1
|
Nagar P, Bhowmick K, Chawla A, Malik MZ, Subbarao N, Kaur I, Dhar SK. Plasmodium falciparum cysteine protease Falcipain 3: A potential enzyme for proteolytic processing of histone acetyltransferase PfGCN5. Biotechnol Appl Biochem 2024; 71:1304-1315. [PMID: 38924147 DOI: 10.1002/bab.2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In spite of 150 years of studying malaria, the unique features of the malarial parasite, Plasmodium, still perplex researchers. One of the methods by which the parasite manages its gene expression is epigenetic regulation, the champion of which is PfGCN5, an essential enzyme responsible for acetylating histone proteins. PfGCN5 is a ∼170 kDa chromatin-remodeling enzyme that harbors the conserved bromodomain and acetyltransferase domain situated in its C-terminus domain. Although the PfGCN5 proteolytic processing is essential for its activity, the specific protease involved in this process still remains elusive. Identification of PfGCN5 interacting proteins through immunoprecipitation (IP) followed by LC-tandem mass spectrometry analysis revealed the presence of food vacuolar proteins, such as the cysteine protease Falcipain 3 (FP3), in addition to the typical members of the PfGCN5 complex. The direct interaction between FP3 and PfGCN5 was further validated by in vitro pull-down assay as well as IP assay. Subsequently, use of cysteine protease inhibitor E64d led to the inhibition of protease-specific processing of PfGCN5 with concomitant enrichment and co-localization of PfGCN5 and FP3 around the food vacuole as evidenced by confocal microscopy as well as electron microscopy. Remarkably, the proteolytic cleavage of the nuclear protein PfGCN5 by food vacuolar protease FP3 is exceptional and atypical in eukaryotic organisms. Targeting the proteolytic processing of GCN5 and the associated protease FP3 could provide a novel approach for drug development aimed at addressing the growing resistance of parasites to current antimalarial drugs.
Collapse
Affiliation(s)
- Poonam Nagar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- The Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Aishwarya Chawla
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- TERI School of Advanced Studies, Vasant Kunj, New Delhi, India
| |
Collapse
|
2
|
Bhowmick K, Tehlan A, Sunita, Sudhakar R, Kaur I, Sijwali PS, Krishnamachari A, Dhar SK. Plasmodium falciparum GCN5 acetyltransferase follows a novel proteolytic processing pathway that is essential for its function. J Cell Sci 2020; 133:jcs.236489. [PMID: 31862795 DOI: 10.1242/jcs.236489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The pathogenesis of human malarial parasite Plasmodium falciparum is interlinked with its timely control of gene expression during its complex life cycle. In this organism, gene expression is partially controlled through epigenetic mechanisms, the regulation of which is, hence, of paramount importance to the parasite. The P. falciparum (Pf)-GCN5 histone acetyltransferase (HAT), an essential enzyme, acetylates histone 3 and regulates global gene expression in the parasite. Here, we show the existence of a novel proteolytic processing for PfGCN5 that is crucial for its activity in vivo We find that a cysteine protease-like enzyme is required for the processing of PfGCN5 protein. Immunofluorescence and immuno-electron microscopy analysis suggest that the processing event occurs in the vicinity of the digestive vacuole of the parasite following its trafficking through the classical ER-Golgi secretory pathway, before it subsequently reaches the nucleus. Furthermore, blocking of PfGCN5 processing leads to the concomitant reduction of its occupancy at the gene promoters and a reduced H3K9 acetylation level at these promoters, highlighting the important correlation between the processing event and PfGCN5 activity. Altogether, our study reveals a unique processing event for a nuclear protein PfGCN5 with unforeseen role of a food vacuolar cysteine protease. This leads to a possibility of the development of new antimalarials against these targets.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Tehlan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sunita
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Renu Sudhakar
- Centre for Cellular and Molecular Biology, Hyderabad, Telengana 500007, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Puran Singh Sijwali
- Centre for Cellular and Molecular Biology, Hyderabad, Telengana 500007, India
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Gao B, Kong Q, Zhang Y, Yun C, Dent SYR, Song J, Zhang DD, Wang Y, Li X, Fang D. The Histone Acetyltransferase Gcn5 Positively Regulates T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3927-3938. [PMID: 28424240 PMCID: PMC5488716 DOI: 10.4049/jimmunol.1600312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
Histone acetyltransferases (HATs) regulate inducible transcription in multiple cellular processes and during inflammatory and immune response. However, the functions of general control nonrepressed-protein 5 (Gcn5), an evolutionarily conserved HAT from yeast to human, in immune regulation remain unappreciated. In this study, we conditionally deleted Gcn5 (encoded by the Kat2a gene) specifically in T lymphocytes by crossing floxed Gcn5 and Lck-Cre mice, and demonstrated that Gcn5 plays important roles in multiple stages of T cell functions including development, clonal expansion, and differentiation. Loss of Gcn5 functions impaired T cell proliferation, IL-2 production, and Th1/Th17, but not Th2 and regulatory T cell differentiation. Gcn5 is recruited onto the il-2 promoter by interacting with the NFAT in T cells upon TCR stimulation. Interestingly, instead of directly acetylating NFAT, Gcn5 catalyzes histone H3 lysine H9 acetylation to promote IL-2 production. T cell-specific suppression of Gcn5 partially protected mice from myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, an experimental model for human multiple sclerosis. Our study reveals previously unknown physiological functions for Gcn5 and a molecular mechanism underlying these functions in regulating T cell immunity. Hence Gcn5 may be an important new target for autoimmune disease therapy.
Collapse
Affiliation(s)
- Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chawon Yun
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; and
| | - Xuemei Li
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province 261053, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; and
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province 261053, China
| |
Collapse
|
4
|
Humphreys PG, Bamborough P, Chung CW, Craggs PD, Gordon L, Grandi P, Hayhow TG, Hussain J, Jones KL, Lindon M, Michon AM, Renaux JF, Suckling CJ, Tough DF, Prinjha RK. Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical Probe. J Med Chem 2017; 60:695-709. [DOI: 10.1021/acs.jmedchem.6b01566] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | - Paola Grandi
- Cellzome
GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | - Anne-Marie Michon
- Cellzome
GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Colin J. Suckling
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | | | | |
Collapse
|
5
|
Yin YW, Jin HJ, Zhao W, Gao B, Fang J, Wei J, Zhang DD, Zhang J, Fang D. The Histone Acetyltransferase GCN5 Expression Is Elevated and Regulated by c-Myc and E2F1 Transcription Factors in Human Colon Cancer. Gene Expr 2015; 16:187-96. [PMID: 26637399 PMCID: PMC5584536 DOI: 10.3727/105221615x14399878166230] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The histone acetyltransferase GCN5 has been suggested to be involved in promoting cancer cell growth. But its role in human colon cancer development remains unknown. Herein we discovered that GCN5 expression is significantly upregulated in human colon adenocarcinoma tissues. We further demonstrate that GCN5 is upregulated in human colon cancer at the mRNA level. Surprisingly, two transcription factors, the oncogenic c-Myc and the proapoptotic E2F1, are responsible for GCN5 mRNA transcription. Knockdown of c-Myc inhibited colon cancer cell proliferation largely through downregulating GCN5 transcription, which can be fully rescued by the ectopic GCN5 expression. In contrast, E2F1 expression induced human colon cancer cell death, and suppression of GCN5 expression in cells with E2F1 overexpression further facilitated cell apoptosis, suggesting that GCN5 expression is induced by E2F1 as a possible negative feedback in suppressing E2F1-mediated cell apoptosis. In addition, suppression of GCN5 with its specific inhibitor CPTH2 inhibited human colon cancer cell growth. Our studies reveal that GCN5 plays a positive role in human colon cancer development, and its suppression holds a great therapeutic potential in antitumor therapy.
Collapse
Affiliation(s)
- Yan-Wei Yin
- *Department of Oncology, Linyi People’s Hospital, and Linyi Tumor Hospital, Linyi, P.R. China
| | - Hong-Jian Jin
- †Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wenjing Zhao
- *Department of Oncology, Linyi People’s Hospital, and Linyi Tumor Hospital, Linyi, P.R. China
| | - Beixue Gao
- ‡Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiangao Fang
- ‡Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Junmin Wei
- §Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Donna D. Zhang
- ¶Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Jianing Zhang
- #School of Life Science and Medicine, Dalian University of Technology, Panjin, P.R. China
| | - Deyu Fang
- ‡Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- #School of Life Science and Medicine, Dalian University of Technology, Panjin, P.R. China
| |
Collapse
|
6
|
Hinnebusch AG. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:195-240. [PMID: 2183294 DOI: 10.1016/s0079-6603(08)60712-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Mortimer RK, Schild D, Contopoulou CR, Kans JA. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast 1989; 5:321-403. [PMID: 2678811 DOI: 10.1002/yea.320050503] [Citation(s) in RCA: 250] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
8
|
Negative regulatory gene for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1986. [PMID: 3537730 DOI: 10.1128/mcb.6.9.3150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.
Collapse
|
9
|
Myers PL, Skvirsky RC, Greenberg ML, Greer H. Negative regulatory gene for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1986; 6:3150-5. [PMID: 3537730 PMCID: PMC367050 DOI: 10.1128/mcb.6.9.3150-3155.1986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.
Collapse
|