1
|
Liu H, Jang J, French AS, Torkkeli PH. Sequence analysis, homology modeling, tissue expression, and potential functions of seven putative acetylcholinesterases in the spider Cupiennius salei. Eur J Neurosci 2024; 60:5785-5811. [PMID: 39230060 DOI: 10.1111/ejn.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Acetylcholine esterases (AChEs) are essential enzymes in cholinergic synapses, terminating neurotransmission by hydrolysing acetylcholine. While membrane bound AChEs at synaptic clefts efficiently perform this task, soluble AChEs are less stable and effective, but function over broader areas. In vertebrates, a single gene produces alternatively spliced forms of AChE, whereas invertebrates often have multiple genes, producing both enzyme types. Despite their significance as pesticide targets, the physiological roles of invertebrate AChEs remain unclear. Here, we characterized seven putative AChEs in the wandering spider, Cupiennius salei, a model species for neurophysiological studies. Sequence analyses and homology modeling predicted CsAChE7 as the sole stable, membrane-bound enzyme functioning at synaptic clefts, while the others are likely soluble enzymes. In situ hybridization of sections from the spider's nervous system revealed CsAChE7 transcripts co-localizing with choline acetyltransferase in cells that also exhibited AChE activity. CsAChE7 transcripts were also found in rapidly adapting mechanosensory neurons, suggesting a role in precise and transient activation of postsynaptic cells, contrasting with slowly adapting, also cholinergic, neurons expressing only soluble AChEs, which allow prolonged activation of postsynaptic cells. These findings suggest that cholinergic transmission is influenced not only by postsynaptic receptors but also by the enzymatic properties regulating acetylcholine clearance. We also show that acetylcholine is a crucial neurotransmitter in the spider's visual system and sensory and motor pathways, but absent in excitatory motor neurons at neuromuscular junctions, consistent with other arthropods. Our findings on sequence structures may have implications for the development of neurological drugs and pesticides.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jinwon Jang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Drozd D, Wolf H, Stemme T. Mechanosensory pathways of scorpion pecten hair sensillae-Adjustment of body height and pecten position. J Comp Neurol 2022; 530:2918-2937. [PMID: 35780514 DOI: 10.1002/cne.25384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Scorpions' sensory abilities are intriguing, especially the rather enigmatic ventral comb-like chemo- and mechanosensory organs, the so-called pectines. Attached ventrally to the second mesosomal segment just posterior to the coxae of the fourth walking leg pair, the pectines consist of the lamellae, the fulcra, and a variable number of pecten teeth. The latter contain the bimodal peg sensillae, used for probing the substrate with regard to chemo- and mechanosensory cues simultaneously. In addition, the lamellae, the fulcra and the pecten teeth are equipped with pecten hair sensillae (PHS) to gather mechanosensory information. Previously, we have analyzed the neuronal pathway associated with the peg sensillae unraveling their somatotopic projection pattern in dedicated pecten neuropils. Little is known, however, regarding the projections of PHS within the scorpion nervous system. Behavioral and electrophysiological assays showed involvement of PHS in reflexive responses but how the information is integrated remains unresolved. Here, we unravel the innervation pattern of the mechanosensory pecten hair afferents in Mesobuthus eupeus and Euscorpius italicus. By using immunofluorescent labeling and injection of Neurobiotin tracer, we identify extensive arborizations of afferents, including (i) ventral neuropils, (ii) somatotopically organized multisegmental sensory tracts, (iii) contralateral branches via commissures, and (iv) direct ipsilateral innervation of walking leg neuromeres 3 and 4. Our results suggest that PHS function as sensors to elicit reflexive adjustment of body height and obstacle avoidance, mediating accurate pecten teeth alignment to guarantee functionality of pectines, which are involved in fundamental capacities like mating or navigation.
Collapse
Affiliation(s)
- Denise Drozd
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Anatomy of the Nervous System in Chelifer cancroides (Arachnida: Pseudoscorpiones) with a Distinct Sensory Pathway Associated with the Pedipalps. INSECTS 2021; 13:insects13010025. [PMID: 35055868 PMCID: PMC8780800 DOI: 10.3390/insects13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Most arthropods (uniting animals such as the chelicerates, e.g., spiders and their kin, as well as millipedes, centipedes, crustaceans, and insects) have distinct sensory appendages at the second head segment, the so-called antennae. The Arachnida (e.g., spiders and scorpions) do not possess antennae, but have evolved highly specialized sensory organs on different body regions. However, very limited information is available concerning pseudoscorpions (false scorpions). These animals do not seem to possess such specialized structures, but show dominant, multifunctional appendages prior to the first walking leg, called pedipalps. Here, we investigate the neuronal pathway of these structures as well as general aspects of the nervous system. We describe new details of typical arthropod brain compartments, such as the arcuate body and a comparatively small mushroom body. Neurons associated with the pedipalps terminate in two regions in the central nervous system of characteristic arrangement: a glomerular and a layered center, which we interpret as a chemo- and a mechanosensory center, respectively. The centers, which fulfill the same function in other animals, show a similar arrangement. These similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites. Identifying these similarities helps to understand the general functionality of sensory systems, not only within arthropods. Abstract Many arachnid taxa have evolved unique, highly specialized sensory structures such as antenniform legs in Amblypygi (whip spiders), for instance, or mesosomal pectines in scorpions. Knowledge of the neuroanatomy as well as functional aspects of these sensory organs is rather scarce, especially in comparison to other arthropod clades. In pseudoscorpions, no special sensory structures have been discovered so far. Nevertheless, these animals possess dominant, multifunctional pedipalps, which are good candidates for being the primary sensory appendages. However, only little is known about the anatomy of the nervous system and the projection pattern of pedipalpal afferents in this taxon. By using immunofluorescent labeling of neuronal structures as well as lipophilic dye labeling of pedipalpal pathways, we identified the arcuate body, as well as a comparatively small mushroom body, the latter showing some similarities to that of Solifugae (sun spiders and camel spiders). Furthermore, afferents from the pedipalps terminate in a glomerular and a layered neuropil. Due to the innervation pattern and structural appearance, we conclude that these neuropils are the first integration centers of the chemosensory and mechanosensory afferents. Within Arthropoda, but also other invertebrates or even vertebrates, sensory structures show rather similar neuronal arrangement. Thus, these similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites of the respective modality.
Collapse
|
4
|
Barth FG. A spider in motion: facets of sensory guidance. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:239-255. [PMID: 33135112 PMCID: PMC8046691 DOI: 10.1007/s00359-020-01449-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Spiders show a broad range of motions in addition to walking and running with their eight coordinated legs taking them towards their resources and away from danger. The usefulness of all these motions depends on the ability to control and adjust them to changing environmental conditions. A remarkable wealth of sensory receptors guarantees the necessary guidance. Many facets of such guidance have emerged from neuroethological research on the wandering spider Cupiennius salei and its allies, although sensori-motor control was not the main focus of this work. The present review may serve as a springboard for future studies aiming towards a more complete understanding of the spider's control of its different types of motion. Among the topics shortly addressed are the involvement of lyriform slit sensilla in path integration, muscle reflexes in the walking legs, the monitoring of joint movement, the neuromuscular control of body raising, the generation of vibratory courtship signals, the sensory guidance of the jump to flying prey and the triggering of spiderling dispersal behavior. Finally, the interaction of sensors on different legs in oriented turning behavior and that of the sensory systems for substrate vibration and medium flow are addressed.
Collapse
Affiliation(s)
- Friedrich G Barth
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Drozd D, Wolf H, Stemme T. Structure of the pecten neuropil pathway and its innervation by bimodal peg afferents in two scorpion species. PLoS One 2020; 15:e0243753. [PMID: 33301509 PMCID: PMC7728269 DOI: 10.1371/journal.pone.0243753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022] Open
Abstract
The pectines of scorpions are comb-like structures, located ventrally behind the fourth walking legs and consisting of variable numbers of teeth, or pegs, which contain thousands of bimodal peg sensillae. The associated neuropils are situated ventrally in the synganglion, extending between the second and fourth walking leg neuromeres. While the general morphology is consistent among scorpions, taxon-specific differences in pecten and neuropil structure remain elusive but are crucial for a better understanding of chemosensory processing. We analysed two scorpion species (Mesobuthus eupeus and Heterometrus petersii) regarding their pecten neuropil anatomy and the respective peg afferent innervation with anterograde and lipophilic tracing experiments, combined with immunohistochemistry and confocal laser-scanning microscopy. The pecten neuropils consisted of three subcompartments: a posterior pecten neuropil, an anterior pecten neuropil and a hitherto unknown accessory pecten neuropil. These subregions exhibited taxon-specific variations with regard to compartmentalisation and structure. Most notable were structural differences in the anterior pecten neuropils that ranged from ovoid shape and strong fragmentation in Heterometrus petersii to elongated shape with little compartmentalisation in Mesobuthus eupeus. Labelling the afferents of distinct pegs revealed a topographic organisation of the bimodal projections along a medio-lateral axis. At the same time, all subregions along the posterior-anterior axis were innervated by a single peg's afferents. The somatotopic projection pattern of bimodal sensillae appears to be common among arachnids, including scorpions. This includes the structure and organisation of the respective neuropils and the somatotopic projection patterns of chemosensory afferents. Nonetheless, the scorpion pecten pathway exhibits unique features, e.g. glomerular compartmentalisation superimposed on somatotopy, that are assumed to allow high resolution of substrate-borne chemical gradients.
Collapse
Affiliation(s)
- Denise Drozd
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Tanner JC, Justison J, Bee MA. SynSing: open-source MATLAB code for generating synthetic signals in studies of animal acoustic communication. BIOACOUSTICS 2019. [DOI: 10.1080/09524622.2019.1674694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jessie C. Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Joshua Justison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Barth FG. Mechanics to pre-process information for the fine tuning of mechanoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:661-686. [PMID: 31270587 PMCID: PMC6726712 DOI: 10.1007/s00359-019-01355-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022]
Abstract
Non-nervous auxiliary structures play a significant role in sensory biology. They filter the stimulus and transform it in a way that fits the animal's needs, thereby contributing to the avoidance of the central nervous system's overload with meaningless stimuli and a corresponding processing task. The present review deals with mechanoreceptors mainly of invertebrates and some remarkable recent findings stressing the role of mechanics as an important source of sensor adaptedness, outstanding performance, and diversity. Instead of organizing the review along the types of stimulus energy (force) taken up by the sensors, processes associated with a few basic and seemingly simple mechanical principles like lever systems, viscoelasticity, resonance, traveling waves, and impedance matching are taken as the guideline. As will be seen, nature makes surprisingly competent use of such "simple mechanics".
Collapse
Affiliation(s)
- Friedrich G Barth
- Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Sombke A, Klann AE, Lipke E, Wolf H. Primary processing neuropils associated with the malleoli of camel spiders (Arachnida, Solifugae): a re-evaluation of axonal pathways. ZOOLOGICAL LETTERS 2019; 5:26. [PMID: 31388441 PMCID: PMC6679463 DOI: 10.1186/s40851-019-0137-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Arachnids possess highly specialized and unorthodox sense organs, such as the unique pectines of Scorpiones and the malleoli of Solifugae. While the external morphology, numbers, and shapes of sensory organs are widely used in taxonomic studies, little is known about the internal anatomy of these organs and their associated processing neuropils in the central nervous system. Camel spiders (Solifugae) possess pedipalps and first walking legs heavily endowed with sensory structures, as well as conspicuous malleoli located ventrally on the proximal fourth walking legs. Malleoli are fan-shaped organs that contain tens of thousands of presumptive chemoreceptor neurons, but mechanoreceptive structures are absent. RESULTS Here, we examine the organization of the synganglion based on microCT analysis, 3D reconstruction of serial paraffin sections, and backfill preparations to trace the malleolar pathway. The projection area of malleolar afferents is intriguingly located in the most anterior ventral nerve cord, located in between the pedipalpal neuromere hemispheres. However, malleolar axon bundles are separated by a thin soma layer that points to an anteriad projection of the fourth walking leg neuromere. A conspicuous projection neuron tract that may receive additional input from pedipalpal sensory organs connects the malleolar neuropil with the mushroom bodies in the protocerebrum. CONCLUSION Arthropod chemosensory appendages or organs and primary processing neuropils are typically located in the same segment, which also holds true in Solifugae, although the malleolar neuropil is partially shifted towards the pedipalpal neuromere. A comparison of the malleoli in Solifugae and the pectines in Scorpiones, and of their primary processing neuropils, reveals certain similarities, while striking differences are also evident. Similarities include the ventral arrangement of peg-shaped sensory structures on the respective segmental appendage, exposing dense arrays of chemoreceptive sensilla, and projections to a primary processing neuropil with glomerular subdivision. Differences are, e.g., the lack of mechanoreceptive afferents and an associated processing neuropil.
Collapse
Affiliation(s)
- Andy Sombke
- University of Vienna, Department of Integrative Zoology, Althanstrasse 14, 1090 Vienna, Austria
| | - Anja E. Klann
- Department of Forensic Molecular Genetics, University Medicine Greifswald, Institute of Legal Medicine, 17489 Greifswald, Germany
| | - Elisabeth Lipke
- German Air Force Center of Aerospace Medicine, 82256 Fürstenfeldbruck, Germany
| | - Harald Wolf
- Wallenberg Research Centre, Stellenbosch Institute for Advanced Study, 10 Marais Street, Stellenbosch, 7600 South Africa
- Present address: Institut für Neurobiologie, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
9
|
Wolf H. Scorpions pectines - Idiosyncratic chemo- and mechanosensory organs. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:753-764. [PMID: 29061448 DOI: 10.1016/j.asd.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 05/15/2023]
Abstract
Scorpions possess specialised chemosensory appendages, the pectines. These comb-shaped limbs are located ventrally behind the walking legs. Like the antennae of mandibulate arthropods, they also serve a mechanosensory function. However, more than 90% of the sometimes well above 100,000 sensory neurons projecting from a pectine to the central nervous system are chemosensory. There are two primary projection neuropils. The posterior one, immediately adjacent to the pectine nerve entrance, has an intriguing substructure reminiscent of the olfactory glomeruli observed in the primary chemosensory neuropils of many arthropods and indeed of most bilaterian animals. There are further similarities, particularly to the antennal lobes of mandibulate arthropods, including dense innervation by a relatively small number of putative serotonergic interneurons and the presence of GABA immunoreactivity, indicative of inhibitory interactions. Scorpion idiosyncrasies include the flattened shape and broad size range of the glomerulus-like neuropil compartments. Further, these compartments are often not clearly delimited and form layers in the neuropil that are arranged like onion peels. In summary, the pectine appendages of scorpions and their central nervous projections appear as promising study subjects, particularly regarding comparative examination of chemosensory representation and processing strategies. The possibility of combined, rather than discrete, representations of chemo- and mechanosensory inputs should merit further study.
Collapse
Affiliation(s)
- Harald Wolf
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, 10 Marais Street, Stellenbosch 7600, South Africa.
| |
Collapse
|
10
|
Fabian-Fine R, Anderson CM, Roush MA, Johnson JAG, Liu H, French AS, Torkkeli PH. The distribution of cholinergic neurons and their co-localization with FMRFamide, in central and peripheral neurons of the spider Cupiennius salei. Cell Tissue Res 2017; 370:71-88. [PMID: 28687927 DOI: 10.1007/s00441-017-2652-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/23/2017] [Indexed: 12/21/2022]
Abstract
The spider Cupiennius salei is a well-established model for investigating information processing in arthropod sensory systems. Immunohistochemistry has shown that several neurotransmitters exist in the C. salei nervous system, including GABA, glutamate, histamine, octopamine and FMRFamide, while electrophysiology has found functional roles for some of these transmitters. There is also evidence that acetylcholine (ACh) is present in some C. salei neurons but information about the distribution of cholinergic neurons in spider nervous systems is limited. Here, we identify C. salei genes that encode enzymes essential for cholinergic transmission: choline ACh transferase (ChAT) and vesicular ACh transporter (VAChT). We used in-situ hybridization with an mRNA probe for C. salei ChAT gene to locate somata of cholinergic neurons in the central nervous system and immunohistochemistry with antisera against ChAT and VAChT to locate these proteins in cholinergic neurons. All three markers labeled similar, mostly small neurons, plus a few mid-sized neurons, in most ganglia. In the subesophageal ganglia, labeled neurons are putative efferent, motor or interneurons but the largest motor and interneurons were unlabeled. Groups of anti-ChAT labeled small neurons also connect the optic neuropils in the spider protocerebrum. Differences in individual cell labeling intensities were common, suggesting a range of ACh expression levels. Double-labeling found a subpopulation of anti-VAChT-labeled central and mechanosensory neurons that were also immunoreactive to antiserum against FMRFamide-like peptides. Our findings suggest that ACh is an important neurotransmitter in the C. salei central and peripheral nervous systems.
Collapse
Affiliation(s)
- Ruth Fabian-Fine
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA.
| | - Carly M Anderson
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA
| | - Molly A Roush
- Department of Biology, Saint Michael's College, One Winooski Park, Box 283, Colchester, VT, 05439, USA
| | - Jessica A G Johnson
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
11
|
Molina J, Schaber CF, Barth FG. In search of differences between the two types of sensory cells innervating spider slit sensilla (Cupiennius salei Keys.). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1031-41. [PMID: 19760269 DOI: 10.1007/s00359-009-0477-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/19/2009] [Accepted: 08/31/2009] [Indexed: 12/24/2022]
Abstract
The metatarsal lyriform organ of the spider Cupiennius salei is a vibration detector consisting of 21 cuticular slits supplied by two sensory cells each, one ending in the outer and the other at the inner slit membrane. In search of functional differences between the two cell types due to differences in stimulus transmission, we analyzed (1) the adaptation of responses to electrical stimulation, (2) the thresholds for mechanical stimulation and (3) the representation of male courtship vibrations using intracellular recording and staining techniques. Single- and multi-spiking receptor neurons were found among both cell types, which showed high-pass filter characteristics. Below 100-Hz threshold, tarsal deflections were between 1 degrees and 10 degrees. At higher frequencies, they decreased down to values as small as 0.05 degrees, corresponding to 4.5-nm tarsal deflection in the most sensitive cases. Different slits in the organ and receptor cells with slow or fast adaptation did not differ in this regard. When stimulated with male courtship vibrations, both types of receptor cells again did not differ significantly regarding number of action potentials, latency and synchronization coefficients. Surprisingly, the differences in dendrite coupling were not reflected by the physiological responses of the two cell types innervating the slits.
Collapse
Affiliation(s)
- Jorge Molina
- Departamento de Ciencias Biológicas, Universidad de Los Andes, Apartado Aereo 4976, Bogotá, Colombia.
| | | | | |
Collapse
|
12
|
Wolf H. The pectine organs of the scorpion, Vaejovis spinigerus: structure and (glomerular) central projections. ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:67-80. [PMID: 18089128 DOI: 10.1016/j.asd.2007.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/02/2007] [Indexed: 05/15/2023]
Abstract
The pectines of a new-world scorpion were studied as to their sensilla, nerve supply, and central nervous projections. (i) Pectines and sensilla in Vaejovis are similar to those examined in old-world species previously, although Vaejovis' pectines are larger and equipped with more receptors. The specialized peg sensilla show ultrastructural features characteristic of arthropod chemo- and mechanoreceptors, with the chemosensory exceeding the mechanosensory neuron population about 11-fold in number. (ii) The motoneuron supply of the pectines resembles that of other limbs and apparently conforms to a general arthropod plan. Motoneuron somata occur in three ventral groups, the anterior and posterior ipsilateral, and the contralateral groups. (iii) Pectine afferents terminate mainly in two ventromedial neuropil areas of the fused subesophageal ganglion mass. The larger posterior pectine neuropil shows a distinct glomerular and layered ("lobular") organization, reminiscent of insect antennal lobes and malacostracan olfactory lobes. Afferents enter the neuropil from its periphery, and output neurons leave through a central tract. Most projections show somatotopic organization, and several glomeruli exhibit GABA-like immunoreactivity, indicative of inhibitory synaptic interactions. The glomerular structure of the main pectine neuropil may indicate that such compartmentalisation is advantageous for the initial processing of chemosensory signals. The somatotopic projection of pectin receptors may be related to the use of the pectines in chemosensory orientation to substrate-bound chemicals, and in active sensing.
Collapse
Affiliation(s)
- Harald Wolf
- Institute of Neurobiology, University of Ulm, D-89069 Ulm, Germany.
| |
Collapse
|
13
|
Kim D. Neural network mechanism for the orientation behavior of sand scorpions towards prey. IEEE TRANSACTIONS ON NEURAL NETWORKS 2006; 17:1070-1076. [PMID: 16856668 DOI: 10.1109/tnn.2006.875971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sand scorpions use their tactile sense organs on their legs to capture their prey. They are able to localize their prey by processing vibration signals generated by the prey movement. The central nervous system receives stimulus-locked neuron firings of the sense organs on their eight legs. It is believed that eight receptor neurons in the brain interact with each other with triad inhibitions and then a voting contribution of the receptor neurons is calculated to obtain the resource direction. This letter presents a neuronal model of the voting procedure to locate prey. The neural network consists of a sinusoidal array of neurons for the resource vector, and it has been tested on the orientation data of scorpions.
Collapse
|
14
|
Brownell PH, Leo van Hemmen J. Vibration Sensitivity and a Computational Theory for Prey-Localizing Behavior in Sand Scorpions. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.5.1229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Brownell PH, Leo van Hemmen J. Vibration Sensitivity and a Computational Theory for Prey-Localizing Behavior in Sand Scorpions1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[1229:vsaact]2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Stürzl W, Kempter R, van Hemmen JL. Theory of arachnid prey localization. PHYSICAL REVIEW LETTERS 2000; 84:5668-5671. [PMID: 10991021 DOI: 10.1103/physrevlett.84.5668] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/1999] [Indexed: 05/23/2023]
Abstract
Sand scorpions and many other arachnids locate their prey through highly sensitive slit sensilla at the tips (tarsi) of their eight legs. This sensor array responds to vibrations with stimulus-locked action potentials encoding the target direction. We present a neuronal model to account for stimulus angle determination using a population of second-order neurons, each receiving excitatory input from one tarsus and inhibition from a triad opposite to it. The input opens a time window whose width determines a neuron's firing probability. Stochastic optimization is realized through tuning the balance between excitation and inhibition. The agreement with experiments on the sand scorpion is excellent.
Collapse
Affiliation(s)
- W Stürzl
- Physik Department, TU München, D-85747 Garching bei München, Germany
| | | | | |
Collapse
|
17
|
Abstract
Immunohistochemistry is used to demonstrate histamine-immunoreactivity in the CNS of spiders. We found histamine-immunoreactivity in the photoreceptors of different spiders. Therefore, we suggest that histamine is a neurotransmitter of photoreceptors in all arthropods, since it is also known to occur in the photoreceptors of the other main arthropod taxa (Merostomata, Crustacea, and Insecta). We also describe a system of only six omnisegmental histamine-immunoreactive neurons within the central nervous system. These histamine-immunoreactive neurons can be divided into two subgroups: a dorsal system with two cells per hemisphere and a ventral system with only one cell per hemisphere. All six cells have extended arborizations in both the motor and the sensory areas of all neuromeres in the suboesophageal ganglionic mass. In contrast to araneomorph spiders, two additional sets of histamine-immunoreactive neurons were detected in mygalomorph spiders. The first set consists of seventeen cells with their cell bodies located in the cheliceral ganglion and projecting to central areas of the protocerebrum. The second set contains many if not all sensory projections from the tarsal organs on all eight legs and the pedipalps to the Blumenthal neuropil.
Collapse
Affiliation(s)
- A Schmid
- Biozentrum, Institut für Zoologie, Universität Wien, Austria
| | | |
Collapse
|
18
|
|
19
|
Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (
Cupiennius salei
Keys.). Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1993.0084] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adults of the wandering spider
Cupiennius salei
(Ctenidae) have 936 ( ± 31 s.d.) trichobothria or filiform hairs on their legs and pedipalps. This is the largest number of these air movement detectors recorded for a spider. The trichobothria are 100-1400 μm long and 5-15 μm wide (diameter at base). Many of them are bent distally pointing towards the spider body. Their feathery surface increases drag forces and thus mechanical sensitivity by enlarging the effective hair diameter. Typically, trichobothria are arranged in clusters of 2-30 hairs which increase in length towards the leg tip. The trichobothria’s mechanical directionality is either isotropic or it exhibits a preference for air flow parallel or perpendicular (from lateral) to the long leg axis. These differences are neither due to the distal bend of the hair nor to the bilateral symmetry of the cuticular cup at the hair base but to the spring supporting the hair. Different directional properties may be combined in the same cluster of hairs. Trichobothria are tuned to best frequency ranges between 40 and 600 Hz depending on hair length. Because, with increasing hair length, absolute mechanical sensitivity changes as well, the arrangement of hairs in a cluster provides for a fractionation of both the intensity and frequency range of a stimulus, in addition, in some cases, to that of stimulus direction. Boundary layer thickness above the spider leg in oscillating airflow varies between about 2600 μm at 10 Hz and 600 μm at 950 Hz. It is well within the range of hair lengths. In airflow perpendicular to the long leg axis particle velocity above the leg increases considerably as compared to the free field. The curved surface of the cuticular substrate has therefore to be taken into account when calculating hair motion. The experimentally measured properties of hair and air motion were also determined numerically using the theory developed in the companion paper (Humphrey
et al. Phil. Trans. R. Soc. Lond
. B 340, 423-444 (1993)). There is good agreement between the two. Short hairs are as good or better velocity sensors as long hairs but more sensitive acceleration sensors. In agreement with most of our measurements optimal hair length is not larger than boundary layer thickness at a hair’s best frequency. Best frequencies of hair deflection and of ratio
a
(maximum hair tip displacement:air particle displacement) differ from each other. The highest measured value for ratio a was 1.6. In only 22% of the cases hair tip displacement exceeded air particle displacement. Hair motion is insensitive to changes in hair mass as shown by the numerical comparison of a solid and a hollow hair.
Collapse
|
20
|
Hygro- and thermoreceptors in tip-pore sensilla of the tarsal organ of the spider Cupiennius salei: innervation and central projection. Cell Tissue Res 1994. [DOI: 10.1007/bf00414182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Histamine immunoreactivity in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 1993. [DOI: 10.1007/bf00333707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Gorb SN, Anton S, Barth FG. Central projections of cheliceral mechanoreceptors in the spider Cupiennius salei (Arachnida, Araneae). J Morphol 1993; 217:129-136. [PMID: 29865459 DOI: 10.1002/jmor.1052170202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Central projections of lyriform organs and tactile hairs on the chelicerae of the wandering spider Cupiennius salei were traced using anterograde cobalt fills. Different fibers arising from both mechanoreceptor types arborize in the cheliceral ganglia, which are part of the tritocerebrum, and in sensory longitudinal tracts in the center of the suboesophageal nerve mass together with afferent fibers arising from mechanoreceptors on the walking legs and the pedipalps. This convergence of sensory projections in the sensory longitudinal tracts might provide the anatomical basis for the coordination of the movements of different extremities during prey capture and feeding. The findings also support the hypothesis that the tritocerebrum originally was a preoral ganglion in spiders. © 1993 Wiley-Liss, Inc.
Collapse
Affiliation(s)
| | - Sylvia Anton
- Institut für Zoologie, Universität Wien, A-1090 Wien, Austria
| | | |
Collapse
|