1
|
Xing Q, Liao H, Peng C, Zheng G, Yang Z, Wang J, Lu W, Huang X, Bao Z. Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105736. [PMID: 33422860 DOI: 10.1016/j.aquatox.2020.105736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guiliang Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
2
|
Wang LL, Lu XP, Meng LW, Huang Y, Wei D, Jiang HB, Smagghe G, Wang JJ. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:44-51. [PMID: 27155483 DOI: 10.1016/j.pestbp.2015.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance.
Collapse
Affiliation(s)
- Luo-Luo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yong Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Wang LL, Huang Y, Lu XP, Jiang XZ, Smagghe G, Feng ZJ, Yuan GR, Wei D, Wang JJ. Overexpression of two α-esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, Bactrocera dorsalis (Hendel). INSECT MOLECULAR BIOLOGY 2015; 24:467-479. [PMID: 25940547 DOI: 10.1111/imb.12173] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Esterase has been reported to be involved in malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel). However, the underlying molecular mechanism of the esterase-mediated resistance remains largely unknown in this species. Here, with the use of a strain selected for malathion resistance in the laboratory (MR), we found that two overexpressed α-esterase genes, namely BdCarE4 and BdCarE6, predominant in the adult midgut and fat body, function in conferring malathion resistance in B. dorsalis. Notably, these two genes were found to be mostly close to the esterase E3, which are usually implicated in detoxifying organophosphate insecticides. The transcript levels of BdCarE4 and BdCarE6 were investigated and compared between the MR and a susceptible (MS) strain of B. dorsalis. Both genes were significantly up-regulated in the MR strain, which was consistent with the enhanced esterase activity in the MR strain. However, no changes in either the coding sequence or gene copy number were observed between the two strains. Subsequently, heterologous expression combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE4 and BdCarE6 can probably detoxify malathion. Furthermore, RNA interference-mediated knockdown of each of these two genes significantly increased malathion susceptibility in the MR strain adults. In conclusion, these results expand our molecular understanding of the important role of α-esterases during the development of resistance to organophosphorous insecticides in B. dorsalis.
Collapse
Affiliation(s)
- L-L Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Y Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - X-P Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - X-Z Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - G Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Z-J Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - G-R Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - D Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - J-J Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Rose CJ, Chapman JR, Marshall SDG, Lee SF, Batterham P, Ross HA, Newcomb RD. Selective sweeps at the organophosphorus insecticide resistance locus, Rop-1, have affected variation across and beyond the α-esterase gene cluster in the Australian sheep blowfly, Lucilia cuprina. Mol Biol Evol 2011; 28:1835-46. [PMID: 21228400 DOI: 10.1093/molbev/msr006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A major theoretical consequence of selection at a locus is the genetic hitchhiking of linked sites (selective sweep). The extent of hitchhiking around a gene is related to the strength of selection and the rate of recombination, with its impact diminishing with distance from the selected site. At the Rop-1 locus of the sheep blowfly, Lucilia cuprina, polymorphisms at two different sites within the LcαE7 gene encode forms of the protein that confer organophosphorus insecticide resistance. To assess the impact of selection at these two sites on variation around LcαE7, we sequenced regions within six other genes along chromosome IV across isogenic (IV) strains of L. cuprina. High levels of linkage disequilibrium, characterized by low haplotype number (K) and diversity (H), and significant R(2) values were observed for two genes, LcαE1 and LcαE10, both members of the same α-esterase gene cluster as LcαE7. A significant R(2) value was also observed for a gene predicted to be the next closest to LcαE7, AL03, but not for any of the other genes, LcRpL13a, Lcdsx, or LcAce. Skews in the site frequency spectra toward high-frequency variants were significant for LcαE1 (Fay and Wu's H = -2.91), LcαE10 (H = -1.85), and Lcdsx (H = -2.00). Since the selective sweeps, two forms of likely returning variation were observed, including variation in microsatellites in an intron of LcαE10 and a recombination event between LcαE7 and LcαE10. These data suggest that two incomplete soft sweeps have occurred at LcαE7 that have significantly affected variation across, and beyond, the α-esterase gene cluster of L. cuprina. The speed and impact of these selective sweeps on surrounding genomic variation and the ability of L. cuprina to respond to future environmental challenges are discussed.
Collapse
Affiliation(s)
- Caroline J Rose
- Molecular Sensing, Human Responses, Food Innovation, The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
5
|
Evolution of cholinesterases in the animal kingdom. Chem Biol Interact 2010; 187:27-33. [DOI: 10.1016/j.cbi.2010.03.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
|
6
|
Sousa-Polezzi RDC, Bicudo HEMDC. Genetic variation along time in a Brazilian population of Aedes aegypti (Diptera: Culicidae), detected by changes in the esterase patterns. Genetica 2005; 125:43-53. [PMID: 16175454 DOI: 10.1007/s10709-005-4915-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 03/23/2005] [Indexed: 11/29/2022]
Abstract
Aedes aegypti from the Brazilian cities of São José do Rio Preto (SJ) and Goiânia (GO) were analyzed as to their esterase patterns and the results were compared with data obtained about 5 years before for SJ population. Esterase bands not detected in the previous study were now observed in mosquitoes from both SJ and GO populations, being the last considered a population resistant to insecticides. Other similarities between SJ and GO populations in this study, and some differences in comparison with the previous data on SJ were observed, involving, in addition to changes in band type, changes in frequency of mosquitoes expressing them and differential gene activation during development. As it is generally true for genetic features, changes in the esterase patterns are expected to be the result of factors such as selection by environmental conditions and genetic drift. In the present case, continuous use of insecticides aiming mosquito population size control in SJ by sanitary authorities could be involved in the observed changes. Changed esterases were classified as carboxylesterases and cholinesterases, which are enzymes already shown to take part in the development of resistance in several organisms. In addition, data obtained in the elapsed time by authorities responsible for the mosquito control has shown increasing insecticide resistance of SJ population mosquitoes parallel to increase in the total amount of esterases, reinforcing the mentioned possibility.
Collapse
Affiliation(s)
- Rita de Cássia Sousa-Polezzi
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Biologia, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | | |
Collapse
|
7
|
Newcomb RD, Gleeson DM, Yong CG, Russell RJ, Oakeshott JG. Multiple mutations and gene duplications conferring organophosphorus insecticide resistance have been selected at the Rop-1 locus of the sheep blowfly, Lucilia cuprina. J Mol Evol 2005; 60:207-20. [PMID: 15785849 DOI: 10.1007/s00239-004-0104-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Accepted: 09/09/2004] [Indexed: 11/27/2022]
Abstract
Sequences of the esterase gene alpha E7 were compared across 41 isogenic (IV) strains of the sheep blowfly, Lucilia cuprina, and one strain of the sibling species, L. sericata. The 1.2-kb region sequenced includes sites of two insecticide resistance mutations. Gly137Asp confers resistance to organophosphorus insecticides (OPs), particularly preferring diethyl OPs such as diazinon, while Trp251Leu prefers dimethyl OPs, and particularly malathion, with the additional presence of carboxylester moieties. We found that there are just eight haplotypes among the 41 chromosomes studied: two Gly137Asp containing haplotypes, two Trp251Leu containing haplotypes, and four susceptible haplotypes, including the L. sericata sequence. While phylogenetic analysis of these haplotypes suggests that the Asp137 and Leu251 mutations each arose at least twice, evidence for recombination was detected across the region, therefore single origins for these resistance mutations cannot be ruled out. Levels of linkage disequilibrium in the data are high and significant hitchhiking is indicated by Fay and Wu' s H test but not the Tajima test. A test of haplotype diversity indicates a paucity of diversity compared with neutral expectations. Both these results are consistent with a very recent selective sweep at the Lc alphaE7 locus. Interestingly, gene duplications of three different combinations of OP resistant haplotypes were identified in seven of the isogenic (IV) strains. All three types of duplication involve an Asp137 and a Trp251 haplotype. To examine whether more haplotypes existed before the hypothesised selective sweep, fragments of alpha E7 surrounding the resistance mutations were amplified from pinned material dating back to before OPs were used. Four new sequence haplotypes, not sampled in the survey of extant haplotypes, were obtained that are all associated with susceptibility. This is suggestive of a higher historical level of susceptible allelic diversity at this locus.
Collapse
Affiliation(s)
- Richard D Newcomb
- Gene Technologies Sector, The Horticulture and Food Research Institute of New Zealand, Private Bag 92169 Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Padilla S, Sung HJ, Moser VC. Further assessment of an in vitro screen that may help identify organophosphorus pesticides that are more acutely toxic to the young. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:1477-1489. [PMID: 15371233 DOI: 10.1080/15287390490483836] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Some, but not all, organophosphorus pesticides are more acutely toxic to the young as compared to adults. We have developed an in vitro assay that measures the detoxification potential (via carboxylesterase and A-esterases) of tissues. Previous results using this in vitro screen correlated with the marked in vivo sensitivity of the young to chlorpyrifos and also correlated with the equal sensitivity of the young and adult to methamidophos (Padilla et al., 2000). We have now extended these observations to two other pesticides that have already been shown in the literature to be more toxic to the young: parathion (paraoxon) and malathion (malaoxon). In our in vitro assay, liver or plasma from 7-d-old rats were much less efficacious than adult tissues at detoxification of the active metabolites of these two pesticides. Using our in vitro assay we also tested the active metabolite of diazinon, diazoxon, and again found that young liver or plasma possessed much less detoxification capability than adult tissues. From these results, we predicted that young animals would be more sensitive to diazinon, which, in fact, was the case: When postnatal day (PND) 17 or adult rats were given a dosage of 75 mg/kg diazinon, adult brain cholinesterase (ChE) was only inhibited 38%, while the brain ChE in the PND 17 animals showed much more inhibition (75%). We conclude that our in vitro screen may prove to be a useful, quick, convenient test for identifying which organophosphorus pesticides may be more acutely toxic to the young as compared to adults.
Collapse
Affiliation(s)
- S Padilla
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, North Carolina 27711, USA.
| | | | | |
Collapse
|
9
|
Sogorb MA, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 2002; 128:215-28. [PMID: 11869832 DOI: 10.1016/s0378-4274(01)00543-4] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The most employed insecticides for indoor and agriculture purposes belong to carbamates, pyrethroid or organophosphates. The chemical structures of these three groups correspond to carbamic, carboxylic and triphosphoric esters. Technical monographs suggest that the hydrolysis of ester bonds of carbamates and pyrethroids plays an important role in the detoxification of these compounds. However, detailed studies about enzymes hydrolysing carbamates and pyrethroids in vertebrates are not available. Certain carbamate hydrolysing activities are associated to serum albumin. Phosphotriesterases, being of an unknown physiological role, hydrolyse (in some cases stereospecifically) organophosphorus insecticides (OP). Phosphotriesterases have been found in a multitude of species, from mammals to bacteria. A phosphotriesterase activity, EDTA-resistant, has been detected in serum albumin. Phosphotriesterases in serum of mammals display polymorphisms. Phosphotriesterases offer applications in therapy of organophosphorus poisonings, in biodegradation and bioremedation of organophosphates. Similar studies should be developed with enzymes hydrolysing pyrethroids and carbamate insecticides. Such studies will improve the knowledge of the detoxification routes in non-target species and will help to design specific and safer carbamate and pyrethroid insecticides.
Collapse
Affiliation(s)
- Miguel A Sogorb
- División de Toxicología, Instituto de Bioingeniería, Universidad Miguel Hernández, Av. del Ferrocarril s/n. 03202, Elche, Spain.
| | | |
Collapse
|
10
|
Smyth KA, Boyce TM, Russell RJ, Oakeshott JG. MCE activities and malathion resistances in field populations of the australian sheep blowfly (Lucilia cuprina). Heredity (Edinb) 2000; 84 ( Pt 1):63-72. [PMID: 10692012 DOI: 10.1046/j.1365-2540.2000.00641.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malathion resistance has been shown to be the result of a single point mutation in the LcalphaE7 gene in four independently isolated chromosomes of Lucilia cuprina. The resultant amino acid substitution specifies high malathion carboxylesterase (MCE) activity. We have assayed MCE activities and resistance to malathion in three sets of field-derived samples, two sets of isogenic lines and five mass populations, and show that resistance to malathion in these samples is associated with high MCE activity in both sets of isogenic lines and four of the five mass populations. Additional mechanisms contributing to MCE activity or malathion resistance may be present in one of the mass populations. A second point mutation in LcalphaE7 is responsible for conferring diazinon resistance by encoding an increased organophosphate (OP) hydrolase activity. We also assayed diazinon resistances from the same three samples and show that diazinon and malathion resistances were in complete disequilibrium, with two exceptions. One exception involves the mass population with additional resistance mechanism(s) and the other involves three isogenic lines that are resistant to both insecticides. The molecular data for these lines suggest that they carry a duplication of the LcalphaE7 gene.
Collapse
Affiliation(s)
- K A Smyth
- CSIRO Division of Entomology, GPO Box 1700, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
11
|
McKenzie JA, Batterham P. Predicting insecticide resistance: mutagenesis, selection and response. Philos Trans R Soc Lond B Biol Sci 1998; 353:1729-34. [PMID: 10021773 PMCID: PMC1692398 DOI: 10.1098/rstb.1998.0325] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Strategies to manage resistance to a particular insecticide have usually been devised after resistance has evolved. If it were possible to predict likely resistance mechanisms to novel insecticides before they evolved in the field, it might be feasible to have programmes that manage susceptibility. With this approach in mind, single-gene variants of the Australian sheep blowfly, Lucilia cuprina, resistant to dieldrin, diazinon and malathion, were selected in the laboratory after mutagenesis of susceptible strains. The genetic and molecular bases of resistance in these variants were identical to those that had previously evolved in natural populations. Given this predictive capacity for known resistances, the approach was extended to anticipate possible mechanisms of resistance to cyromazine, an insecticide to which L. cuprina populations remain susceptible after almost 20 years of exposure. Analysis of the laboratory-generated resistant variants provides an explanation for this observation. The variants show low levels of resistance and a selective advantage over susceptibles for only a limited concentration range. These results are discussed in the context of the choice of insecticides for control purposes and of delivery strategies to minimize the evolution of resistance.
Collapse
Affiliation(s)
- J A McKenzie
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
12
|
Mikhailov AT, Torrado M, Korochkin LI, Kopantzeva MA, Méndez J. Male-predominant carboxylesterase expression in the reproductive system of molluscs and insects: immunochemical and biochemical similarity between Mytilus male associated polypeptide (MAP) and Drosophila sex-specific esterase S. Comp Biochem Physiol B Biochem Mol Biol 1997; 118:197-208. [PMID: 9418010 DOI: 10.1016/s0305-0491(97)00001-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We suggested that sexual differentiation of the reproductive system in gonochoric species of invertebrates can be characterized by common molecular mechanisms in spite of high morphological divergences of reproductive tract organs in different animal groups. The present study focused on this problem and report our observations on biochemical characteristics of male-associated polypeptide (MAP) identified in the gonad tissue of bivalve molluscs, Mytilus galloprovincialis, in comparison to those of male-specific carboxylesterase (esterase S) of Drosophila virilis ejaculatory bulbs. We provide evidences for the immunochemical similarity of Mytilus MAP and Drosophila esterase S. We also show that MAP is characterized by esterase activity toward both, alpha- and beta-naphthyl acetates. Using immunofluorescence, we found MAP in the gonad (mantle) connective tissue, membranes of follicles and around gonad ducts but not in sperm cells. Nevertheless, the levels of MAP expression depend on presence or absence of ripe spermatozoa in the gonad follicles. In mature gonads before spawning, MAP is expressed at high level, while in the spent gonads only traces of this polypeptide could be detected. Using Western immunoblot, MAP was not observed in spermatozoa obtained by biopsy of gonad follicles. In contrast, we found this protein in spawned sperm cells. Thus, we suggest that spawning may be required to establish the trafficking mechanisms that control whether MAP is retained or excreted by the gonad. Taken together, the results indicate that MAP of M. galloprovincialis is structurally and functionally related to esterase S of D. virilis ejaculatory bulbs.
Collapse
Affiliation(s)
- A T Mikhailov
- Institute of Health Sciences, University of La Coruña, Spain.
| | | | | | | | | |
Collapse
|
13
|
Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci U S A 1997; 94:7464-8. [PMID: 9207114 PMCID: PMC23844 DOI: 10.1073/pnas.94.14.7464] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Resistance to organophosphorus (OP) insecticides is associated with decreased carboxylesterase activity in several insect species. It has been proposed that the resistance may be the result of a mutation in a carboxylesterase that simultaneously reduces its carboxylesterase activity and confers an OP hydrolase activity (the "mutant ali-esterase hypothesis"). In the sheep blowfly, Lucilia cuprina, the association is due to a change in a specific esterase isozyme, E3, which, in resistant flies, has a null phenotype on gels stained using standard carboxylesterase substrates. Here we show that an OP-resistant allele of the gene that encodes E3 differs at five amino acid replacement sites from a previously described OP-susceptible allele. Knowledge of the structure of a related enzyme (acetylcholinesterase) suggests that one of these substitutions (Gly137 --> Asp) lies within the active site of the enzyme. The occurrence of this substitution is completely correlated with resistance across 15 isogenic strains. In vitro expression of two natural and two synthetic chimeric alleles shows that the Asp137 substitution alone is responsible for both the loss of E3's carboxylesterase activity and the acquisition of a novel OP hydrolase activity. Modeling of Asp137 in the homologous position in acetylcholinesterase suggests that Asp137 may act as a base to orientate a water molecule in the appropriate position for hydrolysis of the phosphorylated enzyme intermediate.
Collapse
Affiliation(s)
- R D Newcomb
- Commonwealth Scientific and Industrial Research Organisation, Division of Entomology, G.P.O. Box 1700, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Newcomb RD, Campbell PM, Russell RJ, Oakeshott JG. cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:15-25. [PMID: 9061925 DOI: 10.1016/s0965-1748(96)00065-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance to organophosphorus insecticides (OPs) in the sheep blowfly, Lucilia cuprina, is associated with a non-staining phenotype of the carboxylesterase isozyme, E3 (E.C. 3.1.1.1). Here, we show that a member of alpha-esterase multigene family, Lc alpha E7, encodes E3. An Lc alpha E7 cDNA has been isolated from an OP-susceptible strain and expressed in a baculovirus. The expressed product is the same as E3 in its electrophoretic mobility and preference for alpha-over beta-naphthyl acetate as substrate. Its preference (kcat/K(m)) for a range of carboxylester substrates is alpha-naphthyl butyrate > alpha-naphthyl propionate > alpha-naphthyl acetate > methylthiobutyrate > p-nitrophenyl acetate. The enzyme is potently inhibited by OPs (ki [paraoxon] = 6.3 +/- 1.4 x 10(7)/M/min, ki [chlorfenvinphos] = 5.9 +/- 0.6 x 10(7)/M/min) and exhibits a high turnover of methylthiobutyrate (1009/s), consistent with its proposed homology to the ali-esterase that is thought to mutate to confer OP resistance in Musca domestica. E3 shares 64% amino acid identity with its Drosophila melanogaster homologue, Dm alpha E7, and is also closely related to other esterases involved in OP resistance such as the B1 esterase of Culex pipiens (38%) and E4 of Myzus persicae (30%).
Collapse
Affiliation(s)
- R D Newcomb
- CSIRO, Division of Entomology, Canberra, Australia
| | | | | | | |
Collapse
|
16
|
Cousin X, Hotelier T, Giles K, Lievin P, Toutant JP, Chatonnet A. The alpha/beta fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res 1997; 25:143-6. [PMID: 9016525 PMCID: PMC146416 DOI: 10.1093/nar/25.1.143] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
ESTHER (for esterases, alpha/betahydrolase enzyme and relatives) is a database of sequences phylogenetically related to cholinesterases. These sequences define a homogeneous group of enzymes (carboxylesterases, lipases and hormone-sensitive lipases) sharing a similar structure of a central beta-sheet surrounded by alpha-helices. Among these proteins a wide range of functions can be found (hydrolases, adhesion molecules, hormone precursors). The purpose of ESTHER is to help comparison of structures and functions of members of the family. Since the last release, new features have been added to the server. A BLAST comparison tool allows sequence homology searches within the database sequences. New sections are available: kinetics and inhibitors of cholinesterases, fasciculin-acetylcholinesterase interaction and a gene structure review. The mutation analysis compilation has been improved with three-dimensional images. A mailing list has been created.
Collapse
Affiliation(s)
- X Cousin
- Différenciation Cellulaire et Croissance, INRA-ENSAM, 2 Place Viala, 34060 Montpellier, France
| | | | | | | | | | | |
Collapse
|
17
|
Robin C, Russell RJ, Medveczky KM, Oakeshott JG. Duplication and divergence of the genes of the alpha-esterase cluster of Drosophila melanogaster. J Mol Evol 1996; 43:241-52. [PMID: 8703090 DOI: 10.1007/bf02338832] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha-esterase cluster of D. melanogaster contains 11 esterase genes dispersed over 60 kb. Embedded in the cluster are two unrelated open reading frames that have sequence similarity with genes encoding ubiquitin-conjugating enzyme and tropomyosin. The esterase amino acid sequences show 37-66% identity with one another and all but one have all the motifs characteristic of functional members of the carboxyl/cholinesterase multigene family. The exception has several frameshift mutations and appears to be a pseudogene. Patterns of amino acid differences among cluster members in relation to generic models of carboxyl/cholinesterase protein structure are broadly similar to those among other carboxyl/cholinesterases sequenced to date. However the alpha-esterases differ from most other members of the family in: their lack of a signal peptide; the lack of conservation in cysteines involved in disulfide bridges; and in four indels, two of which occur in or adjacent to regions that align with proposed substrate-binding sites of other carboxyl/cholinesterases. Phylogenetic analyses clearly identify three simple gene duplication events within the cluster. The most recent event involved the pseudogene which is located in an intron of another esterase gene. However, relative rate tests suggest that the pseudogene remained functional after the duplication event and has become inactive relatively recently. The distribution of indels also suggests a deeper node in the gene phylogeny that separates six genes at the two ends of the cluster from a block of five in the middle.
Collapse
Affiliation(s)
- C Robin
- CSIRO Division of Entomology, GPO Box 1700, Canberra ACT 2601, Australia
| | | | | | | |
Collapse
|
18
|
Newcomb RD, East PD, Russell RJ, Oakeshott JG. Isolation of alpha cluster esterase genes associated with organophosphate resistance in Lucilia cuprina. INSECT MOLECULAR BIOLOGY 1996; 5:211-216. [PMID: 8799740 DOI: 10.1111/j.1365-2583.1996.tb00056.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
PCR primers designed from the alpha-esterase gene cluster of Drosophila melanogaster have been used to isolate fragments from eight esterase genes in the Australian sheep blowfly, Lucilia cuprina. Phylogenetic analysis suggests that three are homologues of the alpha E7, alpha E8 and alpha E9 genes of the alpha-esterase cluster of D. melanogaster. A further three are also probably alpha-esterases, whereas the remaining two more closely resemble beta-esterases. Transcripts for five of the alpha-esterase genes were detected by PCR in adult midgut, consistent with a role for these enzymes in digestion and/or detoxification. Based on the tissue distribution of these transcripts, Lc alpha E7 may possibly encode the esterase, E3, which is involved in organophosphate resistance.
Collapse
Affiliation(s)
- R D Newcomb
- CSIRO, Division of Entomology, Canberra, Australia
| | | | | | | |
Collapse
|
19
|
Russell RJ, Robin GC, Kostakos P, Newcomb RD, Boyce TM, Medveczky KM, Oakeshott JG. Molecular cloning of an alpha-esterase gene cluster on chromosome 3r of Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:235-247. [PMID: 8900595 DOI: 10.1016/0965-1748(95)00081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
All or part of the alpha-esterase gene cluster in Drosophila melanogaster has been isolated by screening a YAC clone that spans cytological region 84D3-10 with consensus carboxyl/cholinesterase oligonucleotides. The cluster encompasses 11 putative esterase genes within 65 kb of genomic DNA and is one of the largest clusters of related protein-coding genes yet reported in Drosophila. The cluster must include the gene encoding the major alpha-esterase isozyme, EST9, which has previously been mapped to 84D3-5. It probably also includes the genes encoding the EST23, MCE and ALI esterases that have previously been mapped to 84D3-E2. The latter three are homologs of genes involved in organophosphate insecticide resistance in the sheep blowfly, Lucilia cuprina and the housefly, Musca domestica. Sequencing of one of the putative esterase genes in the Drosophila cluster, alpha E1, shows that it would encode features characteristic of an active carboxyl/cholinesterase, including the so-called catalytic triad, the nucleophilic elbow and oxyanion hole. It also shows that the closest relative of alpha E1 amongst previously published esterase sequences is ESTB1, which confers organophosphate resistance in Culex mosquitoes. We argue that we have cloned the D. melanogaster version of a major cluster of esterase genes which have variously mutated to confer organophosphate resistance in diverse Diptera.
Collapse
Affiliation(s)
- R J Russell
- CSIRO Division of Entomology, Canberra, Australia
| | | | | | | | | | | | | |
Collapse
|