1
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
2
|
Browning AP, Ansari N, Drovandi C, Johnston APR, Simpson MJ, Jenner AL. Identifying cell-to-cell variability in internalization using flow cytometry. J R Soc Interface 2022; 19:20220019. [PMID: 35611619 PMCID: PMC9131125 DOI: 10.1098/rsif.2022.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022] Open
Abstract
Biological heterogeneity is a primary contributor to the variation observed in experiments that probe dynamical processes, such as the internalization of material by cells. Given that internalization is a critical process by which many therapeutics and viruses reach their intracellular site of action, quantifying cell-to-cell variability in internalization is of high biological interest. Yet, it is common for studies of internalization to neglect cell-to-cell variability. We develop a simple mathematical model of internalization that captures the dynamical behaviour, cell-to-cell variation, and extrinsic noise introduced by flow cytometry. We calibrate our model through a novel distribution-matching approximate Bayesian computation algorithm to flow cytometry data of internalization of anti-transferrin receptor antibody in a human B-cell lymphoblastoid cell line. This approach provides information relating to the region of the parameter space, and consequentially the nature of cell-to-cell variability, that produces model realizations consistent with the experimental data. Given that our approach is agnostic to sample size and signal-to-noise ratio, our modelling framework is broadly applicable to identify biological variability in single-cell data from internalization assays and similar experiments that probe cellular dynamical processes.
Collapse
Affiliation(s)
- Alexander P. Browning
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Australia
- QUT Centre for Data Science, Queensland University of Technology, Brisbane, Australia
| | - Niloufar Ansari
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christopher Drovandi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, Australia
- QUT Centre for Data Science, Queensland University of Technology, Brisbane, Australia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- QUT Centre for Data Science, Queensland University of Technology, Brisbane, Australia
| | - Adrianne L. Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- QUT Centre for Data Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
3
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
4
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
5
|
Very rapid flow cytometric assessment of antimicrobial susceptibility during the apparent lag phase of microbial (re)growth. Microbiology (Reading) 2019; 165:439-454. [DOI: 10.1099/mic.0.000777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
6
|
Sadler JC, Currin A, Kell DB. Ultra-high throughput functional enrichment of large monoamine oxidase (MAO-N) libraries by fluorescence activated cell sorting. Analyst 2018; 143:4747-4755. [PMID: 30199078 PMCID: PMC6156879 DOI: 10.1039/c8an00851e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
Abstract
Directed evolution enables the improvement and optimisation of enzymes for particular applications and is a valuable tool for biotechnology and synthetic biology. However, studies are often limited in their scope by the inability to screen very large numbers of variants to identify improved enzymes. One class of enzyme for which a universal, operationally simple ultra-high throughput (>106 variants per day) assay is not available is flavin adenine dinucleotide (FAD) dependent oxidases. The current high throughput assay involves a visual, colourimetric, colony-based screen, however this is not suitable for very large libraries and does not enable quantification of the relative fitness of variants. To address this, we describe an optimised method for the sensitive detection of oxidase activity within single Escherichia coli (E. coli) cells, using the monoamine oxidase from Aspergillus niger, MAO-N, as a model system. In contrast to other methods for the screening of oxidase activity in vivo, this method does not require cell surface expression, emulsion formation or the addition of an extracellular peroxidase. Furthermore, we show that fluorescence activated cell sorting (FACS) of large libraries derived from MAO-N under the assay conditions can enrich the library in functional variants at much higher rates than via the colony-based method. We demonstrate its use for directed evolution by identifying a new mutant of MAO-N with improved activity towards a novel secondary amine substrate. This work demonstrates, for the first time, an ultra-high throughput screening methodology widely applicable for the directed evolution of FAD dependent oxidases in E. coli.
Collapse
Affiliation(s)
- Joanna C. Sadler
- School of Chemistry
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- The Manchester Institute of Biotechnology
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
.
;
;
; http://dbkgroup.org/@dbkell
| | - Andrew Currin
- School of Chemistry
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- The Manchester Institute of Biotechnology
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
.
;
;
; http://dbkgroup.org/@dbkell
| | - Douglas B. Kell
- School of Chemistry
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- The Manchester Institute of Biotechnology
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
- Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)
, The University of Manchester
,
131 Princess St
, Manchester M1 7DN
, UK
.
;
;
; http://dbkgroup.org/@dbkell
| |
Collapse
|
7
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
8
|
Gough A, Stern AM, Maier J, Lezon T, Shun TY, Chennubhotla C, Schurdak ME, Haney SA, Taylor DL. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS DISCOVERY 2017; 22:213-237. [PMID: 28231035 DOI: 10.1177/2472555216682725] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.
Collapse
Affiliation(s)
- Albert Gough
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Andrew M Stern
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - John Maier
- 3 Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy Lezon
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Tong-Ying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Chakra Chennubhotla
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Steven A Haney
- 5 Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - D Lansing Taylor
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Hewitt SK, Foster DS, Dyer PS, Avery SV. Phenotypic heterogeneity in fungi: Importance and methodology. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
11
|
Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM. Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 2015; 17:2982-92. [PMID: 25845620 PMCID: PMC4676927 DOI: 10.1111/1462-2920.12866] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 01/03/2023]
Abstract
Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable.
Collapse
Affiliation(s)
- Stéphane Guyot
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Patrick Gervais
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityPenglais, Aberystwyth, Wales, SY23 3DA, UK
| | - Pascale Winckler
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| | - Jennifer Dumont
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Hazel Marie Davey
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| |
Collapse
|
12
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
13
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
14
|
Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39:567-91. [PMID: 25940667 PMCID: PMC4487407 DOI: 10.1093/femsre/fuv013] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines. Atopobiosis of microbes (the term describing microbes that appear in places other than where they should be), as well as the products of their metabolism, seems to correlate with, and may contribute to, the dynamics of a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| |
Collapse
|
15
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
16
|
Netuschil L, Auschill TM, Sculean A, Arweiler NB. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms--which stain is suitable? BMC Oral Health 2014; 14:2. [PMID: 24410850 PMCID: PMC3898065 DOI: 10.1186/1472-6831-14-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is confusion over the definition of the term "viability state(s)" of microorganisms. "Viability staining" or "vital staining techniques" are used to distinguish live from dead bacteria. These stainings, first established on planctonic bacteria, may have serious shortcomings when applied to multispecies biofilms. Results of staining techniques should be compared with appropriate microbiological data. DISCUSSION Many terms describe "vitality states" of microorganisms, however, several of them are misleading. Authors define "viable" as "capable to grow". Accordingly, staining methods are substitutes, since no staining can prove viability.The reliability of a commercial "viability" staining assay (Molecular Probes) is discussed based on the corresponding product information sheet: (I) Staining principle; (II) Concentrations of bacteria; (III) Calculation of live/dead proportions in vitro. Results of the "viability" kit are dependent on the stains' concentration and on their relation to the number of bacteria in the test. Generally this staining system is not suitable for multispecies biofilms, thus incorrect statements have been published by users of this technique.To compare the results of the staining with bacterial parameters appropriate techniques should be selected. The assessment of Colony Forming Units is insufficient, rather the calculation of Plating Efficiency is necessary. Vital fluorescence staining with Fluorescein Diacetate and Ethidium Bromide seems to be the best proven and suitable method in biofilm research.Regarding the mutagenicity of staining components users should be aware that not only Ethidium Bromide might be harmful, but also a variety of other substances of which the toxicity and mutagenicity is not reported. SUMMARY - The nomenclature regarding "viability" and "vitality" should be used carefully.- The manual of the commercial "viability" kit itself points out that the kit is not suitable for natural multispecies biofilm research, as supported by an array of literature.- Results obtained with various stains are influenced by the relationship between bacterial counts and the amount of stain used in the test. Corresponding vitality data are prone to artificial shifting.- As microbiological parameter the Plating Efficiency should be used for comparison.- Ethidium Bromide is mutagenic. Researchers should be aware that alternative staining compounds may also be or even are mutagenic.
Collapse
Affiliation(s)
- Lutz Netuschil
- Department of Periodontology, Dental School, Philipps-University Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
17
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
18
|
Smallbone K, Messiha HL, Carroll KM, Winder CL, Malys N, Dunn WB, Murabito E, Swainston N, Dada JO, Khan F, Pir P, Simeonidis E, Spasić I, Wishart J, Weichart D, Hayes NW, Jameson D, Broomhead DS, Oliver SG, Gaskell SJ, McCarthy JEG, Paton NW, Westerhoff HV, Kell DB, Mendes P. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett 2013; 587:2832-41. [PMID: 23831062 PMCID: PMC3764422 DOI: 10.1016/j.febslet.2013.06.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/17/2022]
Abstract
We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought.
Collapse
Affiliation(s)
- Kieran Smallbone
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kell DB. Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 2013; 280:5957-80. [PMID: 23552054 DOI: 10.1111/febs.12268] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/20/2013] [Accepted: 03/26/2013] [Indexed: 12/16/2022]
Abstract
Despite the sequencing of the human genome, the rate of innovative and successful drug discovery in the pharmaceutical industry has continued to decrease. Leaving aside regulatory matters, the fundamental and interlinked intellectual issues proposed to be largely responsible for this are: (a) the move from 'function-first' to 'target-first' methods of screening and drug discovery; (b) the belief that successful drugs should and do interact solely with single, individual targets, despite natural evolution's selection for biochemical networks that are robust to individual parameter changes; (c) an over-reliance on the rule-of-5 to constrain biophysical and chemical properties of drug libraries; (d) the general abandoning of natural products that do not obey the rule-of-5; (e) an incorrect belief that drugs diffuse passively into (and presumably out of) cells across the bilayers portions of membranes, according to their lipophilicity; (f) a widespread failure to recognize the overwhelmingly important role of proteinaceous transporters, as well as their expression profiles, in determining drug distribution in and between different tissues and individual patients; and (g) the general failure to use engineering principles to model biology in parallel with performing 'wet' experiments, such that 'what if?' experiments can be performed in silico to assess the likely success of any strategy. These facts/ideas are illustrated with a reasonably extensive literature review. Success in turning round drug discovery consequently requires: (a) decent systems biology models of human biochemical networks; (b) the use of these (iteratively with experiments) to model how drugs need to interact with multiple targets to have substantive effects on the phenotype; (c) the adoption of polypharmacology and/or cocktails of drugs as a desirable goal in itself; (d) the incorporation of drug transporters into systems biology models, en route to full and multiscale systems biology models that incorporate drug absorption, distribution, metabolism and excretion; (e) a return to 'function-first' or phenotypic screening; and (f) novel methods for inferring modes of action by measuring the properties on system variables at all levels of the 'omes. Such a strategy offers the opportunity of achieving a state where we can hope to predict biological processes and the effect of pharmaceutical agents upon them. Consequently, this should both lower attrition rates and raise the rates of discovery of effective drugs substantially.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, UK; Manchester Institute of Biotechnology, The University of Manchester, UK
| |
Collapse
|
20
|
Magdanova LA, Golyasnaya NV. Heterogeneity as an adaptive trait of microbial populations. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
21
|
Irvine-Fynn TDL, Edwards A, Newton S, Langford H, Rassner SM, Telling J, Anesio AM, Hodson AJ. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ Microbiol 2012; 14:2998-3012. [PMID: 23016868 DOI: 10.1111/j.1462-2920.2012.02876.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/28/2022]
Abstract
Uncertainty surrounds estimates of microbial cell and organic detritus fluxes from glacier surfaces. Here, we present the first enumeration of biological particles draining from a supraglacial catchment, on Midtre Lovénbreen (Svalbard) over 36 days. A stream cell flux of 1.08 × 10(7) cells m(-2) h(-1) was found, with strong inverse, non-linear associations between water discharge and biological particle concentrations. Over the study period, a significant decrease in cell-like particles exhibiting 530 nm autofluorescence was noted. The observed total fluvial export of ~7.5 × 10(14) cells equates to 15.1-72.7 g C, and a large proportion of these cells were small (< 0.5 μm in diameter). Differences between the observed fluvial export and inputs from ice-melt and aeolian deposition were marked: results indicate an apparent storage rate of 8.83 × 10(7) cells m(-2) h(-1). Analysis of surface ice cores revealed cell concentrations comparable to previous studies (6 × 10(4) cells ml(-1)) but, critically, showed no variation with depth in the uppermost 1 m. The physical retention and growth of particulates at glacier surfaces has two implications: to contribute to ice mass thinning through feedbacks altering surface albedo, and to potentially seed recently deglaciated terrain with cells, genes and labile organic matter. This highlights the merit of further study into glacier surface hydraulics and biological processes.
Collapse
Affiliation(s)
- T D L Irvine-Fynn
- Institute of Geography and Earth Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tashyreva D, Elster J. Production of Dormant Stages and Stress Resistance of Polar Cyanobacteria. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-94-007-4966-5_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
23
|
Abstract
Determination of microbial viability by the plate count method is routine in microbiology laboratories worldwide. However, limitations of the technique, particularly with respect to environmental microorganisms, are widely recognized. Many alternatives based upon viability staining have been proposed, and these are often combined with techniques such as image analysis and flow cytometry. The plethora of choices, however, adds to confusion when selecting a method. Commercial staining kits aim to simplify the performance of microbial viability determination but often still need adaptation to the specific organism of interest and/or the instruments available to the researcher. This review explores the meaning of microbial viability and offers guidance in the selection and interpretation of viability testing methods.
Collapse
Affiliation(s)
- Hazel M Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales, United Kingdom.
| |
Collapse
|
24
|
Kaprelyants AS, Mukamolova GV, Davey HM, Kell DB. Quantitative Analysis of the Physiological Heterogeneity within Starved Cultures of Micrococcus luteus by Flow Cytometry and Cell Sorting. Appl Environ Microbiol 2010; 62:1311-6. [PMID: 16535295 PMCID: PMC1388833 DOI: 10.1128/aem.62.4.1311-1316.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high proportion of Micrococcus luteus cells in cultures which had been starved for 3 to 6 months lost the ability to grow and form colonies on agar plates but could be resuscitated from their dormancy by incubation in an appropriate liquid medium (A. S. Kaprelyants and D. B. Kell, Appl. Environ. Microbiol. 59:3187-3196, 1993). We used flow cytometry and cell sorting to study populations of bacteria that had been starved for 5 months. These cells could be stained by the fluorescent lipophilic cation rhodamine 123, but such staining was almost independent of metabolically generated energy in that it was not affected by uncouplers. Two populations could be distinguished, one with a lower degree of rhodamine fluorescence (a degree of fluorescence referred to as region A and containing approximately 80% of the cells) and one with a more elevated degree of fluorescence (region B, approximately 20% of the cells). Subsequent incubation of starved cells in fresh medium in the presence of the antibiotic chloramphenicol (to which M. luteus is sensitive) resulted in the transient appearance of cells actively accumulating rhodamine 123 (and fluorescing in region B) and of larger cells exhibiting a yet-greater degree of fluorescence (region C). These more fluorescent cells accounted for as much as 50% of the total population, under conditions in which the viable and total counts were constant. Thus, metabolic resuscitation of at least one-half of the cells takes place under conditions in which cryptic growth cannot play any role. Sorting experiments revealed that the great majority of the viable cells in the starved population are concentrated in regions B and C and that the extent of rhodamine staining under conditions of starvation therefore reflects the physiological state of the cells. Physical separation of these cells from cells in region A resulted in an increase (of approximately 25-fold) in the viability of cells in regions B and C and of the population as a whole. Resuscitation of dormant cells in a most-probable-number assay in the presence of supernatant taken from growing M. luteus revealed the resuscitation of cells from regions B and C but not from region A. It is suggested that initially dormant (resuscitable) cells are concentrated in regions B and C.
Collapse
|
25
|
Votyakova TV, Kaprelyants AS, Kell DB. Influence of Viable Cells on the Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in an Extended Stationary Phase: the Population Effect. Appl Environ Microbiol 2010; 60:3284-91. [PMID: 16349381 PMCID: PMC201800 DOI: 10.1128/aem.60.9.3284-3291.1994] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A high proportion of Micrococcus luteus cells in cultures which had been starved for 3 to 6 months lost the ability to grow and form colonies on agar plates but could be resuscitated from their dormancy by incubation in an appropriate liquid medium (A. S. Kaprelyants and D. B. Kell, Appl. Environ. Microbiol. 59:3187-3196, 1993). In the present work, such cultures were studied by both flow cytometry and conventional microbiological methods and were found to contain various numbers of viable cells. Pretreatment of such cultures with penicillin G, and subsequent dilution, was used to vary this number. When the initial number of colony-forming cells per 30-ml flask was approximately nine (+/-five) or more, resuscitation of 10 to 40% of the cells, and thus culture growth, was observed. The lag period before the appearance of a population of cells showing significant accumulation of the fluorescent dye rhodamine 123 (i.e., of cells with measurable membrane energization) decreased from 70 to 27 h when the number of viable cells was increased from 30 to 10 per flask, while the lag period before an observable increase in the number of colony-forming cells occurred was almost constant (at some 20 h). Provided there were more than nine (+/-five) initially viable cells per flask, the number of initially viable cells did not affect the final percentage of resuscitable cells in the culture. The lag period could be ascribed in part to the time taken to restore the membrane permeability barrier of starved cells during resuscitation, as revealed by flow cytometric assessment of the uptake of the normally membrane-impermeant fluorescent DNA stain PO-PRO-3 {4-[3-methyl-2, 3-dihydro-(benzo-1, 3-oxazole)-2-methylidene]-1-(3'-trimethylammonium propyl)-pyridinium diiodide}. Although cell populations which contained fewer than nine +/-five viable cells per flask failed to grow, 4 to 20% of the cells (of 1.2 X 10) were able to accumulate rhodamine 123 after 80 to 100 h of incubation, showing the ability of a significant number of the cells in the population at least to display "metabolic resuscitation." Resuscitation and cell growth under such conditions were favored by the use of a 1:1 mixture of fresh lactate medium and supernatant from late-logarithmic-phase M. luteus cultures as the resuscitation medium. We conclude that the presence of a small fraction of viable cells at the onset of resuscitation facilitates the recovery of the majority of the remaining (dormant) cells. The cell density dependence of the kinetics, or population effect, suggests that this recovery is due to the excretion of some factor(s) which promoted the transition of cells from a state in which they are incapable of growth and division to one in which they are capable of colony formation.
Collapse
Affiliation(s)
- T V Votyakova
- Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DA, United Kingdom
| | | | | |
Collapse
|
26
|
Kaprelyants AS, Kell DB. Dormancy in Stationary-Phase Cultures of Micrococcus luteus: Flow Cytometric Analysis of Starvation and Resuscitation. Appl Environ Microbiol 2010; 59:3187-96. [PMID: 16349059 PMCID: PMC182436 DOI: 10.1128/aem.59.10.3187-3196.1993] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cultures of the copiotrophic bacterium Micrococcus luteus were stored in spent growth medium for an extended period of time following batch culture. After an initial decrease, the total cell counts remained constant at approximately 60 to 70% of the counts at the beginning of storage. The level of viability, as judged by plate counts, decreased to less than 0.05%, while respiration and the ability to accumulate the lipophilic cation rhodamine 123 decreased to undetectable levels. However, using penicillin pretreatment (to remove viable cells) and flow cytometry and by monitoring both the total and viable counts, we found that at least 50% of the cells in populations of 75-day-old cultures were not dead but were dormant. Resuscitation in liquid medium was accompanied by the appearance of a population of larger cells, which could accumulate rhodamine 123 and reduce the dye 5-cyano-2,3-ditolyl tetrazolium chloride to a fluorescent formazan, while a similar fraction of the population was converted to colony-forming, viable cells. We surmise that dormancy may be far more common than death in starving microbial cultures.
Collapse
Affiliation(s)
- A S Kaprelyants
- Department of Biological Sciences, University of Wales, Aberystwyth, Dyfed SY23 3DA, United Kingdom
| | | |
Collapse
|
27
|
Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiol 2009; 26:542-6. [PMID: 19465252 DOI: 10.1016/j.fm.2009.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 11/23/2022]
Abstract
The effect of thermal and pressure treatments on Lactobacillus rhamnosus ATCC 53103 was evaluated by flow cytometric analysis in conjunction to standard cultivation techniques. A double staining technique with fluorochromes carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) revealed that depending on temperature regime used heat-killed cells had different fluorescence behaviors. Cells killed at 60 degrees C were not stained at all whereas heat treatment at 75 degrees C resulted in a single population entirely labelled by PI. These findings indicated that thermal-induced cell death was achievable with or without membrane degradation. Hydrostatic pressures beyond 400 MPa inactivated L. rhamnosus ATCC 53103 in a different way. It was observed that the irreversible damage of the membrane-bound transport systems could be largely accounted for the cause of high pressure-induced cell death.
Collapse
|
28
|
Davey HM, Kell DB, Weichart DH, Kaprelyants AS. Estimation of microbial viability using flow cytometry. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.3. [PMID: 18770790 DOI: 10.1002/0471142956.cy1103s29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For microorganisms in particular, viability is a term that is difficult to define and a state consequently difficult to measure. The traditional (and gold-standard) usage equates viability and culturability (i.e., the ability to multiply), but the process of determining culturability is often too slow. Flow cytometry provides the opportunity to make rapid and quantitative measurements of dye uptake in large numbers of cells, and we can therefore exploit the flow cytometric approach to evaluate so-called viability stains and to develop protocols for more routine assessments of microbial viability. This unit is primarily commentary, but several basic protocols have been included to ensure that users have a firm basis for attempting these reasonably difficult assays on traditional flow cytometer instruments. What is clear is that each assay must be carefully validated with the particular microorganism of interest before being applied in any research, clinical, or service form.
Collapse
|
29
|
Vaidyanathan S, Macaloney G, Vaughan J, McNeil B, Harvey LM. Monitoring of Submerged Bioprocesses. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859991229161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
recA mediated spontaneous deletions of the icaADBC operon of clinical Staphylococcus epidermidis isolates: a new mechanism of phenotypic variations. Antonie van Leeuwenhoek 2008; 94:317-28. [PMID: 18454346 PMCID: PMC2480603 DOI: 10.1007/s10482-008-9249-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/23/2008] [Indexed: 10/26/2022]
Abstract
Phenotypic variation of Staphylococcus epidermidis involving the slime related ica operon results in heterogeneity in surface characteristics of individual bacteria in axenic cultures. Five clinical S. epidermidis isolates demonstrated phenotypic variation, i.e. both black and red colonies on Congo Red agar. Black colonies displayed bi-modal electrophoretic mobility distributions at pH 2, but such phenotypic variation was absent in red colonies of the same strain as well as in control strains without phenotypic variation. All red colonies had lost ica and the ability to form biofilms, in contrast to black colonies of the same strain. Real time PCR targeting icaA indicated a reduction in gene copy number within cultures exhibiting phenotypic variation, which correlated with phenotypic variations in biofilm formation and electrophoretic mobility distribution of cells within a culture. Loss of ica was irreversible and independent of the mobile element IS256. Instead, in high frequency switching strains, spontaneous mutations in lexA were found which resulted in deregulation of recA expression, as shown by real time PCR. RecA is involved in genetic deletions and rearrangements and we postulate a model representing a new mechanism of phenotypic variation in clinical isolates of S. epidermidis. This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC.
Collapse
|
31
|
Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol 2008; 74:2559-64. [PMID: 18344352 DOI: 10.1128/aem.02839-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Diaper J, Edwards C. The use of fluorogenic esters to detect viable bacteria by flow cytometry. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1994.tb03067.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
van Merode AEJ, Duval JFL, van der Mei HC, Busscher HJ, Krom BP. Increased adhesion of Enterococcus faecalis strains with bimodal electrophoretic mobility distributions. Colloids Surf B Biointerfaces 2008; 64:302-6. [PMID: 18358705 DOI: 10.1016/j.colsurfb.2008.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 11/19/2022]
Abstract
Initial adhesion is a determinant in the development of microbial biofilms. It is influenced, amongst others, by the surface hydrophobicity and the electrostatic characteristics of the substratum and adhering organisms. Enterococcus faecalis strains, grown in pure cultures, generally display subpopulations with different electrokinetic features, reflected in a bimodal electrophoretic mobility distribution. Here, the initial adhesion kinetics of five heterogeneous and five homogeneous E. faecalis strains were followed in a parallel-plate flow chamber. After 4h of flow, heterogeneous strains adhered in significantly higher numbers than homogeneous strains (7.3 x 10(6) and 1.9 x 10(6)cm(-2), respectively), but the initial deposition rates were not significantly influenced (740 and 600 cm(-2)s(-1), respectively). Apparently, initial deposition of bacteria is mainly governed by attractive Lifshitz-Van der Waals forces that overwhelm the electrostatic repulsion energy barrier, thus resulting in similar initial deposition rates for the various bacterial populations investigated. In contrast, during later stages of adhesion, bacteria in heterogeneous cultures likely experience a lower electrostatic repulsion from already adhering bacteria than bacteria in homogeneous cultures, thus allowing a closer proximity of the bacteria with respect to each other, which ultimately leads to increased adhesion after 4 h.
Collapse
Affiliation(s)
- Annet E J van Merode
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Casamayor EO, Ferrera I, Cristina X, Borrego CM, Gasol JM. Flow cytometric identification and enumeration of photosynthetic sulfur bacteria and potential for ecophysiological studies at the single-cell level. Environ Microbiol 2007; 9:1969-85. [PMID: 17635543 DOI: 10.1111/j.1462-2920.2007.01313.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show the potential of flow cytometry as a fast tool for population identification and enumeration of photosynthetic sulfur bacteria. Purple (PSB) and green sulfur bacteria (GSB) oxidize hydrogen sulfide to elemental sulfur that can act as storage compound to be further oxidized to sulfate generating the reducing power required for growth. Both groups have different elemental sulfur allocation strategies: whereas PSB store elemental sulfur as intracellular inclusions, GSB allocate sulfur globules externally. We used well-characterized laboratory strains and complex natural photosynthetic populations developing in a sharply stratified meromictic lake to show that PSB and GSB could be detected, differentiated and enumerated in unstained samples using a blue laser-based flow cytometer. Variations in cell-specific pigment content and the dynamics of sulfur accumulation, both intra- and extracellularly, were also detected in flow cytometric plots as sulfur accumulation changed the light scatter characteristics of the cells. These data were used to show the potential for studies on the metabolic status and the rate of activity at the single-cell level. Flow cytometric identification and enumeration resulted in faster and more precise analyses than previous approaches, and may open the door to more complex ecophysiological experiments with photosynthetic sulfur bacteria in mixed cultures and natural environments.
Collapse
Affiliation(s)
- Emilio O Casamayor
- Unitat de Limnologia, Department of Continental Ecology, Centre d'Estudis Avançats de Blanes (CSIC), E-17300 Blanes, Spain.
| | | | | | | | | |
Collapse
|
35
|
Kell DB. Theodor Bücher Lecture. Metabolomics, modelling and machine learning in systems biology - towards an understanding of the languages of cells. Delivered on 3 July 2005 at the 30th FEBS Congress and the 9th IUBMB conference in Budapest. FEBS J 2006; 273:873-94. [PMID: 16478464 DOI: 10.1111/j.1742-4658.2006.05136.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The newly emerging field of systems biology involves a judicious interplay between high-throughput 'wet' experimentation, computational modelling and technology development, coupled to the world of ideas and theory. This interplay involves iterative cycles, such that systems biology is not at all confined to hypothesis-dependent studies, with intelligent, principled, hypothesis-generating studies being of high importance and consequently very far from aimless fishing expeditions. I seek to illustrate each of these facets. Novel technology development in metabolomics can increase substantially the dynamic range and number of metabolites that one can detect, and these can be exploited as disease markers and in the consequent and principled generation of hypotheses that are consistent with the data and achieve this in a value-free manner. Much of classical biochemistry and signalling pathway analysis has concentrated on the analyses of changes in the concentrations of intermediates, with 'local' equations - such as that of Michaelis and Menten v=(Vmax x S)/(S+K m) - that describe individual steps being based solely on the instantaneous values of these concentrations. Recent work using single cells (that are not subject to the intellectually unsupportable averaging of the variable displayed by heterogeneous cells possessing nonlinear kinetics) has led to the recognition that some protein signalling pathways may encode their signals not (just) as concentrations (AM or amplitude-modulated in a radio analogy) but via changes in the dynamics of those concentrations (the signals are FM or frequency-modulated). This contributes in principle to a straightforward solution of the crosstalk problem, leads to a profound reassessment of how to understand the downstream effects of dynamic changes in the concentrations of elements in these pathways, and stresses the role of signal processing (and not merely the intermediates) in biological signalling. It is this signal processing that lies at the heart of understanding the languages of cells. The resolution of many of the modern and postgenomic problems of biochemistry requires the development of a myriad of new technologies (and maybe a new culture), and thus regular input from the physical sciences, engineering, mathematics and computer science. One solution, that we are adopting in the Manchester Interdisciplinary Biocentre (http://www.mib.ac.uk/) and the Manchester Centre for Integrative Systems Biology (http://www.mcisb.org/), is thus to colocate individuals with the necessary combinations of skills. Novel disciplines that require such an integrative approach continue to emerge. These include fields such as chemical genomics, synthetic biology, distributed computational environments for biological data and modelling, single cell diagnostics/bionanotechnology, and computational linguistics/text mining.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, Faraday Building, The University of Manchester, UK.
| |
Collapse
|
36
|
van Merode AEJ, van der Mei HC, Busscher HJ, Waar K, Krom BP. Enterococcus faecalis strains show culture heterogeneity in cell surface charge. Microbiology (Reading) 2006; 152:807-814. [PMID: 16514160 DOI: 10.1099/mic.0.28460-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Adhesion of micro-organisms to biotic and abiotic surfaces is an important virulence factor and involves different types of interactions.Enterococcus faecalis, a human commensal and an important opportunistic pathogen, has the ability to adhere to surfaces. Biliary stents frequently become clogged with bacterial biofilms, withE. faecalisas one of the predominant species. SixE. faecalisstrains isolated from clogged biliary stents were investigated for the presence of specific biochemical factors involved in their adhesion: aggregation substances (Aggs) and the enterococcal surface protein (encoded by theespgene). In addition, physico-chemical factors involved in adhesion (zeta potential and cell surface hydrophobicity) were determined, as well as the influence of ox bile on these properties. Two-thirds of the biliary stent isolates displayed culture heterogeneity in the pH dependence of their zeta potentials. Moreover, 24 out of 46 clinical isolates ofE. faecalis, including 11 laboratory strains, also displayed such heterogeneity. The culture heterogeneity was demonstrated to be a stable trait, not caused by quorum sensing, not plasmid mediated, and independent of the presence ofespand Agg. Data presented show that culture heterogeneity in zeta potential enhances adhesion to an abiotic surface. A higher prevalence of culture heterogeneity in zeta potential in pathogenic as compared to non-pathogenic isolates could indicate that this phenomenon might play a role in virulence and putatively in pathogenesis.
Collapse
Affiliation(s)
- Annet E J van Merode
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Karola Waar
- Department of Medical Microbiology, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bastiaan P Krom
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
37
|
Barcina I, Lebaron P, Vives-Rego J. Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00385.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Vogt C, Lösche A, Kleinsteuber S, Müller S. Population profiles of a stable, commensalistic bacterial culture grown with toluene under sulphate-reducing conditions. Cytometry A 2005; 66:91-102. [PMID: 16003722 DOI: 10.1002/cyto.a.20158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Most bacteria present in nature are not culturable in pure culture by means of classic cultivation methods (Pace NR, 1997, Science 276:734-740; Amann RI et al., 1995, Microbiol Rev 59:143-169.). However, it was recently shown that most aerobic heterotrophic bacteria could grow only on artificial media when other micro-organisms are present (Kaeberlein T et al., 2002, Science 296:1127-1129). Because the sulphate reducer Desulfobacula toluolica DSM 7467 and a bacterium (strain MV1) identified as Cellulosimicrobium sp. were not culturable unaccompanied, flow cytometry was used to highlight the strains' relation within the consortium. METHODS DNA patterns were used to provide strain-specific information about population proliferation dynamics. Cells were grown anaerobically and fed with toluene under sulphate-reducing conditions. RESULTS Oxidation of toluene occurred only in association with sulphate reduction and growth of D. toluolica. A characteristic chromosomal pattern, with at least six subpopulations of D. toluolica, appeared during the stationary phase, and asymmetric cell division was detected. The accompanying strain MV1 grew repeatedly to a high percentage of the culture only in certain growth phases of D. toluolica independently of the feeding substrate toluene. CONCLUSIONS A commensalistic relation between the two strains is suggested. The repeated rapid and frequent changes of the quantities within the community subsets are indicative of very flexible adaptations to changing environmental conditions, reflecting the need for modulated cell states and the ability to use every available source of carbon and energy for survival.
Collapse
Affiliation(s)
- Carsten Vogt
- Department of Environmental Microbiology, Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| | | | | | | |
Collapse
|
39
|
Schmidt FR. Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 2005; 68:425-35. [PMID: 16001256 DOI: 10.1007/s00253-005-0003-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/12/2005] [Accepted: 04/15/2005] [Indexed: 11/24/2022]
Abstract
To increase product yields and to ensure consistent product quality, key issues of industrial fermentations, process optimization and scale up are aimed at maintaining optimum and homogenous reaction conditions minimizing microbial stress exposure and enhancing metabolic accuracy. For each individual product, process and facility, suitable strategies have to be elaborated by a comprehensive and detailed process characterization, identification of the most relevant process parameters influencing product yield and quality and their establishment as scale-up parameters to be kept constant as far as possible. Physical variables, which can only be restrictedly kept constant as single parameters, may be combined with other pertinent parameters to appropriate mathematical groups or dimensionless terms. Process characterization is preferably based on real-time or near real-time data collected by in situ and on-line measurements and may be facilitated by supportive approaches and tools like neural network based chemometric data analysis and modelling, clarification of the mixing and stream conditions through computational fluid dynamics and scale-down simulations. However, as fermentation facilities usually are not strictly designed according to scale-up criteria and the process conditions in the culture vessels thus may differ significantly and since any strategy and model can only insufficiently consider and reflect the highly complex interdependence and mutual interaction of fermentation parameters, successful scale up in most cases is not the result of a conclusive and straight-lined experimental strategy, but rather will be the outcome of a separate process development and optimization on each scale. This article gives an overview on the problems typically coming along with fermentation process optimization and scale up, and presents currently applied scale-up strategies while considering future technologies, with emphasis on Escherichia coli as one of the most commonly fermented organisms.
Collapse
Affiliation(s)
- F R Schmidt
- Sanofi-Aventis Deutschland, Biocenter H 780, Industriepark Höchst, 65926, Frankfurt, Germany.
| |
Collapse
|
40
|
Kilian HG, Gruler H, Bartkowiak D, Kaufmann D. Stationary cell size distributions and mean protein chain length distributions of Archaea, Bacteria and Eukaryotes described with an increment model in terms of irreversible thermodynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2005; 17:307-25. [PMID: 15986097 DOI: 10.1140/epje/i2004-10143-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 04/18/2005] [Indexed: 05/03/2023]
Abstract
In terms of an increment model irreversible thermodynamics allows to formulate general relations of stationary cell size distributions observed in growing colonies. The treatment is based on the following key postulates: i) The growth dynamics covers a broad spectrum of fast and slow processes. ii) Slow processes are considered to install structural patterns that operate in short periods as temporary stationary states of reference in the sense of irreversible thermodynamics. iii) Distortion during growth is balanced out via the many fast processes until an optimized stationary state is achieved. The relation deduced identifies the numerous different stationary patterns as equivalents, predicting that they should fall on one master curve. Stationary cell size distributions of different cell types, like Hyperphilic archaea, E. coli (Prokaryotes) and S. cerevisiae (Eukaryotes), altogether taken from the literature, are in fact consistently described. As demanded by the model they agree together with the same master curve. Considering the "protein factories" as subsystems of cells the mean protein chain length distributions deduced from completely sequenced genomes should be optimized. In fact, the mean course can be described with analogous relations as used above. Moreover, the master curve fits well to the patterns of different species of Archaea, Bacteria and Eukaryotes. General consequences are discussed.
Collapse
Affiliation(s)
- H G Kilian
- Abteilung Experimentelle Physik, Universität Ulm, Germany.
| | | | | | | |
Collapse
|
41
|
Kell DB. Metabolomics, machine learning and modelling: towards an understanding of the language of cells. Biochem Soc Trans 2005; 33:520-4. [PMID: 15916555 DOI: 10.1042/bst0330520] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In answering the question ‘Systems Biology – will it work?’ (which it self-evidently has already), it is appropriate to highlight advances in philosophy, in new technique development and in novel findings. In terms of philosophy, we see that systems biology involves an iterative interplay between linked activities – for instance, between theory and experiment, between induction and deduction and between measurements of parameters and variables – with more emphasis than has perhaps been common now being focused on the first in each of these pairs. In technique development, we highlight closed loop machine learning and its use in the optimization of scientific instrumentation, and the ability to effect high-quality and quasi-continuous optical images of cells. This leads to many important and novel findings. In the first case, these may involve new biomarkers for disease, whereas in the second case, we have determined that many biological signals may be frequency-rather than amplitude-encoded. This leads to a very different view of how signalling ‘works’ (equations such as that of Michaelis and Menten which use only amplitudes, i.e. concentrations, are inadequate descriptors), lays emphasis on the signal processing network elements that lie ‘downstream’ of what are traditionally considered the signals, and allows one simply to understand how cross-talk may be avoided between pathways which nevertheless use common signalling elements. The language of cells is much richer than we had supposed, and we are now well placed to decode it.
Collapse
Affiliation(s)
- D B Kell
- School of Chemistry, The University of Manchester, Faraday Building, Sackville Street, P.O. Box 88, Manchester M60 1QD, UK.
| |
Collapse
|
42
|
Ammor S, Yaakoubi K, Chevallier I, Dufour E. Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. J Microbiol Methods 2004; 59:271-81. [PMID: 15369863 DOI: 10.1016/j.mimet.2004.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 07/23/2004] [Accepted: 07/23/2004] [Indexed: 11/23/2022]
Abstract
Three different fluorescence spectra were recorded following excitation at 250 nm (aromatic amino acids+nucleic acids, AAA+NA), 316 nm (NADH) and 380 nm (FAD) for 20 type strain collections of lactic acid bacteria (LAB). Evaluation of the data using principal component analysis and factorial discriminant analysis showed a good discrimination of considered LAB at the genus, species and genus-species level. AAA+NA fluorophores showed the highest percentage of good classification. From AAA+NA spectra recorded on LAB isolated from a small-scale facility producing traditional dry sausages, we succeeded to identify 28 of 29 wild strains. This method allowed us to discriminate between Lactobacillus sakei subsp. carnosus and Lactobacillus sakei subsp. sakei. Thus, intrinsic fluorescence is an economical and powerful tool for the identification of wild LAB isolated from meat and meat products.
Collapse
Affiliation(s)
- Salim Ammor
- Unité de Recherche Typicité des Produits Alimentaires, ENITA-CF, Site de Marmilhat, 63370, Lempdes, France
| | | | | | | |
Collapse
|
43
|
Hussein HS, Thran BH, Redelman D. Detection of Escherichia coli O157:H7 in bovine rumen fluid and feces by flow cytometry. Food Control 2002. [DOI: 10.1016/s0956-7135(02)00034-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Müller S, Sträuber H, Lösche A, Babel W. Population analysis of a binary bacterial culture by multi-parametric flow cytometry. J Biotechnol 2002; 97:163-76. [PMID: 12067522 DOI: 10.1016/s0168-1656(02)00063-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the degradation of a xenobiotic that requires a mixed culture it is essential to monitor the proportions and to control the population dynamics of the component strains. For these purposes fluorochromising techniques and multi-parametric flow cytometry were used to follow Rhodococcus erythropolis K2-3 and Ochrobactrum anthropi K2-14, both of which are needed to degrade 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB). Although the two strains can grow in constant proportions in mixed cultures on other substrates, 2,4-DB could not be degraded as a sole substrate in a continuous process and R. erythropolis K2-3 was clearly impaired in the binary mixture. Addition of a second, easily assimilable substrate (xylitol) in appropriate concentrations (empirically determined) helped this strain survive, and thus facilitated complete degradation of the xenobiotic. This combination of substrates was found to stabilise the growth of R. erythropolis K2-3 and, consequently promoted the action of O. anthropi K2-14. Thus, the two organisms became established in constant proportions in a continuous process until reaching steady state. Consequently, multiplication and cell division activities of the two components of the binary culture were high and reached similar values to those attained when they are grown in pure culture.
Collapse
Affiliation(s)
- Susann Müller
- UFZ-Umweltforschungszentrum Leipzig/Halle GmbH, Sektion Umweltmikrobiologie, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
45
|
Pritchard L, Kell DB. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3894-904. [PMID: 12180966 DOI: 10.1046/j.1432-1033.2002.03055.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used parameter scanning to emulate changes to the limiting rate for steps in a fitted model of glucose-derepressed yeast glycolysis. Three flux-control regimes were observed, two of which were under the dominant control of hexose transport, in accordance with various experimental studies and other model predictions. A third control regime in which phosphofructokinase exerted dominant glycolytic flux control was also found, but it appeared to be physiologically unreachable by this model, and all realistically obtainable flux control regimes featured hexose transport as a step involving high flux control.
Collapse
|
46
|
|
47
|
Growth of Salmonella enterica Serovar Enteritidis PT4 in media containing glucose results in enhanced RpoS-independent heat and acid tolerance but does not affect the ability to survive air-drying on surfaces. Food Microbiol 2000. [DOI: 10.1006/fmic.2000.0363] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Kell DB, Young M. Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 2000; 3:238-43. [PMID: 10851153 DOI: 10.1016/s1369-5274(00)00082-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D B Kell
- Institute of Biological Sciences, University of Wales, Aberystwyth, SY23 3DD, UK.
| | | |
Collapse
|
49
|
Abstract
Quantal microbiology describes a similarity between physics and microbiology. In both sciences there is an apparent dichotomy between the certainty and stability of the macro-subject and the uncertainty/complexity of the individual atom/cell. Classical physics is to quantum mechanics as classical microbiology is to quantal microbiology.
Collapse
Affiliation(s)
- E Y Bridson
- 3 Bellever Hill,Camberley, Surrey and 17 Dove Road, Bedford, UK.
| | | |
Collapse
|
50
|
Sonnleitner B. Instrumentation of biotechnological processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 66:1-64. [PMID: 10592525 DOI: 10.1007/3-540-48773-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Modern bioprocesses are monitored by on-line sensing devices mounted either in situ or externally. In addition to sensor probes, more and more analytical subsystems are being exploited to monitor the state of a bioprocess on-line and in real time. Some of these subsystems deliver signals that are useful for documentation only, other, less delayed systems generate signals useful for closed loop process control. Various conventional and non-conventional monitoring instruments are evaluated; their usefulness, benefits and associated pitfalls are discussed.
Collapse
Affiliation(s)
- B Sonnleitner
- University of Applied Sciences, Winterthur, Switzerland.
| |
Collapse
|