1
|
Bedsted AE, Rasmussen TB, Martinenghi LD, Bøtner A, Nauwynck H, Belsham GJ. Porcine respiratory coronavirus genome sequences; comparisons and relationships to transmissible gastroenteritis viruses. Virology 2024; 595:110072. [PMID: 38599031 DOI: 10.1016/j.virol.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Laura D Martinenghi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, Mcnee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E. Porcine Respiratory Coronavirus as a Model for Acute Respiratory Coronavirus Disease. Front Immunol 2022; 13:867707. [PMID: 35418984 PMCID: PMC8995773 DOI: 10.3389/fimmu.2022.867707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Fabian Z X Lean
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Albert Fones
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | - Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Isobel Webb
- The Pirbright Institute, Pirbright, United Kingdom
| | - Adam Mcnee
- The Pirbright Institute, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Pirbright, United Kingdom
| | - Nazia Thakur
- The Pirbright Institute, Pirbright, United Kingdom
| | - Alejandro Nunez
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland
| | - Helena Maier
- The Pirbright Institute, Pirbright, United Kingdom
| | - John Hammond
- The Pirbright Institute, Pirbright, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, United Kingdom
| | - Ryan Waters
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Toby Tuthill
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
3
|
Abstract
Coronaviruses are a family of enveloped single-stranded positive-sense RNA viruses causing respiratory, enteric, and neurologic diseases in mammals and fowl. Human coronaviruses are recognized to cause up to a third of common colds and are suspected to be involved in enteric and neurologic diseases. Coronavirus replication involves the generation of nested subgenomic mRNAs (sgmRNAs) with a common capped 5' leader sequence. The translation of most of the sgmRNAs is thought to be cap dependent and displays a requirement for eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex needed for the recruitment of 40S ribosomes. We recently reported on an ultrahigh-throughput screen to discover compounds that inhibit eIF4F activity by blocking the interaction of two of its subunits (R. Cencic et al., Proc. Natl. Acad. Sci. U. S. A. 108:1046-1051, 2011). Herein we describe a molecule from this screen that prevents the interaction between eIF4E (the cap-binding protein) and eIF4G (a large scaffolding protein), inhibiting cap-dependent translation. This inhibitor significantly decreased human coronavirus 229E (HCoV-229E) replication, reducing the percentage of infected cells and intra- and extracellular infectious virus titers. Our results support the strategy of targeting the eIF4F complex to block coronavirus infection.
Collapse
|
4
|
Izeta A, Smerdou C, Alonso S, Penzes Z, Mendez A, Plana-Durán J, Enjuanes L. Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. J Virol 1999; 73:1535-45. [PMID: 9882359 PMCID: PMC103978 DOI: 10.1128/jvi.73.2.1535-1545.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1998] [Accepted: 11/09/1998] [Indexed: 11/20/2022] Open
Abstract
The sequences involved in the replication and packaging of transmissible gastroenteritis virus (TGEV) RNA have been studied. The structure of a TGEV defective interfering RNA of 9.7 kb (DI-C) was described previously (A. Mendez, C. Smerdou, A. Izeta, F. Gebauer, and L. Enjuanes, Virology 217: 495-507, 1996), and a cDNA with the information to encode DI-C RNA was cloned under the control of the T7 promoter. The molecularly cloned DI-C RNA was replicated in trans upon transfection of helper virus-infected cells and inhibited 20-fold the replication of the parental genome. A collection of 14 DI-C RNA deletion mutants (TGEV minigenomes) was synthetically generated and tested for their ability to be replicated and packaged. The smallest minigenome (M33) that was replicated by the helper virus and efficiently packaged was 3.3 kb. A minigenome of 2.1 kb (M21) was also replicated, but it was packaged with much lower efficiency than the M33 minigenome, suggesting that it had lost either the sequences containing the main packaging signal or the required secondary structure in the packaging signal due to alteration of the flanking sequences. The low packaging efficiency of the M21 minigenome was not due to minimum size restrictions. The sequences essential for minigenome replication by the helper virus were reduced to 1,348 nt and 492 nt at the 5' and 3' ends, respectively. The TGEV-derived RNA minigenomes were successfully expressed following a two-step amplification system that couples pol II-driven transcription in the nucleus to replication supported by helper virus in the cytoplasm, without any obvious splicing. This system and the use of the reporter gene beta-glucuronidase (GUS) allowed minigenome detection at passage zero, making it possible to distinguish replication efficiency from packaging capability. The synthetic minigenomes have been used to design a helper-dependent expression system that produces around 1.0 microgram/10(6) cells of GUS.
Collapse
Affiliation(s)
- A Izeta
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Hiscox JA, Mawditt KL, Cavanagh D, Britton P. Investigation of the control of coronavirus subgenomic mRNA transcription by using T7-generated negative-sense RNA transcripts. J Virol 1995; 69:6219-27. [PMID: 7666523 PMCID: PMC189519 DOI: 10.1128/jvi.69.10.6219-6227.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The subgenomic mRNAs of the coronavirus transmissible gastroenteritis virus (TGEV) are not produced in equimolar amounts. We have developed a reporter gene system to investigate the control of this differential subgenomic mRNA synthesis. Transcription of mRNAs by the TGEV polymerase was obtained from negative-sense RNA templates generated in situ from DNA containing a T7 promoter. A series of gene cassettes was produced; these cassettes comprised the reporter chloramphenicol acetyltransferase (CAT) gene downstream of transcription-associated sequences (TASs) (also referred to as intergenic sequences and promoters) believed to be involved in the synthesis of TGEV subgenomic mRNAs 6 and 7. The gene cassettes were designed so that negative-sense RNA copies of the CAT gene with sequences complementary to the TGEV TASs, or modified versions, at the 3' end would be synthesized in situ by T7 RNA polymerase. Using this system, we have demonstrated that CAT was expressed from mRNAs derived from the T7-generated negative-sense RNA transcripts only in TGEV-infected cells and only from transcripts possessing a TGEV negative-sense TAS. Analysis of the CAT mRNAs showed the presence of the TGEV leader RNA sequence at the 5' end, in keeping with observations that all coronavirus mRNAs have a 5' leader sequence corresponding to the 5' end of the genomic RNA. Our results indicated that the CAT mRNAs were transcribed from the in situ-synthesized negative-sense RNA templates without the requirement of TGEV genomic 5' or 3' sequences on the T7-generated negative-sense transcripts (3'-TAS-CAT-5'). Modification of the TGEV TASs indicated (i) that the degree of potential base pairing between the 3' end of the leader RNA and the TGEV negative-sense TAS was not the sole determinant of the amount of subgenomic mRNA transcribed and (ii) that other factors, including nucleotides flanking the TAS, are involved in the regulation of transcription of TGEV subgenomic mRNAs.
Collapse
Affiliation(s)
- J A Hiscox
- Division of Molecular Biology, Institute for Animal Health, Compton, Newbury, United Kingdom
| | | | | | | |
Collapse
|
6
|
Hiscox JA, Cavanagh D, Britton P. Quantification of individual subgenomic mRNA species during replication of the coronavirus transmissible gastroenteritis virus. Virus Res 1995; 36:119-30. [PMID: 7653093 PMCID: PMC7134076 DOI: 10.1016/0168-1702(94)00108-o] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A biotinylated-oligonucleotide-based method was used to isolate the subgenomic mRNAs of the coronavirus transmissible gastroenteritis virus (TGEV) to investigate the amounts of the mRNAs produced at early, middle and late times in the replication cycle. TGEV mRNA 6, which encodes the N protein, was observed to be the most abundant species throughout the replication cycle. The ratios of mRNA 6 to the other mRNAs were 1:0.11 (mRNA 2), 1:0.16 (mRNAs 3 and 4) and 1:0.37 (mRNA 5) at 12 h post-infection. All the mRNA species were differentially regulated throughout the replication cycle, although the rate of accumulation of mRNAs 4, 5 and 6, but not mRNA 3, increased markedly towards the end of the replication cycle. mRNA 7 was not detected in the system used. There was no observable correlation between the amounts of each mRNA synthesised and the potential degree of base pairing between the 3' end of the leader sequence and the transcription associated sequences on the genomic RNA at any time during the replication cycle. This indicates that the extent of base pairing was not the only factor involved in the control of subgenomic mRNA synthesis.
Collapse
Affiliation(s)
- J A Hiscox
- Division of Molecular Biology, Institute for Animal Health, Compton, Newbury, Berkshire, UK
| | | | | |
Collapse
|
7
|
Vaughn EM, Halbur PG, Paul PS. Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes. J Virol 1995; 69:3176-84. [PMID: 7707547 PMCID: PMC189021 DOI: 10.1128/jvi.69.5.3176-3184.1995] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Four new porcine respiratory coronavirus (PRCV) isolates were genetically characterized. Subgenomic mRNA patterns and the nucleotide sequences of the 5' ends of the S genes, the open reading frame (ORF) 3/3a genes, and the ORF 3-1/3b genes of these PRCV isolates were determined and compared with those of other PRCV and transmissible gastroenteritis virus (TGEV) isolates. The S, ORF 3/3a, and ORF 3-1/3b genes are under intense study because of their possible roles in determining tissue tropism and virulence. Northern (RNA) blot analysis of subgenomic mRNAs revealed that mRNA 2, which encodes for the S gene, of the PRCV isolates migrated faster than the mRNA 2 of TGEV. The PRCV isolates AR310 and LEPP produced eight subgenomic mRNA species, the same number as produced by the virulent Miller strain of TGEV. However, the PRCV isolates IA1894 and ISU-1 produced only seven subgenomic mRNA species. All four of the PRCV isolates were found to have a large in-frame deletion in the 5' end of the S gene; however, the size and location of the deletion varied. Analysis of the ORF 3/3a gene nucleotide sequences from the four PRCV isolates also showed a high degree of variability in this area. The ORF 3 gene of the PRCV isolates AR310 and LEPP was preceded by a CTAAAC leader RNA-binding site, and the ORF 3 gene was predicted to yield a protein of 72 amino acids, the same size as that of the virulent Miller strain of TGEV. The PRCV isolates AR310 and LEPP are the first PRCV isolates found to have an intact ORF 3 gene. The ORF 3a gene of the PRCV isolate IA1894 was preceded by a CTAAAC leader RNA-binding site and was predicted to yield a truncated protein of 54 amino acids due to a 23-nucleotide deletion. The CTAAAC leader RNA-binding site and ATG start codon of ORF 3 gene of the PRCV isolate ISU-1 were removed because of a 168-nucleotide deletion. Analysis of the ORF 3-1/3b gene nucleotide sequences from the four PRCV nucleotides isolates also showed variability.
Collapse
Affiliation(s)
- E M Vaughn
- Veterinary Medical Research Institute, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
8
|
Hiscox JA, Mawditt KL, Cavanagh D, Britton P. Characterization of the transmissible gastroenteritis virus (TGEV) transcription initiation sequence. Characterization of TGEV TIS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:529-35. [PMID: 8830536 DOI: 10.1007/978-1-4615-1899-0_84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of the TGEV transcription initiation sequence (TIS) to produce subgenomic RNAs was investigated by placing a reporter gene, chloramphenicol acetyltransferase (CAT) under the control of either the mRNA 6 or the mRNA 7 TISs. Both constructs only produced CAT in TGEV infected cells and the amount of CAT produced from the mRNA 7 TIS was less than from the mRNA 6 TIS. Mutations were made within and around the TISs and the effect on CAT production assayed. THe results showed that the TGEV TIS acted as a initiator of transcription for CAT, though the degree of base pairing between the TIS and leader RNA was not the only factor implicated in the control transcription.
Collapse
Affiliation(s)
- J A Hiscox
- Division of Molecular Biology, Institute for Animal Health, Newbury, Berkshire, United Kingdom
| | | | | | | |
Collapse
|
9
|
Hiscox J, Pocock DH, Britton P. Control of TGEV mRNA transcription. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:99-104. [PMID: 8209778 DOI: 10.1007/978-1-4615-2996-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Coronavirus proteins are translated from a nested set of subgenomic mRNAs which have common 3' termini with unique 5' extensions. Evidence suggests that coronavirus mRNAs are generated by a mechanism of leader primed transcription. Leader RNA binds to consensus sequences upstream of each gene on full length negative strand viral RNA and transcription proceeds to the 5' end of the negative strand to produce the nested set of mRNAs. Even though this gives rise to polycistronic mRNA species only the 5' extension of each mRNA is translated to give the viral proteins. The leader RNA for TGEV is about 90 nucleotides long and contains the sequence which recognises the leader binding sites on the negative strand RNA. Evidence suggests that the length of the leader binding sequence may be involved in transcriptional control of individual mRNAs. In order to investigate this a virus specific mRNA isolation method was developed to measure the relative amounts of mRNAs synthesised during an infection of LLC-PK1 cells with TGEV (strain FS772/70). Thus the relative quantity of each mRNA can be determined and correlated with the variation in size of the leader binding site.
Collapse
Affiliation(s)
- J Hiscox
- Division of Molecular Biology, A.F.R.C., Institute for Animal Health, Newbury, Berkshire, United Kingdom
| | | | | |
Collapse
|
10
|
Britton P, Kottier S, Chen CM, Pocock DH, Salmon H, Aynaud JM. The use of PCR genome mapping for the characterisation of TGEV strains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:29-34. [PMID: 8209745 DOI: 10.1007/978-1-4615-2996-5_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous studies on different transmissible gastroenteritis virus (TGEV) strains, including porcine respiratory coronavirus (PRCV), have identified regions within the genome that are polymorphic as regards insertions and deletions. For example the 672 base deletion within the S gene and multiple deletions 5', within and 3' of the ORF-3a gene were detected in strains of PRCV. The presence of deletions may be associated with a change in the virulence, attenuation or tissue tropism of the isolate. The Nouzilly (188-SG) TGEV vaccine strain was attenuated by passage of a cell culture adapted virulent isolate D-52 188 times through swine testis cells after treatment with gastric juice. PCR amplification with oligonucleotides, corresponding to known TGEV sequences, were used to analyse D-52 and 188-SG for genetic variation. Results with several pairs of oligonucleotides within the first 1565 nucleotides of the S gene did not identify a deletion within this region of the genome from either strain. However, oligonucleotides directed against the ORF-3a/3b region detected a deletion of about 250 nucleotides within the 188-SG genome but not in the D-52 genome. Since all the attenuated TGEV strains so far sequenced, PRCV, Miller SP and 188-SG, contained deletions within the ORF-3a/3b, it would suggest that this region of the TGEV genome is involved in regulating viral virulence.
Collapse
Affiliation(s)
- P Britton
- Division of Molecular Biology, A.F.R.C., Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Britton P, Mawditt KL, Page KW. The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: comparison with transmissible gastroenteritis virus genes. Virus Res 1991; 21:181-98. [PMID: 1662846 PMCID: PMC7133898 DOI: 10.1016/0168-1702(91)90032-q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous analysis of porcine respiratory coronavirus (PRCV) mRNA species showed that mRNAs 2 and 3 were smaller than the corresponding transmissible gastroenteritis virus (TGEV) mRNA species (Page et al. (1991) J. Gen. Virol. 72, 579-587). Sequence analysis showed that mRNA 3 was smaller due to the presence of a new putative RNA-leader binding site upstream of the PRCV ORF-3 gene. However, this observation did not explain the deletion observed in PRCV mRNA 2. Polymerase chain reaction (PCR) was used to generate cDNA from the 3' coding region of the putative polymerase gene to the poly (A) tail of PRCV for comparison to the equivalent region from TGEV. The PRCV S protein was found to consist of 1225 amino acids, which had 98% similarity to the TGEV S protein. However, the PRCV S gene contained a 672 nucleotide deletion, corresponding to 224 amino acids (residues 21 to 245 in TGEV S protein), 59 nucleotides downstream of the S gene initiation codon. The PRCV genome from the ORF-3 gene to the poly (A) tail was sequenced for comparison to TGEV in order to identify other potential differences between the two viruses. Four ORFs were identified that showed 98% similarity to the TGEV ORF-4, M, N and ORF-7 genes. No other deletions or any PRCV specific sequences were identified.
Collapse
Affiliation(s)
- P Britton
- Division of Molecular Biology A.F.R.C., Institute for Animal Health, Compton, U.K
| | | | | |
Collapse
|
12
|
Wesley RD, Woods RD, Cheung AK. Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J Virol 1991; 65:3369-73. [PMID: 1851885 PMCID: PMC240999 DOI: 10.1128/jvi.65.6.3369-3373.1991] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genome and transcriptional pattern of a newly identified respiratory variant of transmissible gastroenteritis virus were analyzed and compared with those of classical enterotropic transmissible gastroenteritis virus. The transcriptional patterns of the two viruses indicated that differences occurred in RNAs 1 and 2(S) and that RNA 3 was absent in the porcine respiratory coronavirus (PRCV) variant. The smaller RNA 2(S) of PRCV was due to a 681-nucleotide (nt) deletion after base 62 of the PRCV peplomer or spike (S) gene. The PRCV S gene still retained information for the 16-amino-acid signal peptide and the first 6 amino acid residues at the N terminus of the mature S protein, but the adjacent 227 residues were deleted. Two additional deletions (3 and 5 nt) were detected in the PRCV genome downstream of the S gene. The 3-nt deletion occurred in a noncoding region; however, the 5-nt deletion shortened the potential open reading frame A polypeptide from 72 to 53 amino acid residues. Significantly, a C-to-T substitution was detected in the last base position of the transcription recognition sequence upstream of open reading frame A, which rendered RNA 3 nondetectable in PRCV-infected cell cultures.
Collapse
Affiliation(s)
- R D Wesley
- National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa 50010
| | | | | |
Collapse
|