutant confirmed that this polyketide synthase was involved in the synthesis of the red pigment, bikaverin. The mutants generated in this study displayed the strong expected phenotypes, demonstrating this F. oxysporum-optimized CRISPR/Cas9 system is stable and can efficiently disrupt the genes of interest.
Collapse
|
3
|
Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiol Genomics 2017; 49:549-566. [PMID: 28887370 DOI: 10.1152/physiolgenomics.00034.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Bioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S. cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; >65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey; .,Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gümüşhane University; Baglarbasi, Gumushane, Turkey; and
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| |
Collapse
|
4
|
Qi Z, Liu M, Dong Y, Yang J, Zhang H, Zheng X, Zhang Z. Orotate phosphoribosyl transferase MoPyr5 is involved in uridine 5'-phosphate synthesis and pathogenesis of Magnaporthe oryzae. Appl Microbiol Biotechnol 2016; 100:3655-66. [PMID: 26810198 DOI: 10.1007/s00253-016-7323-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/28/2023]
Abstract
Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| |
Collapse
|
5
|
Hermansen RA, Mannakee BK, Knecht W, Liberles DA, Gutenkunst RN. Characterizing selective pressures on the pathway for de novo biosynthesis of pyrimidines in yeast. BMC Evol Biol 2015; 15:232. [PMID: 26511837 PMCID: PMC4625875 DOI: 10.1186/s12862-015-0515-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/20/2015] [Indexed: 12/05/2022] Open
Abstract
Background Selection on proteins is typically measured with the assumption that each protein acts independently. However, selection more likely acts at higher levels of biological organization, requiring an integrative view of protein function. Here, we built a kinetic model for de novo pyrimidine biosynthesis in the yeast Saccharomyces cerevisiae to relate pathway function to selective pressures on individual protein-encoding genes. Results Gene families across yeast were constructed for each member of the pathway and the ratio of nonsynonymous to synonymous nucleotide substitution rates (dN/dS) was estimated for each enzyme from S. cerevisiae and closely related species. We found a positive relationship between the influence that each enzyme has on pathway function and its selective constraint. Conclusions We expect this trend to be locally present for enzymes that have pathway control, but over longer evolutionary timescales we expect that mutation-selection balance may change the enzymes that have pathway control. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0515-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Russell A Hermansen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA. .,Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Brian K Mannakee
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85721, USA.
| | - Wolfgang Knecht
- Department of Biology and Lund Protein Production Platform, Lund University, 22362, Lund, Sweden.
| | - David A Liberles
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA. .,Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection. J Biotechnol 2013; 168:185-93. [PMID: 23665193 DOI: 10.1016/j.jbiotec.2013.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/05/2013] [Accepted: 04/26/2013] [Indexed: 11/20/2022]
Abstract
To identify genome-wide targets for gene manipulation for increasing L-lactate production in recombinant Saccharomyces cerevisiae strains, we transformed all available single-gene deletion strains of S. cerevisiae with a plasmid carrying the human L-lactate dehydrogenase gene, and examined L-lactate production in the obtained transformants. The thresholds of increased or decreased L-lactate production were determined based on L-lactate production by the standard strain in repetitive experiments. L-lactate production data for 4802 deletion strains were obtained, and deletion strains with increased or decreased L-lactate production were identified. Functional category analysis of genes whose deletion increased L-lactate production revealed that ribosome biogenesis-related genes were overrepresented. Most deletion strains for genes related to ribosome biogenesis exhibited increased L-lactate production in 200-ml batch cultures. We deleted the genes related to ribosome biogenesis in a recombinant strain of S. cerevisiae with a genetic background different from that of the above deletion strains, and examined the effect of target gene deletion on L-lactate production. We observed that deletion of genes related to ribosome biogenesis leads to increased L-lactate production by recombinant S. cerevisiae strains, and the single-gene deletion strain collection could be utilized in identifying target genes for improving L-lactate production in S. cerevisiae recombinant strains.
Collapse
|
7
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
8
|
Mudge DK, Hoffman CA, Lubinski TJ, Hoffman CS. Use of a ura5+-lys7+ cassette to construct unmarked gene knock-ins in Schizosaccharomyces pombe. Curr Genet 2011; 58:59-64. [PMID: 22198627 DOI: 10.1007/s00294-011-0360-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/07/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
While the counterselectable Schizosaccharomyces pombe ura4(+) gene can be used to prepare a site in the S. pombe genome to receive an unmarked mutant allele (loss of ura4(+) confers 5FOA-resistant (5FOA(R)) growth), the desired unmarked knock-in strains are generally outnumbered by spontaneously arising 5FOA(R) mutants. Relative to the same approach using the homologous URA3(+) gene in Saccharomyces cerevisiae, knock-ins in S. pombe are harder to identify due to a lower efficiency of homologous recombination and a relatively high background of spontaneous 5FOA(R) colonies. To develop an improved method for identifying cells receiving unmarked mutant alleles, we first determined that 5FOA(R) strains carry mutations in either of two genes; ura4(+) and ura5(+). We then cloned the S. pombe ura5(+) orotate phosphoribosyltransferase gene and constructed a 2.1 kb cassette containing ura5(+) together with the S. pombe lys7(+) gene. Using this doubly marked cassette to disrupt the sck1(+) kinase gene, we can distinguish between strains created by homologous knock-in of unmarked wild-type or kinase-dead alleles and spontaneously arising ura4(-) and ura5(-) mutants by screening 5FOA(R) colonies for the loss of the lys7(+) marker. The utility of this system, especially when the phenotype for the strain carrying the knock-in allele is indistinguishable from that of the disruption strain, is borne out by the fact that ~95% of 5FOA(R) colonies in our studies arose from background ura4(-) and ura5(-) mutations.
Collapse
Affiliation(s)
- Dayna K Mudge
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
9
|
Grassi L, Tramontano A. Horizontal and vertical growth of S. cerevisiae metabolic network. BMC Evol Biol 2011; 11:301. [PMID: 21999464 PMCID: PMC3216907 DOI: 10.1186/1471-2148-11-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.
Collapse
Affiliation(s)
- Luigi Grassi
- Physics Department, Sapienza University of Rome, Roma, Italy
| | | |
Collapse
|
10
|
Brand A, MacCallum DM, Brown AJP, Gow NAR, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. EUKARYOTIC CELL 2005; 3:900-9. [PMID: 15302823 PMCID: PMC500875 DOI: 10.1128/ec.3.4.900-909.2004] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine auxotrophy, based on disruption of both URA3 alleles in diploid Candida albicans strain SC5314, has been widely used to select gene deletion mutants created in this fungus by "Ura-blasting" and PCR-mediated disruption. We compared wild-type URA3 expression with levels in mutant strains where URA3 was positioned either within deleted genes or at the highly expressed RPS10 locus. URA3 expression levels differed significantly and correlated with the specific activity of Ura3p, orotidine 5'-monophosphate decarboxylase. Reduced URA3 expression following integration at the GCN4 locus was associated with an attenuation of virulence. Furthermore, a comparison of the SC5314 (URA3) and CAI-4 (ura3) proteomes revealed that inactivation of URA3 caused significant changes in the levels of 14 other proteins. The protein levels of all except one were partially or fully restored by the reintegration of a single copy of URA3 at the RPS10 locus. Transcript levels of genes expressed ectopically at this locus in reconstituted heterozygous mutants also matched the levels found when the genes were expressed at their native loci. Therefore, phenotypic changes in C. albicans can be associated with the selectable marker rather than the target gene. Reintegration of URA3 at an appropriate expression locus such as RPS10 can offset most problems related to the phenotypic changes associated with gene knockout methodologies.
Collapse
Affiliation(s)
- Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Fraser JLA, Neill E, Davey S. Fission yeast Uve1 and Apn2 function in distinct oxidative damage repair pathways in vivo. DNA Repair (Amst) 2004; 2:1253-67. [PMID: 14599746 DOI: 10.1016/j.dnarep.2003.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Schizosaccharomyces pombe, the endonuclease Uve1 functions as the first step in an alternate UV photo-product repair pathway that is distinct from nucleotide excision repair (NER). Based upon the broad substrate specificity of Uve1 in vitro, and the observation that Uve1 mutants accumulate spontaneous mutations at an elevated rate in vivo, we and others have hypothesized that this protein might have a function in a mutation avoidance pathway other than UV photo-product repair. We show here that fission yeast Uve1 also functions in oxidative damage repair in vivo. We have determined the spectrum of spontaneous mutations that arise in uve1 null (uve1 degrees ) cells and have observed that both G-->T(C-->A) and T-->G(A-->C) transversions occur at an increased rate relative to wildtype cells. These mutations are indicative of unrepaired oxidative DNA damage and are very similar to the mutation spectrum observed in 8-oxoguanine glycosylase (OGG1) mutants in Saccharomyces cerevisiae. We have generated an apn2 null (apn2 degrees ) strain and shown that it is mildly sensitive to H(2)O(2). Furthermore we have also shown that apn2 degrees cells have an elevated rate of spontaneous mutation that is similar to uve1 degrees. The phenotype of apn2 degrees uve1 degrees double mutants indicates that these genes define distinct spontaneous mutation avoidance pathways. While uve1 degrees cells show only a modest sensitivity to the oxidizing agent hydrogen peroxide (H(2)O(2)), both uve1 degrees and apn2 degrees cells also display a marked increased in mutation rate following exposure to H(2)O(2) doses. Collectively these data demonstrate that Uve1 is a component of multiple alternate repair pathways in fission yeast and suggest a possible role for Uve1 in a general alternate incision repair pathway in eukaryotes.
Collapse
Affiliation(s)
- J Lee A Fraser
- Department of Pathology, Queen's University, ON, Kingston, Canada K7L 3N6
| | | | | |
Collapse
|
12
|
Nett JH, Gerngross TU. Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris. Yeast 2004; 20:1279-90. [PMID: 14618566 DOI: 10.1002/yea.1049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A pair of degenerate primers was used for amplification and cloning of a DNA fragment containing parts of the P. pastoris URA5 and SEC65 genes. Using additional information from a partial genomic sequence of P. pastoris, we cloned and sequenced a 1.9 kb chromosomal fragment containing the complete orotate-phosphoribosyltransferase-encoding URA5 gene. A disruption cassette was constructed by replacing a small part of the open reading frame with a kanamycin-resistance gene. The P. pastoris wild-type strain NRRL Y-11430 was transformed with the disruption cassette and an ura5 auxotrophic strain was identified. To generate marker constructs that can be reused in successive transformations of a single strain, we constructed two lacZ-PpURA3-lacZ and lacZ-PpURA5-lacZ cassettes and used them to disrupt PpOCH1. The PpURA3 and PpURA5 genes in the disruptants were then successfully recycled by selecting for resistance to 5'-fluoro-orotic acid. We also assembled a set of modular plasmids that can be used for the stable genetic modification of P. pastoris via a double cross-over event. The sequence presented here has been submitted to the EMBL data library under Accession No. AY303544.
Collapse
Affiliation(s)
- Juergen H Nett
- GlycoFi Inc 21 Lafayette St., Suite 200, Lebanon, NH, USA
| | | |
Collapse
|
13
|
Arikawa Y, Yamada M, Shimosaka M, Okazaki M, Fukuzawa M. Isolation of sake yeast mutants producing a high level of ethyl caproate and/or isoamyl acetate. J Biosci Bioeng 2000. [DOI: 10.1016/s1389-1723(00)90016-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Yu JJ, Zheng L, Thomas PW, Szaniszlo PJ, Cole GT. Isolation and confirmation of function of the Coccidioides immitis URA5 (orotate phosphoribosyl transferase) gene. Gene 1999; 226:233-42. [PMID: 9931494 DOI: 10.1016/s0378-1119(98)00556-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The OPRTase (URA5) gene of the human pathogenic fungus, Coccidioides immitis (Ci), was cloned, sequenced, chromosome-mapped and expressed both by transformation of Escherichia coli and by complementation of wdura5Delta, an auxotrophic strain of Wangiella dermatitidis (Wd) with a disrupted URA5 gene. A functional assay of the recombinant URA5 expressed by E. coli was conducted to ensure that the isolated Ci gene encodes the appropriate enzyme. In the absence of a transformation system for Ci, we also used a reported method of introduction of heterologous DNA into cells of the phylogenetically related fungus, Wangiella dermatitidis, to confirm the function of the Ci URA5 gene. Both the genomic and cDNA sequences of the Ci URA5 gene are presented. The transcription start point and two poly(A) addition sites were confirmed. The gene contains a 714-bp ORF that translates a 238-amino-acid (aa) protein of 25.5kDa and pI of 6.5. No introns are present. The translated protein contains a single, putative N-glycosylation site. The deduced Ci protein showed 55-63% aa sequence similarity to reported fungal OPRTases. The URA5 gene was mapped to chromosome IV of Ci, and was shown to be a single copy gene by Southern and Northern hybridizations. Transformation of the wdura5Delta mutant to prototrophy was accomplished by electroporation of Wd yeast cells with the Ci URA5 gene. Cellular uptake of the heterologous DNA was confirmed by Southern hybridization. The stable transformants were unable to grow on a medium containing 5-FOA. Expression of the Ci URA5 gene can be used as a selectable marker for a transformation system, and the latter is essential for molecular studies of this pathogenic fungus.
Collapse
Affiliation(s)
- J J Yu
- Department of Microbiology and Immunology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614-5806, USA
| | | | | | | | | |
Collapse
|
15
|
Witte JF, Tsou R, McClard RW. Cloning, overproduction, and purification of native and mutant recombinant yeast orotate phosphoribosyltransferase and the demonstration from magnetization inversion transfer that a proposed oxocarbocation intermediate does not have a kinetic lifetime. Arch Biochem Biophys 1999; 361:106-12. [PMID: 9882434 DOI: 10.1006/abbi.1998.0971] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene for orotate phosphoribosyltransferase from Saccharomyces cerevisiae has been subcloned into an Escherichia coli overexpression vector and the enzyme has been produced in large quantities, thus simplifying the purification to one step. We were able to repeat the published (J. Victor, L. B. Greenberg, and D. L. Sloan J. Biol. Chem. 254, 2647-2655, 1979). 32PPi/5-phosphorylribose 1-alpha-diphosphate exchange experiments and could demonstrate the exchange by magnetization inversion transfer NMR experiments as well. However, when contaminating orotidine 5'-monophosphate (OMP) was eliminated with OMP decarboxylase, any evidence of magnetization transfer vanished. Consequently, it is concluded that a ping pong mechanism is not operable and that a previously proposed oxocarbocation intermediate along the pathway to OMP does not persist long enough in the catalytic cycle of this enzyme to be recognized by NMR exchange experiments.
Collapse
Affiliation(s)
- J F Witte
- Arthur F. Scott Laboratory of Chemistry, Reed College, Portland, Oregon, 97202-8199, USA
| | | | | |
Collapse
|
16
|
Woods JP, Retallack DM, Heinecke EL, Goldman WE. Rare homologous gene targeting in Histoplasma capsulatum: disruption of the URA5Hc gene by allelic replacement. J Bacteriol 1998; 180:5135-43. [PMID: 9748447 PMCID: PMC107550 DOI: 10.1128/jb.180.19.5135-5143.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Accepted: 07/29/1998] [Indexed: 11/20/2022] Open
Abstract
URA5 genes encode orotidine-5'-monophosphate pyrophosphorylase (OMPpase), an enzyme involved in pyrimidine biosynthesis. We cloned the Histoplasma capsulatum URA5 gene (URA5Hc) by using a probe generated by PCR with inosine-rich primers based on relatively conserved sequences in OMPpases from other organisms. Transformation with this gene restored uracil prototrophy and OMPpase activity to UV-mutagenized ura5 strains of H. capsulatum. We attempted to target the genomic URA5 locus in this haploid organism to demonstrate homologous allelic replacement with transforming DNA, which has not been previously done in H. capsulatum and has been challenging in some other pathogenic fungi. Several strategies commonly used in Saccharomyces cerevisiae and other eukaryotes were unsuccessful, due to the frequent occurrence of ectopic integration, linear plasmid formation, and spontaneous resistance to 5-fluoroorotic acid, which is a selective agent for URA5 gene inactivation. Recent development of an efficient electrotransformation system and of a second selectable marker (hph, conferring hygromycin B resistance) for this fungus enabled us to achieve allelic replacement by using transformation with an insertionally inactivated Deltaura5Hc::hph plasmid, followed by dual selection with hygromycin B and 5-fluoroorotic acid, or by screening hygromycin B-resistant transformants for uracil auxotrophy. The relative frequency of homologous gene targeting was approximately one allelic replacement event per thousand transformants. This work demonstrates the feasibility but also the potential challenge of gene disruption in this organism. To our knowledge, it represents the first example of experimentally directed allelic replacement in H. capsulatum, or in any dimorphic systemic fungal pathogen of humans.
Collapse
Affiliation(s)
- J P Woods
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
17
|
Bayles DO, Fennington GJ, Hughes TA. Sequence and phylogenetic analysis of the Rhizobium leguminosarum biovar trifolii pyrE gene, overproduction, purification and characterization of orotate phosphoribosyltransferase. Gene X 1997; 195:329-36. [PMID: 9305779 DOI: 10.1016/s0378-1119(97)00192-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pyrE gene of Rhizobium leguminosarum biovar trifolii (Rl) was subcloned and its sequence is presented. The nucleotide sequence analysis suggests that this gene is not regulated by transcriptional attenuation as seen for the pyrE and pyrB genes of Escherichia coli (Ec) and Salmonella typhimurium. The Rl pyrE gene was subcloned into Ec AT2538 pyrE60 where the Rl pyrE gene product, orotate phosphoribosyltransferase (OPRTase), was overproduced. Using Ec AT2538 pyrE60 overproducing Rl OPRTase, the enzyme was purified to homogeneity utilizing ammonium sulfate fractionation and affinity chromatography with an orotate monophosphate agarose matrix. The electrophoretically pure OPRTase was characterized and found to be a 24.7 +/- 0.3-kDa protein with a K(m) of 27.6 micromol l(-1). The deduced amino acid sequence for OPRTase was compared with OPRTases from other organisms and found to be most similar to that of Bacillus subtilis (Bs). The Rl OPRTase exhibits 37% identity and 46% similarity to the Bs OPRTase.
Collapse
Affiliation(s)
- D O Bayles
- Illinois State University, Department of Biological Sciences, Normal, USA
| | | | | |
Collapse
|
18
|
Sánchez M, Prado M, Iglesias FJ, Domínguez A. Cloning and sequencing of the URA5 gene from the yeast Yarrowia lipolytica. Yeast 1995; 11:425-33. [PMID: 7597846 DOI: 10.1002/yea.320110505] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The URA5 gene of Yarrowia lipolytica encoding the orotate phosphoribosyl transferase (OPRTase, EC2.4.2.10) was isolated by target integration in a mutant strain originally named ura2.21. The nucleotide sequence of the gene predicts a protein with high similarities with the OPRTases from Saccharomyces cerevisiae, Podospora anserina and Escherichia coli and to a lesser extent with that of Dictyostelium discoideum. The transcription start point has been mapped by primer extension analysis and indicates the existence of a long leader sequence in the corresponding mRNA. Northern-blot hybridization revealed the URA5 transcript to be approximately 0.94 kb. Deletion of the URA5 gene in Y. lipolytica produced a leaky phenotype similar to the one described for the ura5 mutation in S. cerevisiae. The URA5 gene of Y. lipolytica was able to complement functionally the ura5 mutation of S. cerevisiae.
Collapse
Affiliation(s)
- M Sánchez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
19
|
Hohmann S, Van Dijck P, Luyten K, Thevelein JM. The byp1-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNA(GLN) (CAG): Ggs1/Tps1 protein levels restraining growth on fermentable sugars and trehalose accumulation. Curr Genet 1994; 26:295-301. [PMID: 7882422 DOI: 10.1007/bf00310492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Byp1-3 is an amber nonsense allele of the Saccharomyces cerevisiae GGS1/TPS1 gene which encodes the small subunit of the trehalose synthase complex. Mutations in this gene confer an inability to grow on glucose or fructose but the phenotype of byp1-3 mutants is leaky in a strain-dependent manner. Overexpression of the isolated byp1-3 allele suppressed the growth defect of a ggs1/tps1 delta mutant. Expression of an in-vitro-generated mutant allele of GGS1/TPS1 that lacks all the coding sequences downstream from the byp1-3 mutation led to the production of a shortened protein that did not complement the ggs1/tps1 delta mutant. We have isolated, as an allele-specific multi-copy suppressor of the growth defect of the byp1-3 mutant on fructose, the gene for tRNA(GLN) (CAG). Thus the leaky phenotype of byp1-3 mutants is due to a low level of read through of the internal nonsense codon by tRNA(GLN) (CAG). Using overexpression of the isolated byp1-3 allele, as well as of the tRNA(GLN) (CAG) gene, we were able to demonstrate that as little as about 10% of the normal Ggs1/Tps1 protein level is sufficient for slow growth on fructose. We also show a correlation between the level of Ggs1/Tps1, the ability to accumulate trehalose in stationary phase and the ability to grow on fermentable sugars. Sequence analysis of the cloned tRNA(GLN) (CAG) gene showed that it is located 700 bp upstream of URA10. However, we found considerable differences to the reported sequence of URA10, in particular in the non-coding region.
Collapse
Affiliation(s)
- S Hohmann
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit te Leuven, Leuven-Heverlee, Belgium
| | | | | | | |
Collapse
|
20
|
Nasr F, Bertauche N, Dufour ME, Minet M, Lacroute F. Heterospecific cloning of Arabidopsis thaliana cDNAs by direct complementation of pyrimidine auxotrophic mutants of Saccharomyces cerevisiae. I. Cloning and sequence analysis of two cDNAs catalysing the second, fifth and sixth steps of the de novo pyrimidine biosynthesis pathway. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:23-32. [PMID: 8041358 DOI: 10.1007/bf00280183] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An Arabidopsis thaliana cDNA library was used to complement Saccharomyces cerevisiae pyrimidine auxotrophic mutants. Mutants in all but one (carbamylphosphate synthetase) of the six steps in the de novo pyrimidine biosynthetic pathway could be complemented. We report here the cloning, sequencing and computer analysis of two cDNAs encoding the aspartate transcarbamylase (ATCase; EC 2.1.3.2) and orotate phosphoribosyltransferase-orotidine-5'-phosphate decarboxylase (OPRTase-OMPdecase; EC 2.4.2.10, EC 4.1.1.23) enzymes. These results confirm the presence in A. thaliana of a bifunctional gene whose product catalyses the last two steps of the pyrimidine biosynthetic pathway, as previously suggested by biochemical studies. The ATCase encoding cDNA sequence (PYRB gene) shows an open reading frame (ORF) of 1173 bp coding for 390 amino acids. The cDNA encoding OPRTase-OMPdecase (PYRE-F gene) shows an ORF of 1431 bp coding for 476 amino acids. Computer analysis of the deduced amino acid sequences of both cDNAs shows the expected high similarity with the ATCase, ornithine transcarbamylase (OTCase; EC 2.1.3.3), OPRTase and OMPdecase families. This heterospecific cloning approach increases our understanding of the genetic organization and interspecific functional conservation of the pyrimidine biosynthetic pathway and underlines its usefulness as a model for evolutionary studies.
Collapse
Affiliation(s)
- F Nasr
- Centre de Génétique Moléculaire, C.N.R.S., Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Shostak K, Jones ME. Orotidylate decarboxylase: insights into the catalytic mechanism from substrate specificity studies. Biochemistry 1992; 31:12155-61. [PMID: 1457411 DOI: 10.1021/bi00163a026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pyrimidine nucleotides were tested as substrates for pure yeast orotidylate decarboxylase in an attempt to gain insight into the nature of the catalytic mechanism of the enzyme. Substitutions of the 5-position in the pyrimidine ring of the orotidylate substrate resulted in compounds that are either excellent inhibitors or substrates of the enzyme. The 5-bromo- and 5-chloroorotidylates are potent inhibitors while the 5-fluoro derivative is a good substrate with a turnover number 30 times that observed with orotidylate. When carbon 5 of the pyrimidine ring is replaced by nitrogen in 5-azaorotidylate, the resulting compound is unstable in solution with a half-life of 25 min at pH 6. However, studies with freshly generated 5-azaorotidylate show that an enzyme-dependent reaction occurs, presumably decarboxylation. This enzyme reaction follows simple Michaelis-Menten kinetics. Because the 5-aza group is not electrophilic, an enzyme mechanism utilizing a nucleophilic addition of the enzyme at the 5-position is ruled out. We also present studies that are not compatible with a mechanism requiring the formation of a Schiff's base prior to decarboxylation. The enzyme is tolerant of modest substitution at the 4-position, for the 4-keto group can be replaced with a thioketone. However, no catalysis is observed when the same substitution is made at the 2-position. Similarities in the substrate specificity of orotate phosphoribosyltransferase and orotidylate decarboxylase led us to compare the amino acid sequences of the two enzymes; significant (20%) sequence homology was observed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Shostak
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599
| | | |
Collapse
|
23
|
Rasmussen JB, Panaccione DG, Fang GC, Hanau RM. The PYR1 gene of the plant pathogenic fungus Colletotrichum graminicola: selection by intraspecific complementation and sequence analysis. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:74-80. [PMID: 1435732 DOI: 10.1007/bf00286183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A spontaneous uridine-requiring auxotroph of Colletotrichum graminicola was recovered by selection for resistance to 5-fluoro-orotic acid. The auxotroph lacked orotate phosphoribosyl transferase (OPRTase) and was complemented with a clone from a cosmid library of C. graminicola DNA. A 3.1 kb HindIII-SalI fragment was subcloned from the cosmid and it could efficiently transform the auxotrophic strain to uridine prototrophy and integrate by site-specific recombination. This DNA fragment contains an open reading frame that is similar to OPRTase genes of the fungi Sordaria macrospora, Trichoderma reesei, Podospora anserina, and Saccharomyces cerevisiae. Based on the sequence similarities and the ability to restore uridine prototrophy, we conclude that the fragment contains the C. graminicola gene for OPRTase, which we have named PYR1. Our results demonstrate that cloning by complementation is feasible in C. graminicola, that the gene for OPRTase from C. graminicola can be useful as a selectable marker in transformation of the fungus, and that the OPRTase gene product is similar to OPRTase from other fungi.
Collapse
Affiliation(s)
- J B Rasmussen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1155
| | | | | | | |
Collapse
|
24
|
Stirling CJ, Hewitt EW. The S. cerevisiae SEC65 gene encodes a component of yeast signal recognition particle with homology to human SRP19. Nature 1992; 356:534-7. [PMID: 1313948 DOI: 10.1038/356534a0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translocation of proteins across the endoplasmic reticulum (ER) membrane represents the first step in the eukaryotic secretory pathway. In mammalian cells, the targeting of secretory and membrane protein precursors to the ER is mediated by signal recognition particle (SRP), a cytosolic ribonucleoprotein complex comprising a molecule of 7SL RNA and six polypeptide subunits (relative molecular masses 9, 14, 19, 54, 68 and 72K). In Saccharomyces cerevisiae, a homologue of the 54K subunit (SRP54) co-purifies with a small cytoplasmic RNA, scR1 (refs 4, 5). Genetic data indicate that SRP54 and scR1 are involved in translocation in vivo, suggesting the existence of an SRP-like activity in yeast. Whether this activity requires additional components similar to those found in mammalian SRP is not known. We have recently reported a genetic selection that led to the isolation of a yeast mutant, sec65-1, which is conditionally defective in the insertion of integral membrane proteins into the ER. Here we report the cloning and sequencing of the SEC65 gene, which encodes a 31.2K protein with significant sequence similarity to the 19K subunit of human SRP (SRP19). We also report the cloning of a multicopy suppressor of sec65-1, and its identification as the previously defined SRP54 gene, providing genetic evidence for an interaction between these gene products in vivo.
Collapse
Affiliation(s)
- C J Stirling
- Department of Biochemistry and Molecular Biology, Medical School, University of Manchester, UK
| | | |
Collapse
|
25
|
Ozier-Kalogeropoulos O, Fasiolo F, Adeline MT, Collin J, Lacroute F. Cloning, sequencing and characterization of the Saccharomyces cerevisiae URA7 gene encoding CTP synthetase. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:7-16. [PMID: 1753946 DOI: 10.1007/bf00293815] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The URA7 gene of Saccharomyces cerevisiae encodes CTP synthetase (EC 6.3.4.2) which catalyses the conversion of uridine 5'-triphosphate to cytidine 5'-triphosphate, the last step of the pyrimidine biosynthetic pathway. We have cloned and sequenced the URA7 gene. The coding region is 1710 bp long and the deduced protein sequence shows a strong degree of homology with bacterial and human CTP synthetases. Gene disruption shows that URA7 is not an essential gene: the level of the intracellular CTP pool is roughly the same in the deleted and the wild-type strains, suggesting that an alternative pathway for CTP synthesis exists in yeast. This could involve either a divergent duplicated gene or a different route beginning with the amination of uridine mono- or diphosphate.
Collapse
Affiliation(s)
- O Ozier-Kalogeropoulos
- Centre de Génétique Moléculaire du C.N.R.S. Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
26
|
de Boer JG, Glickman BW. Mutational analysis of the structure and function of the adenine phosphoribosyltransferase enzyme of Chinese hamster. J Mol Biol 1991; 221:163-74. [PMID: 1717694 DOI: 10.1016/0022-2836(91)80212-d] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have analyzed the adenine phosphoribosyltransferase (APRT) enzyme from Chinese hamster ovary cells through the study of mutants that are able to grow in the presence of the toxic adenine analogue 8-azaadenine. The distribution of the amino acid alterations was analyzed in terms of the binding regions for the purine and phosphoribosylpyrophosphate substrates and a comparison was made with mutants known in human APRT and human, mouse and hamster hypoxanthine-guanine phosphoribosyltransferase. A number of mutants were found to cluster in several regions of the amino acid sequence. Residual enzyme activity with adenine was determined and this was correlated with substrate binding regions. A model of the secondary structure features is proposed.
Collapse
Affiliation(s)
- J G de Boer
- York University Biology Department, Downsview, Ontario, Canada
| | | |
Collapse
|
27
|
Bergès T, Barreau C. Isolation of uridine auxotrophs from Trichoderma reesei and efficient transformation with the cloned ura3 and ura5 genes. Curr Genet 1991; 19:359-65. [PMID: 1913875 DOI: 10.1007/bf00309596] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Uridine auxotrophs of the filamentous fungus Trichoderma reesei have been selected using a positive screening procedure with 5-fluoro orotate. Mutants deficient for the orotidine-5'-phosphate decarboxylase gene (ura3 mutants) and for the orotate phosphoribosyl transferase gene (ura5 mutants) have been characterized. The homologous ura3 and ura5 genes have been isolated and used to transform the auxotrophic mutants. Transformation efficiency with these homologous systems is very high (greater than 10(4) transformants per micrograms DNA). Transformation occurred by integration of vector DNA at homologous and ectopic loci. Mitotic instability was observed among some of the transformants. Sequence analysis at the protein level, of the T. reesei ura3 and ura5 genes showed extensive blocks of homology, with the corresponding genes from other organisms. The ura3 gene from T. reesei contains an insertion of 103 aa. A similar sequence is also found inserted in OMPdecase from the pyrenomycetes Neurospora crassa and Cephalosporium acremonium.
Collapse
Affiliation(s)
- T Bergès
- Laboratoire de Génétique, UA CNRS 542, Université de Bordeaux II, Talence, France
| | | |
Collapse
|
28
|
Kern L, de Montigny J, Lacroute F, Jund R. Regulation of the pyrimidine salvage pathway by the FUR1 gene product of Saccharomyces cerevisiae. Curr Genet 1991; 19:333-7. [PMID: 1913872 DOI: 10.1007/bf00309592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Saccharomyces cerevisiae, the protein encoded by the FUR1 gene is absolutely required for the expression of uracil phosphoribosyl transferase activity. The occurrence of semi-dominant mutations for 5-fluorouracil-(5FU)-resistance at this locus led us to clone and sequence the semi-dominant fur1-5 allele. A single point mutation, resulting in the substitution of arginine 134 for serine, is responsible for this mutant phenotype. The fur1-5 allele is transcribed and expressed at the same level as the wild-type allele. But, in contrast with the wild-type, the UPRTase activity of the fur1-5 mutant strain is stimulated in vitro by UTP and does not, therefore, correspond to a loss of feedback of UPRTase activity. We found that uracil, as a free base, induces a significative increase in transcription and UPRTase activity in a wild-type strain as well as in uracil-overproducing mutants which principally explains the high efficiency of the pyrimidine salvage pathway in S. cerevisiae.
Collapse
Affiliation(s)
- L Kern
- Laboratoire de Génétique Physiologique, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | |
Collapse
|
29
|
Bouia A, Bringel F, Frey L, Belarbi A, Guyonvarch A, Kammerer B, Hubert JC. Cloning and structure of thepyrEgene ofLactobacillusplantarumCCM 1904. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04236.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Kern L, de Montigny J, Jund R, Lacroute F. The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 1990; 88:149-57. [PMID: 2189783 DOI: 10.1016/0378-1119(90)90026-n] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The FUR1 gene of Saccharomyces cerevisiae encodes uracil phosphoribosyltransferase (UPRTase) which catalyses the conversion of uracil into uridine 5'-monophosphate (UMP) in the pyrimidine salvage pathway. The FUR1 gene is included in a 2.1 kb genomic segment of DNA and is transcribed into a 1 kb poly(A)+mRNA. Sequencing has determined a 753 bp open reading frame capable of encoding a protein of 251 amino acids. The FUR1 genes for three recessive fur1 alleles, having different sensibilities to 5-fluorouridine (5-FUR) but identical levels of resistance to 5-fluorouracil (5-FU), were cloned and sequenced. Single bp changes located in different regions of the gene were found in each mutant. Two in vitro-constructed deletions of the FUR1 gene have been integrated at the chromosomal locus, giving strains with 5-FURR and 5-FURR mutant phenotype. Assays of UPRTase, uridine kinase, uridine ribohydrolase and uridine 5'-monophosphate nucleotidase enzymatic activities, in extracts of strains where the FUR1 gene is overexpressed or deleted, indicate that the FUR1 encoded protein possesses only UPRTase activity.
Collapse
Affiliation(s)
- L Kern
- Laboratoire de Génétique Physiologique, Institut de Biologie Moléculaire et Cellulaire du C.N.R.S., Strasbourg, France
| | | | | | | |
Collapse
|
31
|
de Montigny J, Kern L, Hubert JC, Lacroute F. Cloning and sequencing of URA10, a second gene encoding orotate phosphoribosyl transferase in Saccharomyces cerevisiae. Curr Genet 1990; 17:105-11. [PMID: 2182197 DOI: 10.1007/bf00312853] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Orotate phosphoribosyl transferase (OP-RTase) catalyses the transformation of orotate to OMP in the pyrimidine pathway. In the yeast Saccharomyces cerevisiae, the URA5 gene is known to encode this enzyme activity. In this paper we present the cloning and sequencing of a yeast gene, named URA10, encoding a second OPRTase enzyme. Comparison of the predicted amino acid sequences between URA5 and URA10 genes shows more than 75% similarity. These sequences have also been compared to those of Escherichia coli, Podospora anserina, Sordaria macrospora and Dictyostelium discoideum. Remarkable similarities in the primary structure of these proteins have been found. Gene disruption experiments revealed that URA10 gene expression is responsible for the leaky phenotype of a ura5 mutant. Assays of OPRTase activity in extracts from ura5 and ura10 mutants indicate that the URA10 product contributes only 20% of the total activity found in wild type cells.
Collapse
Affiliation(s)
- J de Montigny
- Laboratoire de génétique physiologique, I.B.M.C. du C.N.R.S., Strasbourg, France
| | | | | | | |
Collapse
|