1
|
Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:601-610. [DOI: 10.1016/j.bbabio.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022]
|
2
|
Yue JX, Li J, Wang D, Araki H, Tian D, Yang S. Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC PLANT BIOLOGY 2010; 10:242. [PMID: 21062446 PMCID: PMC3095324 DOI: 10.1186/1471-2229-10-242] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/09/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. RESULTS According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. CONCLUSIONS The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the mechanism determining the molecular evolutionary rate at the genomic level.
Collapse
Affiliation(s)
- Jia-Xing Yue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR China
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Jinpeng Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR China
| | - Dan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR China
| | - Hitoshi Araki
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR China
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, PR China
| |
Collapse
|
3
|
Busch A, Hippler M. The structure and function of eukaryotic photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:864-77. [PMID: 20920463 DOI: 10.1016/j.bbabio.2010.09.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic photosystem I consists of two functional moieties: the photosystem I core, harboring the components for the light-driven charge separation and the subsequent electron transfer, and the peripheral light-harvesting complex (LHCI). While the photosystem I-core remained highly conserved throughout the evolution, with the exception of the oxidizing side of photosystem I, the LHCI complex shows a high degree of variability in size, subunits composition and bound pigments, which is due to the large variety of different habitats photosynthetic organisms dwell in. Besides summarizing the most current knowledge on the photosystem I-core structure, we will discuss the composition and structure of the LHCI complex from different eukaryotic organisms, both from the red and the green clade. Furthermore, mechanistic insights into electron transfer between the donor and acceptor side of photosystem I and its soluble electron transfer carrier proteins will be given. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Andreas Busch
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | | |
Collapse
|
4
|
Hein P, Stöckel J, Bennewitz S, Oelmüller R. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 69:517-28. [PMID: 19037728 DOI: 10.1007/s11103-008-9433-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/10/2008] [Indexed: 05/06/2023]
Abstract
Dpt1 (defect in p saA/B transcript accumulation 1) is a novel photosystem (PS) I mutant in Arabidopsis. dpt1 mutants fail to grow photoautotrophically, and are impaired in the accumulation of psaA/B transcripts while the transcript levels for the remaining PSI subunits, for subunits of the PSII, the cyt-b ( 6 )/f-complex, and the ribulose-1,5-bisphosphate carboxylase are comparable to the wild type. In-organello run-on transcription assays demonstrate that the lower psaA/B transcript abundance in dpt1-1 is not caused by the inability to transcribe the psaA/psaB/rps14 operon. psaA/B transcripts in the mutant are associated with polyribosomes and translated. Thus, the mutation affects post-transcriptional processes specific for psaA/B. The dpt1 gene was isolated by map-based cloning. The protein is localized in the stroma of the chloroplast and exhibits striking similarities to UMP kinases of prokaryotic origin. Our results show that the nuclear encoded protein Dpt1 is essential for retaining photosynthetic activity in higher plant chloroplasts and involved in post-transcriptional steps of psaA/B transcript accumulation. We discuss that Dpt1 may be a bifunctional protein that couples the pyrimidine metabolism to the photosynthetic electron transport.
Collapse
Affiliation(s)
- Paul Hein
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, Dornburgerstr. 159, 07743, Jena, Germany
| | | | | | | |
Collapse
|
5
|
Golbeck JH. The binding of cofactors to photosystem I analyzed by spectroscopic and mutagenic methods. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:237-56. [PMID: 12524325 DOI: 10.1146/annurev.biophys.32.110601.142356] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on cofactor-ligand and protein-protein interactions within the photosystem I reaction center. The topics include a description of the electron transfer cofactors, the mode of binding of the cofactors to protein-bound ligands, and a description of intraprotein contacts that ultimately allow photosystem I to be assembled (in cyanobacteria) from 96 chlorophylls, 22 carotenoids, 2 phylloquinones, 3 [4Fe-4S] clusters, and 12 polypeptides. During the 15 years that have elapsed from the first report of crystals to the atomic-resolution X-ray crystal structure, cofactor-ligand interactions and protein-protein interactions were systematically being explored by spectroscopic and genetic methods. This article charts the interplay between these disciplines and assesses how good the early insights were in light of the current structure of photosystem I.
Collapse
Affiliation(s)
- John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
6
|
|
7
|
Wynn R, Malkin R. Characterization of an isolated chloroplast membrane Fe◀S protein and its identification as the photosystem I Fe◀SA/Fe◀SBbinding protein. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)81143-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Oh-oka H, Takahashi Y, Matsubara H, Itoh S. EPR studies of a 9 kDa polypeptide with an iron-sulfur cluster(s) isolated from photosystem I complex byn-butanol extraction. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80101-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hiyama T, Yumoto K, Satoh A, Takahashi M, Nishikido T, Nakamoto H, Suzuki K, Hiraide T. Chromatographic separation of a small subunit (PsbW/PsaY) and its assignment to Photosystem I reaction center. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:117-24. [PMID: 10924904 DOI: 10.1016/s0005-2728(00)00120-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By using a hydroxyapatite column, the five major Photosystem I (PSI) subunits (PsaA,-B,-C,-D,-E) solubilized by sodium dodecyl sulfate (SDS) were fractionated from a spinach PSI reaction center preparation. Another small (5-6 kDa) polypeptide was also separated, and purified to homogeneity. Mass spectroscopy yielded its molecular weight to be 5942 +/- 10. This polypeptide had an N-terminal sequence homologous to those of previously reported 5-kDa subunits from spinach and wheat and a 6.1-kDa subunit of Chlamydomonas, which had all been assigned to Photosystem II (PSII) and designated as PsbW. However, we found similar 5-kDa polypeptides with highly conserved N-terminal sequences ubiquitously in PSI particles from other plants including Daikon (Raphanus sativus, Japanese radish), Chingensai (Brassica parachinensis, Chinese cabbage), parsley and Shungiku (Chrysanthemum coronarium, Garland chrysanthemum) as well. Preparations of spinach PSI particles prepared by using a mild detergent (digitonin) had this 5-kDa subunit, while PSII particles did not. Moreover, a bare-bone PSI reaction center preparation consisting of PsaA/B alone had a more than stoichiometric amount of this 5-kDa polypeptide. A mechanically (without detergent) fractionated stroma thylakoid preparation from Phytolacca americana, which lacked other PSII subunits, also contained this 5-kDa subunit. Thus, we propose that this 5-kDa polypeptide, previously designated as a PSII subunit (PsbW), is an integral subunit of PSI as well.
Collapse
Affiliation(s)
- T Hiyama
- Department of Biochemistry and Molecular Biology, Saitama University, Urawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rochaix J, Fischer N, Hippler M. Chloroplast site-directed mutagenesis of photosystem I in Chlamydomonas: electron transfer reactions and light sensitivity. Biochimie 2000; 82:635-45. [PMID: 10946112 DOI: 10.1016/s0300-9084(00)00604-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photosystem I (PSI) complex is a multisubunit protein-pigment complex embedded in the thylakoid membrane which acts as a light-driven plastocyanin/cytochrome c(6)-ferredoxin oxido-reductase. The use of chloroplast transformation and site-directed mutagenesis coupled with the biochemical and biophysical analysis of mutants of the green alga Chlamydomonas reinhardtii with specific amino acid changes in several subunits of PSI has provided new insights into the structure-function relationship of this important photosynthetic complex. In particular, this molecular-genetic analysis has identified key residues of the reaction center polypeptides of PSI which are the ligands of some of the redox cofactors and it has also provided important insights into the orientation of the terminal electron acceptors of this complex. Finally this analysis has also shown that mutations affecting the donor side of PSI are limiting for overall electron transfer under high light and that electron trapping within the terminal electron acceptors of PSI is highly deleterious to the cells.
Collapse
Affiliation(s)
- J Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30, quai Ernest-Ansermet, 1211 4, Geneva, Switzerland.
| | | | | |
Collapse
|
11
|
Fischer N, Sétif P, Rochaix JD. Site-directed mutagenesis of the PsaC subunit of photosystem I. F(b) is the cluster interacting with soluble ferredoxin. J Biol Chem 1999; 274:23333-40. [PMID: 10438510 DOI: 10.1074/jbc.274.33.23333] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two [4Fe-4S] clusters F(A) and F(B) are the terminal electron acceptors of photosystem I (PSI) that are bound by the stromal subunit PsaC. Soluble ferredoxin (Fd) binds to PSI via electrostatic interactions and is reduced by the outermost iron-sulfur cluster of PsaC. We have generated six site-directed mutants of the green alga Chlamydomonas reinhardtii in which residues located close to the iron-sulfur clusters of PsaC are changed. The acidic residues Asp(9) and Glu(46), which are located one residue upstream of the first cysteine liganding cluster F(B) and F(A), respectively, were changed to a neutral or a basic amino acid. Although Fd reduction is not affected by the E46Q and E46K mutations, a slight increase of Fd affinity (from 1.3- to 2-fold) was observed by flash absorption spectroscopy for the D9N and D9K mutant PSI complexes. In the FA(2) triple mutant (V49I/K52T/R53Q), modification of residues located next to the F(A) cluster leads to partial destabilization of the PSI complex. The electron paramagnetic resonance properties of cluster F(A) are affected, and a 3-fold decrease of Fd affinity is observed. The introduction of positively charged residues close to the F(B) cluster in the FB(1) triple mutant (I12V/T15K/Q16R) results in a 60-fold increase of Fd affinity as measured by flash absorption spectroscopy and a larger amount of PsaC-Fd cross-linking product. The first-order kinetics are similar to wild type kinetics (two phases with t((1)/(2)) of <1 and approximately 4.5 microseconds) for all mutants except FB(1), where Fd reduction is almost monophasic with t((1)/(2)) < 1 microseconds. These data indicate that F(B) is the cluster interacting with Fd and therefore the outermost iron-sulfur cluster of PSI.
Collapse
Affiliation(s)
- N Fischer
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
12
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Sticht H, Rösch P. The structure of iron-sulfur proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 70:95-136. [PMID: 9785959 DOI: 10.1016/s0079-6107(98)00027-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ferredoxins are a group of iron-sulfur proteins for which a wealth of structural and mutational data have recently become available. Previously unknown structures of ferredoxins which are adapted to halophilic, acidophilic or hyperthermophilic environments and new cysteine patterns for cluster ligation and non-cysteine cluster ligation have been described. Site-directed mutagenesis experiments have given insight into factors that influence the geometry, stability, redox potential, electronic properties and electron-transfer reactivity of iron-sulfur clusters.
Collapse
Affiliation(s)
- H Sticht
- Lehrstuhl für Struktur und Chemie der Biopolymere, Universität Bayreuth, Germany.
| | | |
Collapse
|
14
|
Ohnishi T, Sled VD, Yano T, Yagi T, Burbaev DS, Vinogradov AD. Structure-function studies of iron-sulfur clusters and semiquinones in the NADH-Q oxidoreductase segment of the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:301-8. [PMID: 9693742 DOI: 10.1016/s0005-2728(98)00082-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our recent experimental data on iron-sulfur clusters and semiquinones in the complex I segment of the respiratory chain is presented, focusing on the Paracoccus (P.) denitrificans and bovine heart studies. The iron-sulfur cluster N2 has attracted the attention of investigators in the research field of complex I, since the mid-point redox potential of this cluster is the highest among all clusters in complex I, and is pH dependent (60 mV/pH). It is known that this cluster is located either in the NQO6 (NuoB in E. coli/PSST in bovine heart nomenclature) or in the NQO9 (NuoI/TYKY) subunit in the amphipathic domain of complex I. Our preliminary data indicate that the cluster N2 is located in the NuoB rather than the long-advocated NuoI subunit, and may have a unique ligand structure. We previously reported spin-spin interactions between cluster N2 and two distinct species of semiquinone (designated SQNf and SQNs) associated with complex I. A parallel intensity change was observed between the SQNf (g = 2.00) signal and the N2 split g parallel signal, further supporting our proposed interaction between SQNf and N2 spins.
Collapse
Affiliation(s)
- T Ohnishi
- Johnson Research Foundation, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
NADH-quinone 1 oxidoreductase (Complex I) isolated from bovine heart mitochondria was, until recently, the major source for the study of this most complicated energy transducing device in the mitochondrial respiratory chain. Complex I has been shown to contain 43 subunits and possesses a molecular mass of about 1 million. Recently, Complex I genes have been cloned and sequenced from several bacterial sources including Escherichia coli, Paracoccus denitrificans, Rhodobacter capsulatus and Thermus thermophilus HB-8. These enzymes are less complicated than the bovine enzyme, containing a core of 13 or 14 subunits homologous to the bovine heart Complex I. From this data, important clues concerning the subunit location of both the substrate binding site and intrinsic redox centers have been gleaned. Powerful molecular genetic approaches used in these bacterial systems can identify structure/function relationships concerning the redox components of Complex I. Site-directed mutants at the level of bacterial chromosomes and over-expression and purification of single subunits have allowed detailed analysis of the amino acid residues involved in ligand binding to several iron-sulfur clusters. Therefore, it has become possible to examine which subunits contain individual iron-sulfur clusters, their location within the enzyme and what their ligand residues are. The discovery of g=2.00 EPR signals arising from two distinct species of semiquinone (SQ) in the activated bovine heart submitochondrial particles (SMP) is another line of recent progress. The intensity of semiquinone signals is sensitive to DeltamicroH+ and is diminished by specific inhibitors of Complex I. To date, semiquinones similar to those reported for the bovine heart mitochondrial Complex I have not yet been discovered in the bacterial systems. This mini-review describes three aspects of the recent progress in the study of the redox components of Complex I: (A) the location of the substrate (NADH) binding site, flavin, and most of the iron-sulfur clusters, which have been identified in the hydrophilic electron entry domain of Complex I; (B) experimental evidence indicating that the cluster N2 is located in the amphipathic domain of Complex I, connecting the promontory and membrane parts. Very recent data is also presented suggesting that the cluster N2 may have a unique ligand structure with an atypical cluster-ligation sequence motif located in the NuoB (NQO6/PSST) subunit rather than in the long advocated NuoI (NQO9/TYKY) subunit. The latter subunit contains the most primordial sequence motif for two tetranuclear clusters; (C) the discovery of spin-spin interactions between cluster N2 and two distinct Complex I-associated species of semiquinone. Based on the splitting of the g1 signal of the cluster N2 and concomitant strong enhancement of the semiquinone spin relaxation, one semiquinone species was localized 8-11 A from the cluster N2 within the inner membrane on the matrix side (N-side). Spin relaxation of the other semiquinone species is much less enhanced, and thus it was proposed to have a longer distance from the cluster N2, perhaps located closer to the other side (P-side) surface of the membrane. A brief introduction of EPR technique was also described in Appendix A of this mini-review.
Collapse
Affiliation(s)
- T Ohnishi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, and the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Vassiliev IR, Jung YS, Yang F, Golbeck JH. PsaC subunit of photosystem I is oriented with iron-sulfur cluster F(B) as the immediate electron donor to ferredoxin and flavodoxin. Biophys J 1998; 74:2029-35. [PMID: 9545061 PMCID: PMC1299543 DOI: 10.1016/s0006-3495(98)77909-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The PsaC subunit of photosystem I (PS I) binds two [4Fe-4S] clusters, F(A) and F(B), functioning as electron carriers between F(X) and soluble ferredoxin. To resolve the issue whether F(A) or F(B) is proximal to F(X), we used single-turnover flashes to promote step-by-step electron transfer between electron carriers in control (both F(A) and F(B) present) and HgCl2-treated (F(B)-less) PS I complexes from Synechococcus sp. PCC 6301 and analyzed the kinetics of P700+ reduction by monitoring the absorbance changes at 832 nm in the presence of a fast electron donor (phenazine methosulfate (PMS)). In control PS I complexes exogenously added ferredoxin, or flavodoxin could be photoreduced on each flash, thus allowing P700+ to be reduced from PMS. In F(B)-less complexes, both in the presence and in the absence of ferredoxin or flavodoxin, P700+ was reduced from PMS only on the first flash and was reduced from F(X)- on the following flashes, indicating lack of electron transfer to ferredoxin or flavodoxin. In the F(B)-less complexes, a normal level of P700 photooxidation was detected accompanied by a high yield of charge recombination between P700+ and F(A)- in the presence of a slow donor, 2,6-dichlorophenol-indophenol. This recombination remained the only pathway of F(A)- reoxidation in the presence of added ferredoxin, consistent with the lack of forward electron transfer. F(A)- could be reoxidized by methyl viologen in F(B)-less PS I complexes, although at a concentration two orders of magnitude higher than is required in wild-type PS I complexes, thus implying the presence of a diffusion barrier. The inhibition of electron transfer to ferredoxin and flavodoxin was completely reversed after reconstituting the F(B) cluster. Using rate versus distance estimates for electron transfer rates from F(X) to ferredoxin for two possible orientations of PsaC, we conclude that the kinetic data are best compatible with PsaC being oriented with F(A) as the cluster proximal to F(X) and F(B) as the distal cluster that donates electrons to ferredoxin.
Collapse
Affiliation(s)
- I R Vassiliev
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
17
|
Fischer N, Hippler M, Sétif P, Jacquot JP, Rochaix JD. The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. EMBO J 1998; 17:849-58. [PMID: 9463363 PMCID: PMC1170434 DOI: 10.1093/emboj/17.4.849] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PsaC is the stromal subunit of photosystem I (PSI) which binds the two terminal electron acceptors FA and FB. This subunit resembles 2[4Fe-4S] bacterial ferredoxins but contains two additional sequences: an internal loop and a C-terminal extension. To gain new insights into the function of the internal loop, we used an in vivo degenerate oligonucleotide-directed mutagenesis approach for analysing this region in the green alga Chlamydomonas reinhardtii. Analysis of several psaC mutants affected in PSI function or assembly revealed that K35 is a main interaction site between PsaC and ferredoxin (Fd) and that it plays a key role in the electrostatic interaction between Fd and PSI. This is based upon the observation that the mutations K35T, K35D and K35E drastically affect electron transfer from PSI to Fd, as measured by flash-absorption spectroscopy, whereas the K35R change has no effect on Fd reduction. Chemical cross-linking experiments show that Fd interacts not only with PsaD and PsaE, but also with the PsaC subunit of PSI. Replacement of K35 by T, D, E or R abolishes Fd cross-linking to PsaC, and cross-linking to PsaD and PsaE is reduced in the K35T, K35D and K35E mutants. In contrast, replacement of any other lysine of PsaC does not alter the cross-linking pattern, thus indicating that K35 is an interaction site between PsaC and its redox partner Fd.
Collapse
Affiliation(s)
- N Fischer
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
18
|
[7] Comparison of in Vitro and in Vivo mutants of PsaC in photosystem I: Protocols for mutagenesis and techniques for analysis. Methods Enzymol 1998. [DOI: 10.1016/s0076-6879(98)97009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Hirose T, Sugiura M. Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 1997; 16:6804-11. [PMID: 9362494 PMCID: PMC1170284 DOI: 10.1093/emboj/16.22.6804] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tobacco chloroplast genes encoding a photosystem I component (psaC) and a NADH dehydrogenase subunit (ndhD) are transcribed as a dicistronic pre-mRNA which is then cleaved into short mRNAs. An RNA protection assay revealed that the cleavage occurs at multiple sites in the intercistronic region. There are two possible initiation codons in the tobacco ndhD mRNA: the upstream AUG and the AUG created by RNA editing from the in-frame ACG located 25 nt downstream. Using the chloroplast in vitro translation system, we found that translation begins only from the edited AUG. The extent of ACG to AUG editing is partial and depends on developmental and environmental conditions. In addition, the in vitro assay showed that the psaC/ndhD dicistronic mRNA is not functional and that the intercistronic cleavage is a prerequisite for both ndhD and psaC translation. Using a series of mutant mRNAs, we showed that an intramolecular interaction between an 8 nt sequence in the psaC coding region and its complementary 8 nt sequence in the 5' ndhD UTR is the negative element for translation of the dicistronic mRNA. A possible mechanism in which the differential expression of the chloroplast operon consists of functionally unrelated genes is discussed.
Collapse
Affiliation(s)
- T Hirose
- Center for Gene Research, Nagoya University, Nagoya 464-01, Japan
| | | |
Collapse
|
20
|
Krauss N, Schubert WD, Klukas O, Fromme P, Witt HT, Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. NATURE STRUCTURAL BIOLOGY 1996; 3:965-73. [PMID: 8901876 DOI: 10.1038/nsb1196-965] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The 4 A X-ray structure model of trimeric photosystem I of the cyanobacterium Synechococcus elongatus reveals 31 transmembrane, nine surface and three stromal alpha-helices per monomer, assigned to the 11 protein subunits: PsaA and PsaB are related by a pseudo two-fold axis normal to the membrane plane, along which the electron transfer pigments are arranged. 65 antenna chlorophyll a (Chl a) molecules separated by < or = 16 A form an oval, clustered net continuous with the electron transfer chain through the second and third Chl a pairs of the electron transfer system. This suggests a dual role for these Chl a both in excitation energy and electron transfer. The architecture of the protein core indicates quinone and iron-sulphur type reaction centres to have a common ancestor.
Collapse
Affiliation(s)
- N Krauss
- Institut für Kristallographie, Freie Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Matsubara H, Oh-Oka H, Takahashi Y, Fujita Y. Three iron-sulfur proteins encoded by three ORFs in chloroplasts and cyanobacteria. PHOTOSYNTHESIS RESEARCH 1995; 46:107-115. [PMID: 24301573 DOI: 10.1007/bf00020421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/1995] [Accepted: 05/02/1995] [Indexed: 06/02/2023]
Abstract
A brief review is presented on the gene products of frxA, frxB and frxC found in chloroplasts. The product of frxA shows high sequence homologies to bacterial 2[4Fe-4S] ferredoxins, but it functions as iron-sulfur centers A and B in Photosystem I, transferring electrons to [2Fe-2S] ferredoxin. This protein is located on surface of the thylakoid membranes in a state being covered by two other proteins. Proteins homologous to frxB product are found in mitochondrial respiratory Complex I and the product of frxB may function in chlororespiration, but at present no clear function of this protein is known. The frxC gene product is found to function in light-independent chlorophyll synthesis as one of the subunits of protochlorophyllide reductase and is reviewed in comparison to nitrogenase. Several problems and future research direction in these areas are also presented.
Collapse
Affiliation(s)
- H Matsubara
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 700, Okayama, Japan
| | | | | | | |
Collapse
|
22
|
Andersson B, Barber J. Composition, Organization, and Dynamics of Thylakoid Membranes. MOLECULAR PROCESSES OF PHOTOSYNTHESIS 1994. [DOI: 10.1016/s1569-2558(08)60394-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Olmstead RG, Sweere JA, Wolfe KH. Ninety extra nucleotide in ndhF gene of tobacco chloroplast DNA: a summary of revisions to the 1986 genome sequence. PLANT MOLECULAR BIOLOGY 1993; 22:1191-3. [PMID: 8400137 DOI: 10.1007/bf00028992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Corrections to the published sequence of the tobacco chloroplast gene ndhF are presented, including a 90 bp Alu I restriction enzyme fragment internal to the gene that was apparently missed during the original sequencing effort. A summary of the corrections to the published tobacco chloroplast DNA that have come to light since its original publication is included.
Collapse
Affiliation(s)
- R G Olmstead
- Department of E.P.O. Biology, University of Colorado, Boulder 80309
| | | | | |
Collapse
|
24
|
Hatanaka H, Sonoike K, Hirano M, Katoh S. Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1141:45-51. [PMID: 8382079 DOI: 10.1016/0005-2728(93)90187-k] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photosystem I (PS I) reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus elongatus with nonionic detergents, digitonin or sucrose monolaurate, contained eight small subunit polypeptides. Two of the small polypeptides were identified by analysis of their N-terminal amino-acid sequences as the psaF and psaE gene products. Treatment with a cationic detergent, cetyltrimethylammonium bromide, resulted in depletion of five small subunits including the psaF gene product. Five PS I complexes isolated with an anionic detergent, sodium dodecylsulfate, contained zero to four small subunits but were all depleted of the psaF polypeptide. The function of the psaF gene product was examined by measuring reduction kinetics of flash-oxidized P-700 in the presence of different concentrations of cytochrome c-553. Oxidized P-700 was rapidly reduced by the reduced cytochrome in all the PS I complexes that contained, at least, the psaC and psaD polypeptides and the second-order rate constants of electron transfer from cytochrome c-553 to P-700 were essentially the same between PS I complexes that contained the psaF polypeptide and those that lost this polypeptide. Thus, the psaF polypeptide is not required for the bimolecular reaction between P-700 and cytochrome c-553. Mg2+ had a moderate stimulating effect on the rate of P-700 reduction whether PS I complexes were associated with the psaF gene product or not. The function of this subunit polypeptide is discussed.
Collapse
Affiliation(s)
- H Hatanaka
- Department of Biology, Faculty of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Rhiel E, Stirewalt VL, Gasparich GE, Bryant DA. The psaC genes of Synechococcus sp. PCC7002 and Cyanophora paradoxa: cloning and sequence analysis. Gene 1992; 112:123-8. [PMID: 1551590 DOI: 10.1016/0378-1119(92)90313-e] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The psaC genes of the cyanobacterium, Synechococcus sp. PCC7002, and of the cyanelle genome of the phylogenetically ambiguous biflagellate, Cyanophora paradoxa, were cloned, mapped and sequenced. The PsaC proteins of both species exhibit high degrees (approx. 95%) of sequence similarity to the PsaC proteins of other cyanobacteria as well as the chloroplast-encoded proteins of green algae and higher plants. The Synechococcus sp. PCC7002 psaC gene is transcribed as a monocistronic mRNA of approx. 350-400 nt, and transcription is initiated 51 nt upstream from the translational start codon. As found for the chloroplasts of higher plants, the C. paradoxa psaC gene is encoded within the small single-copy region of the cyanelle genome. In contrast to results obtained for chloroplasts and for the cyanobacterium Synechocystis sp. PCC6803, neither psaC gene is flanked by genes encoding components of the NAD(P)H dehydrogenase complex.
Collapse
Affiliation(s)
- E Rhiel
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
26
|
|
27
|
Matsubara H, Saeki K. Structural and Functional Diversity of Ferredoxins and Related Proteins. ADVANCES IN INORGANIC CHEMISTRY 1992. [DOI: 10.1016/s0898-8838(08)60065-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Andersson B, Franzén LG. Chapter 5 The two photosystems of oxygenic photosynthesis. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
29
|
Ohyama K. Organization and Expression of Genes of Plastid Chromosomes from Non-Angiospermous Land Plants and Green Algae. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/978-3-7091-9138-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
30
|
Iwasaki Y, Ishikawa H, Hibino T, Takabe T. Characterization of genes that encode subunits of cucumber PS I complex by N-terminal sequencing. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1059:141-8. [PMID: 1883835 DOI: 10.1016/s0005-2728(05)80198-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N-terminal amino acid sequencing was carried out to characterize the genes of the cucumber PS I complex (PSI-100) that contains eight polypeptides and catalyzes the light-dependent transfer of electrons from plastocyanin to ferredoxin. The genes of all subunits except the 17.5 kDa polypeptide in PSI-100 have been identified. These are psaA/psaB (65/63 kDa), psaD (20 kDa), psaE (19.5 kDa), psaF (18.5 kDa), psaH (7.6 kDa), and psaC (5.8 kDa). The 17.5 kDa polypeptide is a new protein and is designated tentatively as the gene product of psaM. N-terminal amino-acid sequencing indicated the presence of two polypeptides in the 7.6 kDa band. One of these is the gene product of psaH and is essential for the activity of the PS I complex, and the other one is as yet unrecognized and largely depleted in the PSI-100 complex. Gene products of psaG, psaI, and psaK, which have been proposed as the components of PS I complex, are not involved in the PSI-100 complex, but are involved in the PS I complex (PSI-200), which contains 120 chlorophyll per reaction center chlorophyll (P700) and light-harvesting chlorophyll a/b protein complexes. Three polypeptides (26,23 and 22.5 kDa) are not involved in the PSI-100 and are assigned as the apo-protein of light-harvesting chlorophyll a/b protein complexes.
Collapse
Affiliation(s)
- Y Iwasaki
- Department of Chemistry, Meijo University, Nagoya, Japan
| | | | | | | |
Collapse
|
31
|
Ikeuchi M, Nyhus KJ, Inoue Y, Pakrasi HB. Identities of four low-molecular-mass subunits of the photosystem I complex from Anabaena variabilis ATCC 29413. Evidence for the presence of the psaI gene product in a cyanobacterial complex. FEBS Lett 1991; 287:5-9. [PMID: 1908790 DOI: 10.1016/0014-5793(91)80003-l] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photosystem I (PSI) complex of Anabaena variabilis ATCC 29413 consists of at least 11 subunits, 9 of which are resolved by high resolution gel electrophoresis. N-terminal amino acid sequences of the four subunits with molecular masses of 6.8, 5.2, 4.8 and 3.5 kDa were determined. Based on the sequence homology, the 3.5 kDa subunit was revealed to correspond to PSI-I (the gene product of psaI), which had so far been detected only in higher plant PSI complexes. The 6.8 kDa protein and 4.8 kDa protein were identified as gene products of psaK and psaJ, respectively. The 5.2 kDa protein was homologous to a 4.8 kDa subunit of PSI of the thermophilic cyanobacterium Synechococcus vulcanus, suggesting that this protein is a component of PSI in cyanobacteria.
Collapse
Affiliation(s)
- M Ikeuchi
- Solar Energy Research Group, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | |
Collapse
|
32
|
Almog O, Lotan O, Shoham G, Nechushtai R. The composition and organization of photosystem I. J Basic Clin Physiol Pharmacol 1991; 2:123-40. [PMID: 1797091 DOI: 10.1515/jbcpp.1991.2.3.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photosystem I, extensively studied in the past decade, was shown to be homologous in all photosynthetic organisms of the higher plants type. Its core complex was found to be highly conserved through evolution from cyanobacteria to higher plants. The genes coding for the subunits of CCI were isolated and the resulting sequences provided information about secondary structural elements. These suggested secondary structures enabled the prediction of the topology of these subunits in the photosynthetic membrane. Structural studies using both electron microscopy and X-ray crystallography, on isolated particles as well as on the complexes in the photosynthetic membrane, led to a better understanding of the overall structure of CCI. Recently two forms of three dimensional crystals of CCI were obtained. These crystals contain all the original components of CCI (both protein and pigments); these components have not been altered by crystallization. It is expected that a detailed crystallographic analysis of these crystals, together with biochemical, spectroscopical and molecular biology studies, will eventually lead to the elucidation of the high resolution structure of the photosystem I core complex and to the understanding of the exact role and mode of action of this complex in the photosynthetic membrane.
Collapse
Affiliation(s)
- O Almog
- Department of Inorganic Chemistry, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
33
|
Shimizu T, Hiyama T, Ikeuchi M, Koike H, Inoue Y. Nucleotide sequence of the psaC gene of the cyanobacterium Synechococcus vulcanus. Nucleic Acids Res 1990; 18:3644. [PMID: 2114016 PMCID: PMC331032 DOI: 10.1093/nar/18.12.3644] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- T Shimizu
- Department of Biochemistry, Saitama University, Urawa, Japan
| | | | | | | | | |
Collapse
|
34
|
Boekema EJ, Wynn R, Malkin R. The structure of spinach Photosystem I studied by electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90177-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Ikeuchi M, Hirano A, Hiyama T, Inoue Y. Polypeptide composition of higher plant photosystem I complex. Identification of psaI, psaJ and psaK gene products. FEBS Lett 1990; 263:274-8. [PMID: 2185953 DOI: 10.1016/0014-5793(90)81391-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High resolution gel electrophoresis of the native photosystem I complex retaining light-harvesting chlorophyll complex revealed the presence of three low-molecular-mass proteins of 7, 4.1 and 3.9 kDa in spinach, and 6.8, 4.4 and 4.1 kDa in pea, in addition to the other well-characterized higher-molecular-mass components. Upon further detergent treatment to deplete light-harvesting chlorophyll complex, the 7 kDa and 4.1 kDa proteins were removed from the photosystem I core complex of spinach, while the 3.9 kDa protein was retained. N-terminal sequencing demonstrated that the 4.1 kDa proteins from both spinach and pea correspond to the gene product of ORF42/44 in chloroplast genome of liverwort and higher plants, which was previously hypothesized as a photosystem I gene (psaJ) based on sequence homology with the cyanobacterial photosystem I component of 4.1 kDa [(1989) FEBS Lett. 253, 257-263]. N-terminal sequence of the spinach 3.9 kDa and pea 4.4 kDa proteins fitted with chloroplast ORF36/40 (psaI) although no homologue has been found in cyanobacteria. The spinach 7 kDa and pea 6.8 kDa proteins correspond to the nuclear-encoded psaK product and significantly matched with the N-terminal sequence of the cyanobacterial 6.5 kDa subunit. The evolutional conservation of the psaJ and psaK seems to suggest their intrinsic role(s) in photosystem I.
Collapse
Affiliation(s)
- M Ikeuchi
- Solar Energy Research Group, Institute of Physical and Chemical Research, Saitama, Japan
| | | | | | | |
Collapse
|
36
|
Resolution and reconstitution of the cyanobacterial photosystem I complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90039-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Mono-, di- and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90074-e] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Koike H, Ikeuchi M, Hiyama T, Inoue Y. Identification of photosystem I components from the cyanobacterium, Synechococcus vulcanus by N-terminal sequencing. FEBS Lett 1989; 253:257-63. [PMID: 2503399 DOI: 10.1016/0014-5793(89)80971-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The photosystem I core complex isolated from a thermophilic cyanobacterium, Synechococcus vulcanus, is composed of eight low-molecular-mass proteins of 18, 14, 12, 9.5, 9, 6.5, 5 and 4.1 kDa in addition to the PS I chlorophyll protein. N-terminal amino acid sequences of all these components were determined and compared with those of higher plants. Clearly, the 9.5 kDa component corresponds to the protein which carries the non-heme iron-sulfur centers A and B. This protein is so poorly visualized by staining that it has probably been overlooked in gel electrophoresis analyses. The 18, 14, 12 and 9 kDa components show appreciable homology with respective subunits of higher plant PS I. In contrast, the 6.5, 5 and 4.1 kDa components do not correspond to any known proteins except that the sequence of the 4.1 kDa component matches an unidentified open reading frame (ORF) 42 (liverwort) or ORF44 (tobacco) of chloroplast DNA.
Collapse
Affiliation(s)
- H Koike
- Solar Energy Research Group, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | |
Collapse
|
39
|
Steppuhn J, Hermans J, Nechushtai R, Herrmann GS, Herrmann RG. Nucleotide sequences of cDNA clones encoding the entire precursor polypeptide for subunit VI and of the plastome-encoded gene for subunit VII of the photosystem I reaction center from spinach. Curr Genet 1989; 16:99-108. [PMID: 2688927 DOI: 10.1007/bf00393402] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recombinant phage which encode the entire precursor polypeptide for subunit VI of the photosystem I reaction center have been selected from a lambda gt11 cDNA expression library made from polyadenylated RNA of spinach seedlings. The sequence predicts a precursor polypeptide of 144 amino acids (Mr = 15.3 kDa), a mature protein of 95 residues (Mr = 10.4 kDa) that lacks methionine, histidine and cysteine, and a transit peptide of 49 residues (Mr = 4.9 kDa). The corresponding gene(s) is (are) designated psaH. The gene for subunit VII, psaC, has been located in the small single-copy region of the spinach plastid chromosome using a synthetic oligonucleotide and a heterologous hybridization probe. It is part of a polycistronic transcription unit that is constitutively expressed and processed. Putative processing products include a monocistronic RNA for psaC. The polypeptide chain of 18 (deduced) amino acids is highly conserved and strikingly resembles bacterial-type ferredoxins. It harbours cysteine residues that appear to be involved in the ligation of the two 4Fe4S centres A and B in photosystem I. None of the two subunits appears to be membrane-spanning, and subunit VI, as subunit VII, is located at the reducing (stromal) side of the reaction center. All available information on the major subunits of photosystem I from spinach has been combined into a (revised) topographic model. Evidence that the innermost - plastome-encoded - core of photosystem I represents an old bacterial heritage in present day chloroplasts is discussed.
Collapse
Affiliation(s)
- J Steppuhn
- Botanisches Institut der Ludwig-Maximilians-Universität, München, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
40
|
Okkels JS, Scheller HV, Jepsen LB, Møller BL. A cDNA clone encoding the precursor for a 10.2 kDa photosystem I polypeptide of barley. FEBS Lett 1989; 250:575-9. [PMID: 2666162 DOI: 10.1016/0014-5793(89)80799-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two cDNA clones for the barley photosystem I polypeptide which migrates with an apparent molecular mass of 9.5 kDa on SDS-polyacrylamide gels have been isolated using antibodies and an oligonucleotide probe. The determined N-terminal amino acid sequence for the mature polypeptide confirms the identification of the clones. The 644 base-pair sequence of one of the clones contains one large open reading frame coding for a 14,882 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10 193 Da. The hydropathy plot of the polypeptide shows one membranespanning region with a predicted alpha-helix secondary structure. The gene for the 9.5 kDa polypeptide has been designated PsaH.
Collapse
Affiliation(s)
- J S Okkels
- Department of Plant Physiology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
41
|
|
42
|
Bonham-Smith PC, Bourque DP. Translation of chloroplast-encoded mRNA: potential initiation and termination signals. Nucleic Acids Res 1989; 17:2057-80. [PMID: 2928114 PMCID: PMC317542 DOI: 10.1093/nar/17.5.2057] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A survey of 196 protein-coding chloroplast DNA sequences demonstrated the preference for AUG and UAA codons for initiation and termination of translation, respectively. As in prokaryotes at every nucleotide position from -25 to +25 (AUG is +1 to +3) and for 25 nucleotides 5' and 3' to the termination codon an A or U is predominant, except for C at +5 and G at +22. A Shine-Dalgarno (SD) sequence (GGAGG or tri- or tetranucleotide variant) was found within 100 bp 5' to the AUG codon in 92% of the genes. In 40% of these cases, the location of the SD sequence was similar to that of the consensus for prokaryotes (-12 to -7 5' to AUG), presumed to be optimal for translation initiation. A SD sequence could not be located in 6% of the chloroplast sequences. We propose that mRNA secondary structures may be required for the relocation of a distal SD sequences to within the optimal region (-12 to -7) for initiation of translation. We further suggest that termination at UGA codons in chloroplast genes may occur by a mechanism, involving 16S rRNA secondary structure, which has been proposed for UGA termination in E. coli.
Collapse
|
43
|
Parrett KG, Mehari T, Warren PG, Golbeck JH. Purification and properties of the intact P-700 and Fx-containing Photosystem I core protein. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 973:324-32. [PMID: 2537101 DOI: 10.1016/s0005-2728(89)80439-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intact Photosystem I core protein, containing the psaA and psaB polypeptides, and electron transfer components P-700 through FX, was isolated from cyanobacterial and higher plant Photosystem I complexes with chaotropic agents followed by sucrose density ultracentrifugation. The concentrations of NaClO4, NaSCN, NaI, NaBr or urea required for the functional removal of the 8.9 kDa, FA/FB polypeptide was shown to be inversely related to the strength of the chaotrope. The Photosystem I core protein, which was purified to homogeniety, contains 4 mol of acid-labile sulfide and has the following properties: (i) the FX-containing core consists of the 82 and 83 kDa reaction center polypeptides but is totally devoid of the low-molecular-mass polypeptides; (ii) methyl viologen and other bipyridilium dyes have the ability to accept electrons directly from FX; (iii) the difference spectrum of FX from 400 to 900 nm is characteristic of an iron-sulfur cluster; (iv) the midpoint potential of FX, determined optically at room temperature, is 60 mV more positive than in the control; (v) there is indication by ESR spectroscopy of low-temperature heterogeneity within FX; and (vi) the heterogeneity is seen by optical spectroscopy as inefficiency in low-temperature electron flow to FX. The constraints imposed by the amount of non-heme iron and labile sulfide in the Photosystem I core protein, the cysteine content of the psaA and psaB polypeptides, and the stoichiometry of high-molecular-mass polypeptides, cause us to re-examine the possibility that FX is a [4Fe-4S] rather than a [2Fe-2S] cluster ligated by homologous cysteine residues on the psaA and psaB heterodimer.
Collapse
Affiliation(s)
- K G Parrett
- Department of Chemistry, Portland State University, OR 97207
| | | | | | | |
Collapse
|
44
|
Scheller HV, Svendsen I, Møller BL. Amino acid sequence of the 9-kDa iron-sulfur protein of photosystem I in barley. CARLSBERG RESEARCH COMMUNICATIONS 1989; 54:11-5. [PMID: 2665764 DOI: 10.1007/bf02910468] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 9-kDa thylakoid polypeptide which in vivo carries the iron-sulfur centers A and B of photosystem I was isolated from barley (Hordeum vulgare L.) and the complete amino acid sequence determined. The polypeptide shows a very high degree of homology with the corresponding polypeptides in other plant species. The polypeptide is not post-translationally processed except for the removal of the N-terminal formyl-methionine and the insertion of the iron-sulfur centers.
Collapse
Affiliation(s)
- H V Scheller
- Department of Plant Physiology, Royal Veterinary and Agricultural University, Frederiksberg C
| | | | | |
Collapse
|
45
|
Sugiura M. Organization and expression of the Nicotiana chloroplast genome. BIOTECHNOLOGY (READING, MASS.) 1989; 12:295-315. [PMID: 2469507 DOI: 10.1016/b978-0-409-90068-2.50020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
|
46
|
Münch S, Ljungberg U, Steppuhn J, Schneiderbauer A, Nechushtai R, Beyreuther K, Herrmann RG. Nucleotide sequences of cDNAs encoding the entire precursor polypeptides for subunits II and III of the photosystem I reaction center from spinach. Curr Genet 1988; 14:511-8. [PMID: 3066511 DOI: 10.1007/bf00521277] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several cDNA clones encoding the complete subunit II and III precursor polypeptides of the photosystem I reaction center were isolated from two spinach lambda gt1 1 expression libraries by immunoscreening and homologous hybridization. The identity of the recombinant cDNAs was verified by an N-terminal amino acid sequence of 14 and 20 residues for the respective mature spinach proteins. The ca. 880 nucleotide long sequence and derived amino acid sequence for subunit II predict a precursor of 23.2 kDa (212 residues) and a positively charged, mature protein of 17.9 kDa (162 residues). The corresponding data for subunit III are ca. 710 nucleotides (cDNA), 13.4 kDa (125 residues, precursor polypeptide) and, again, a positively charged, mature protein of 9.7 kDa (91 residues). Secondary structure predictions indicate that both subunits are extramembraneous components of photosystem I. Subunit II is probably located on the matrix-side, subunit III in the lumen of stroma lamellae which is consistent both with biochemical findings and the proposed roles of these proteins in the electron transition from and to photosystem I, respectively. Major transcripts of 1.1 kb (subunit II) and 0.8 kb (subunit III) have been observed by RNA-DNA hybridization.
Collapse
Affiliation(s)
- S Münch
- Botanisches Institut der Ludwig-Maximilians-Universität München, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Shinozaki K, Hayashida N, Sugiura M. Nicotiana chloroplast genes for components of the photosynthetic apparatus. PHOTOSYNTHESIS RESEARCH 1988; 18:7-31. [PMID: 24425159 DOI: 10.1007/bf00042978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/1987] [Accepted: 12/31/1987] [Indexed: 06/03/2023]
Abstract
In order to understand more fully chloroplast genetic systems, we have determined the complete nucleotide sequence (155, 844 bp) of tobacco (Nicotiana tabacum var. Bright Yellow 4) chloroplast DNA. It contains two copies of an identical 25,339 bp inverted repeat, which are separated by 86, 684 bp and 18,482 bp single-copy regions. The genes for 4 different rRNAs, 30 different tRNAs, 44 different proteins and 9 other predicted protein-coding genes have been located. Fifteen different genes contain introns.Twenty-two genes for components of the photosynthetic apparatus have so far been identified. Most of the genes (except the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) code for thylakoid membrane proteins. Twenty of them are located in the large single-copy region and one gene for a 9-kd polypeptide of photosystem I is located in the small single-copy region. The gene for the 32-kd protein of photosystem II as well as the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase have strong promoters and are transcribed monocistronically while the other genes are transcribed polycistronically. We have found that the predicted amino acid sequences of six DNA sequences resemble those of components of the respiratory-chain NADH dehydrogenase from human mitochondria. As these six sequences are highly transcribed in tobacco chloroplasts, they are probably genes for components of a chloroplast NADH dehydrogenase. These observations suggest the existence of a respiratory-chain in the chloroplast of higher plants.
Collapse
Affiliation(s)
- K Shinozaki
- Center for Gene Research, Nagoya University, Chikusa, 464, Nagoya, Japan
| | | | | |
Collapse
|
48
|
Okkels JS, Jepsen LB, Hønberg LS, Lehmbeck J, Scheller HV, Brandt P, Høyer-Hansen G, Stummann B, Henningsen KW, von Wettstein D. A cDNA clone encoding a 10.8 kDa photosystem I polypeptide of barley. FEBS Lett 1988; 237:108-12. [PMID: 3049147 DOI: 10.1016/0014-5793(88)80181-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A cDNA clone encoding the barley photosystem I polypeptide which migrates with an apparent molecular mass of 16 kDa on SDS-polyacrylamide gels has been isolated. The 634 bp sequence of this clone has been determined and contains one large open reading frame coding for a 15,457 Da precursor polypeptide. The molecular mass of the mature polypeptide is 10,821 Da. The amino acid sequence of the transit peptide indicates that the polypeptide is routed towards the stroma side of the thylakoid membrane. The hydropathy plot of the polypeptide shows no membrane-spanning regions.
Collapse
Affiliation(s)
- J S Okkels
- Department of Plant Physiology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Steppuhn J, Hermans J, Nechushtai R, Ljungberg U, Thümmler F, Lottspeich F, Herrmann RG. Nucleotide sequence of cDNA clones encoding the entire precursor polypeptides for subunits IV and V of the photosystem I reaction center from spinach. FEBS Lett 1988; 237:218-24. [PMID: 3049152 DOI: 10.1016/0014-5793(88)80205-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using lambda gt11 expression cloning and immunoscreening, cDNA-containing recombinant phages for subunits IV and V of the photosystem I reaction center were isolated, sequenced and used to probe Northern blots of polyadenylated RNA prepared from spinach seedlings. The mRNA sizes for both components are approximately 1000 and 850 nucleotides, respectively. The 968 nucleotide cDNA sequence and derived amino acid sequence for subunit IV predict a single open reading frame of 231 amino acid residues (25.4 kDa). Comparison with a 13-residue N-terminal amino acid sequence determined for subunit IV suggests a mature protein of 17.3 kDa (154 residues) and a transit sequence of 77 amino acids (8.1 kDa). The corresponding data for subunit V are 677 bp (cDNA), 167 residues for the precursor protein (18.2 kDa), 98 residues for the mature polypeptide (10.8 kDa) and 69 residues for the transit peptide (7.4 kDa). Secondary structure predictions indicate that both proteins possess greatly different transit sequences and that none is membrane-spanning.
Collapse
Affiliation(s)
- J Steppuhn
- Botanisches Institut der Ludwig-Maximilians-Universität, München, FRG
| | | | | | | | | | | | | |
Collapse
|
50
|
Hoffman NE, Pichersky E, Malik VS, Ko K, Cashmore AR. Isolation and sequence of a tomato cDNA clone encoding subunit II of the photosystem I reaction center. PLANT MOLECULAR BIOLOGY 1988; 10:435-445. [PMID: 24277591 DOI: 10.1007/bf00014949] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/1987] [Accepted: 01/20/1988] [Indexed: 06/02/2023]
Abstract
We report here the isolation and nucleotide sequence of a cDNA clone encoding a phtosystem I polypeptide that is recognized by a polyclonal antibody prepared against subunit II of the photosystem I reaction center. The transit peptide processing site was determined to occur after Met50 by N terminal sequencing. The decuced sequence of this protein predicts that the polypeptide has a net positive charge (pI=9.6) and no membrane spanning regions are evident from the hydropathy plot. Based on these considerations and the fact that subunit II is solubilized by alkali treatment of thylakoids, we concluded that subunit II is an extrinsic membrane protein. The absence of hydrophobic regions characteristic of thylakoid transfer domains furthermore implies that subunit II is localized on the stromal side of the membrane.
Collapse
Affiliation(s)
- N E Hoffman
- Plant Science Institute, Department of Biology, University of Pennsylvania, 19104, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|