1
|
Winter P, Kahl G. Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 2014; 11:438-48. [PMID: 24414752 DOI: 10.1007/bf00364619] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The exploitation of DNA polymorphisms by an ever-increasing number of molecular marker technologies has begun to have an impact on plant genome research and breeding. Restriction fragment length polymorphisms, micro- and mini-satellites and PCR-based approaches are used to determine inter- and intra-specific genetic diversity and construct molecular maps of crops using specially designed mapping populations. Resistance genes and other agronomically important loci are tagged with tightly linked DNA markers and the genes isolated by magabase DNA technology and cloning into yeast artificial chromosomes (YAC). This review discusses some recent developments and results in this field.
Collapse
|
2
|
Deng Z, Xiao S, Huang S, Gmitter FG. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome 2012; 40:697-704. [PMID: 18464859 DOI: 10.1139/g97-792] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twelve new dominant randomly amplified polymorphic DNA (RAPD) fragments associated with a single dominant gene for resistance to citrus tristeza virus (CTV) were identified using bulked segregant analysis of an intergeneric backcross family. These and eight previously reported RAPDs were mapped in the resistance gene (Ctv) region; the resulting localized linkage map spans about 32 cM, with nine close flanking markers within 2.5 cM of Ctv. Seven of 20 RAPD fragments linked with the resistance gene were cloned and sequenced, and their sequences were used to design longer primers to develop sequence characterized amplified region (SCAR) markers that can be utilized reliably in marker-assisted selection, high-resolution mapping, and map-based cloning of the resistance gene. All seven cloned RAPDs were converted successfully into SCARs by redesigning primers, optimizing PCR parameters (especially the annealing temperature), or digesting amplification products with restriction enzymes. Four of the seven remained dominant markers, displaying presence-absence polymorphism patterns; the other three detected restriction site changes or length variations and thus were transformed into codominant markers. Two genomic regions rich in variability were also detected by two codominant SCAR markers.
Collapse
|
3
|
Chen Q, Armstrong K. Characterization of a library from a single microdissected oat (Avena sativa L.) chromosome. Genome 2012; 38:706-14. [PMID: 18470198 DOI: 10.1139/g95-089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A plasmid library of oat chromosome No21, the smallest chromosome of the complement, was constructed by microdissection and microcloning. The chromosome was deproteinized with proteinase K and digested with Sau3A and linker adaptors were ligated to the DNA fragments. From the single chromosome (less than 0.4 pg), 10 μg of DNA was obtained after 2 rounds of PCR amplification. Cloning experiments with the amplified DNA produced as many as 500 000 recombinant clones from the single chromosome. The 500 clones evaluated ranged in size from 150 to 1700 base pairs (bp) with an average size of 650 bp. These were approximately 41% high-copy and 59% low/unique copy clones. Tandem repeats were absent in the library and may have been selected against by a combination of the Sau3A digestion, which is sensitive to C-methylation, and the PCR amplification. Many low-copy dispersed repetitive sequences were present in the library. These were present primarily on A- and D-genome chromosomes. Southern blot analysis revealed that the unique-copy clones were suitable for restriction fragment length polymorphism analysis and that they mapped to the pertinent oat nullisomic lines.
Collapse
|
4
|
Cruz-Hernández A, Paredes-lópez O. Fruit Quality: New Insights for Biotechnology. Crit Rev Food Sci Nutr 2012; 52:272-89. [DOI: 10.1080/10408398.2010.499844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The construction and characteristics of a BAC library for Cucumis sativus L. 'B10'. Cell Mol Biol Lett 2007; 13:74-91. [PMID: 17965974 PMCID: PMC6275958 DOI: 10.2478/s11658-007-0038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 07/17/2007] [Indexed: 11/29/2022] Open
Abstract
Cloning using bacterial artificial chromosomes (BACs) can yield high quality genomic libraries, which are used for the physical mapping, identification and isolation of genes, and for gene sequencing. A BAC genomic library was constructed from high molecular weight DNA (HMW DNA) obtained from nuclei of the cucumber (Cucumis sativus L. cv. Borszczagowski; B10 line). The DNA was digested with the HindIII restriction enzyme and ligated into the pCC1BAC vector. The library consists of 34,560 BAC clones with an average insert size of 135 kb, and 12.7x genome coverage. Screening the library for chloroplast and mitochondrial DNA content indicated an exceptionally low 0.26% contamination with chloroplast DNA and 0.3% with mitochondrial DNA.
Collapse
|
7
|
Castillo Ruiz RA, Herrera C, Ghislain M, Gebhardt C. Organization of phenylalanine ammonia lyase (PAL), acidic PR-5 and osmotin-like (OSM) defence-response gene families in the potato genome. Mol Genet Genomics 2005; 274:168-79. [PMID: 16133161 DOI: 10.1007/s00438-005-0006-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 04/27/2005] [Indexed: 11/25/2022]
Abstract
Defence-response (DR) genes are candidates for the genetic functions underlying quantitative resistance to plant pathogens. The organization of three DR gene families encoding phenylalanine ammonia lyase (PAL), acidic PR-(pathogenesis-related) protein 5, and basic PR-5, or osmotin-like (OSM), proteins was studied in the potato genome. A bacterial artificial chromosome (BAC) library containing approximately 50,000 clones was constructed from high-molecular weight genomic DNA of the diploid potato clone PD59, a hybrid between Solanum tuberosum and S. phureja. BAC clones carrying one or more copies of the DR genes were identified and characterized by Southern hybridization, sequence analysis and genetic mapping. PAL, acidic PR-5 and OSM (basic PR-5) genes were all organized into gene families of varying complexity. The PAL gene family consisted of at least 16 members, several of which were physically linked. Four acidic PR-5 homologous were localized to a 45-kb segment on potato chromosome XII. One of these, PR-5/319, codes for the acidic thaumatin-like protein C found in intercellular fluids of potato. Nine OSM genes were organized at two loci: eight form a 90-kb cluster on chromosome VIII, and a single gene was found on chromosome XI. The topology of a phylogenetic tree based on PR-5 and OSM protein sequences from Solanaceae suggests a mode of evolution for these gene families. The results will form the basis for further studies on the potential role of these defence-related loci in quantitative resistance to pathogens.
Collapse
Affiliation(s)
- Rosa A Castillo Ruiz
- Max-Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
| | | | | | | |
Collapse
|
8
|
Abstract
The progress made in DNA marker technology has been tremendous and exciting. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible. Marker-assisted selection has the potential to deploy favorable gene combinations for disease control. Comparative studies between incompatible species using these markers has resulted in synteny maps which are useful not only in predicting genome organization and evolution but also have practical application in plant breeding. DNA marker technology has found application in fingerprinting genotypes, in determining seed purity, in systematic sampling of germplasm, and in phylogenetic analysis. This review discusses the use of this technology for the genetic improvement of plants.
Collapse
Affiliation(s)
- L S Kumar
- Plant Molecular Biology Unit, Division of Biochemical Science, National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
9
|
Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:46-60. [PMID: 14675431 DOI: 10.1046/j.1365-313x.2003.01937.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Lycopersicon esculentum Bs4 resistance (R) gene specifies recognition of Xanthomonas campestris pv. vesicatoria (Xcv) strains that express the cognate AvrBs4 avirulence protein. Bs4 was isolated by positional cloning and is predicted to encode a nucleotide-binding leucine-rich repeat (NB-LRR) protein that is homologous to tobacco N and potato Y-1 resistance proteins. Xcv infection tests demonstrate that Bs4 confers perception of AvrBs4 but not the 97% identical AvrBs3 protein. However, when delivered via Agrobacterium T-DNA transfer, both, avrBs4 and avrBs3 trigger a Bs4-dependent hypersensitive response, indicating that naturally occurring AvrBs3-homologues provide a unique experimental platform for molecular dissection of recognition specificity. Transcript studies revealed intron retention in Bs4 transcripts. Yet, an intron-deprived Bs4 derivative still mediates AvrBs4 detection, suggesting that the identified splice variants are not crucial to resistance. The L. pennellii bs4 allele, which is >98% identical to L. esculentum Bs4, has a Bs4-like exon-intron structure with exception of a splice polymorphism in intron 2 that causes truncation of the predicted bs4 protein. To test if the receptor-ligand model is a valid molecular description of Bs4-mediated AvrBs4 perception, we conducted yeast two-hybrid studies. However, a direct interaction was not observed. Defense signaling of the Bs4-governed reaction was studied in Nicotiana benthamiana by virus-induced gene silencing and showed that Bs4-mediated resistance is EDS1- and SGT1-dependent.
Collapse
Affiliation(s)
- Sebastian Schornack
- Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pedley KF, Martin GB. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:215-43. [PMID: 14527329 DOI: 10.1146/annurev.phyto.41.121602.143032] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Pto gene in tomato confers gene-for-gene resistance to Pseudomonas syringae pv. tomato, the causative agent of bacterial speck disease. Pto was first introgressed from a wild species of tomato into cultivated tomato varieties over 60 years ago and is now widely used to control speck disease. Cloning of the Pto gene revealed that it encodes a cytoplasmically localized serine-threonine protein kinase. The molecular basis of gene-for-gene recognition in this pathosystem is the direct physical interaction of the Pto kinase with either of two Pseudomonas effector proteins, AvrPto and AvrPtoB. Upon recognition of AvrPto or AvrPtoB, the Pto kinase acts in concert with Prf, a leucine-rich repeat-containing protein, to activate multiple signal transduction pathways. There has been much progress in understanding the evolutionary origin of the Pto gene, structural details about how the Pto kinase interacts with AvrPto and AvrPtoB, signaling steps downstream of Pto, and defense responses activated by the Pto pathway. Future work on this model system will focus on how the interaction of the Pto kinase with bacterial effector proteins activates signal transduction, defining the specific role of signaling components, and ultimately, determining which host defense responses are most responsible for inhibiting growth of the pathogen and suppressing symptoms of bacterial speck disease.
Collapse
Affiliation(s)
- Kerry F Pedley
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
11
|
Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH. Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. PLANT PHYSIOLOGY 2002; 130:1686-96. [PMID: 12481051 PMCID: PMC166683 DOI: 10.1104/pp.013474] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Revised: 10/02/2002] [Accepted: 10/08/2002] [Indexed: 05/18/2023]
Abstract
Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the 185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage lambda. The results indicate that the libraries are of high quality with low contamination by organellar and lambda-sequences. The use of libraries from multiple enzymes increased the chance of recovering each region of the genome. Ninety maize restriction fragment-length polymorphism core markers were hybridized to filters of the HindIII library, representing 6x coverage of the genome, to initiate development of a framework for anchoring BAC contigs to the intermated B73 x Mo17 genetic map and to mark the bin boundaries on the physical map. All of the clones used as hybridization probes detected at least three BACs. Twenty-two single-copy number core markers identified an average of 7.4 +/- 3.3 positive clones, consistent with the expectation of six clones. This information is integrated into fingerprinting data generated by the Arizona Genomics Institute to assemble the BAC contigs using fingerprint contig and contributed to the process of physical map construction.
Collapse
Affiliation(s)
- Young-Sun Yim
- Department of Agronomy, University of Missouri, 1-87 Agriculture, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci U S A 2002; 99:13938-43. [PMID: 12370409 PMCID: PMC129801 DOI: 10.1073/pnas.212448699] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Indexed: 11/18/2022] Open
Abstract
Iron deficiency is among the most common nutritional disorders in plants. To cope with low iron supply, plants with the exception of the Gramineae increase the solubility and uptake of iron by inducing physiological and developmental alterations including iron reduction, soil acidification, Fe(II) transport and root-hair proliferation (strategy I). The chlorotic tomato fer mutant fails to activate the strategy I. It was shown previously that the fer gene is required in the root. Here, we show that fer plants exhibit root developmental phenotypes after low and sufficient iron nutrition indicating that FER acts irrespective of iron supply. Mutant fer roots displayed lower Leirt1 expression than wild-type roots. We isolated the fer gene by map-based cloning and demonstrate that it encodes a protein containing a basic helix-loop-helix domain. fer is expressed in a cell-specific pattern at the root tip independently from iron supply. Our results suggest that FER may control root physiology and development at a transcriptional level in response to iron supply and thus may be the first identified regulator for iron nutrition in plants.
Collapse
Affiliation(s)
- Hong-Qing Ling
- Institute of Plant Genetics and Crop Plant Research, Correnstrasse 3, D-06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
13
|
Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci U S A 2002; 99:1064-9. [PMID: 11805344 PMCID: PMC117430 DOI: 10.1073/pnas.022516199] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multitude of forms observed in flowering plants is largely because of their ability to establish new axes of growth during postembryonic development. This process is initiated by the formation of secondary meristems that develop into vegetative or reproductive branches. In the blind and torosa mutants of tomato, initiation of lateral meristems is blocked during shoot and inflorescence development, leading to a strong reduction in the number of lateral axes. In this study, it is shown that blind and torosa are allelic. The Blind gene has been isolated by positional cloning, and it was found that the mutant phenotype is caused by a loss of function of an R2R3 class Myb gene. RNA interference-induced blind phenocopies confirmed the identity of the isolated gene. Double mutant analysis shows that Blind acts in a novel pathway different from the one to which the previously identified Lateral suppressor gene belongs. The findings reported add a new class of transcription factors to the group of genes controlling lateral meristem initiation and reveal a previously uncharacterized function of R2R3 Myb genes.
Collapse
Affiliation(s)
- Gregor Schmitz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Schmidt D, Röder MS, Dargatz H, Wolf N, Schweizer GF, Tekauz A, Ganal MW. Construction of a YAC library from barley cultivar Franka and identification of YAC-derived markers linked to the Rh2 gene conferring resistance to scald (Rhynchosporium secalis). Genome 2001; 44:1031-40. [PMID: 11768206 DOI: 10.1139/g01-108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Rh2 resistance gene of barley (Hordeum vulgare) confers resistance against the scald pathogen (Rhynchosporium secalis). A high-resolution genetic map of the Rh2 region on chromosome I (7H) was established by the use of molecular markers. Tightly linked markers from this region were used to screen existing and a newly constructed yeast artificial chromosome (YAC) library of barley cv. Franka composed of 45,000 clones representing approximately two genome equivalents. Corresponding YAC clones were identified for most markers, indicating that the combined YAC library has good representation of the barley genome. The contiguous sets of YAC clones with the most tightly linked molecular markers represent entry points for map-based cloning of this resistance gene.
Collapse
Affiliation(s)
- D Schmidt
- Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Giovannoni J. MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:725-749. [PMID: 11337414 DOI: 10.1146/annurev.arplant.52.1.725] [Citation(s) in RCA: 414] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development and maturation of fruits has received considerable scientific scrutiny because of both the uniqueness of such processes to the biology of plants and the importance of fruit as a significant component of the human diet. Molecular and genetic analysis of fruit development, and especially ripening of fleshy fruits, has resulted in significant gains in knowledge over recent years. Great strides have been made in the areas of ethylene biosynthesis and response, cell wall metabolism, and environmental factors, such as light, that impact ripening. Discoveries made in Arabidopsis in terms of general mechanisms for signal transduction, in addition to specific mechanisms of carpel development, have assisted discovery in more traditional models such as tomato. This review attempts to coalesce recent findings in the areas of fruit development and ripening.
Collapse
Affiliation(s)
- Jim Giovannoni
- USDA-ARS Plant, Soil and Nutrition Laboratory and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853; e-mail:
| |
Collapse
|
16
|
Abstract
Tomato is a well-established model organism for studying many biological processes including resistance and susceptibility to pathogens and the development and ripening of fleshy fruits. The availability of the complete Arabidopsis genome sequence will expedite map-based cloning in tomato on the basis of chromosomal synteny between the two species, and will facilitate the functional analysis of tomato genes.
Collapse
Affiliation(s)
- K S Mysore
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
17
|
Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 2000; 97:11102-7. [PMID: 10995464 PMCID: PMC27155 DOI: 10.1073/pnas.190177497] [Citation(s) in RCA: 353] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carotenoid pigments in plants fulfill indispensable functions in photosynthesis. Carotenoids that accumulate as secondary metabolites in chromoplasts provide distinct coloration to flowers and fruits. In this work we investigated the genetic mechanisms that regulate accumulation of carotenoids as secondary metabolites during ripening of tomato fruits. We analyzed two mutations that affect fruit pigmentation in tomato (Lycopersicon esculentum): Beta (B), a single dominant gene that increases beta-carotene in the fruit, and old-gold (og), a recessive mutation that abolishes beta-carotene and increases lycopene. Using a map-based cloning approach we cloned the genes B and og. Molecular analysis revealed that B encodes a novel type of lycopene beta-cyclase, an enzyme that converts lycopene to beta-carotene. The amino acid sequence of B is similar to capsanthin-capsorubin synthase, an enzyme that produces red xanthophylls in fruits of pepper (Capsicum annum). Our results prove that beta-carotene is synthesized de novo during tomato fruit development by the B lycopene cyclase. In wild-type tomatoes B is expressed at low levels during the breaker stage of ripening, whereas in the Beta mutant its transcription is dramatically increased. Null mutations in the gene B are responsible for the phenotype in og, indicating that og is an allele of B. These results confirm that developmentally regulated transcription is the major mechanism that governs lycopene accumulation in ripening fruits. The cloned B genes can be used in various genetic manipulations toward altering pigmentation and enhancing nutritional value of plant foods.
Collapse
Affiliation(s)
- G Ronen
- Department of Genetics, The Life Sciences Institute, and Faculty of Agriculture, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | | | | | | |
Collapse
|
18
|
Ling HQ, Koch G, Bäumlein H, Ganal MW. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 1999; 96:7098-103. [PMID: 10359845 PMCID: PMC22069 DOI: 10.1073/pnas.96.12.7098] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The uptake of iron in plants is a highly regulated process that is induced on iron starvation. In tomato, the mutant chloronerva exhibits constitutive expression of iron uptake responses and intercostal chlorosis. Biochemically, chloronerva is an auxotroph for nicotianamine, a key polyamine in plant iron uptake metabolism. The chloronerva gene has been fine-mapped onto the long arm of chromosome 1 in a large segregating tomato population and yeast artificial chromosome clones encompassing the region were isolated by using flanking markers. A cosmid contig containing the chloronerva gene was established, and complementing cosmids were identified by transformation into the mutant. The chloronerva transcript was identified by cDNA isolation using the complementing cosmids. The gene encodes a unique protein of 35 kDa. The mutant harbors a single base change compared with the wild type. Based on enzyme activity and sequence similarity to the coding DNA sequence of the purified barley enzyme the chloronerva gene encodes the enzyme nicotianamine synthase.
Collapse
Affiliation(s)
- H Q Ling
- Institute for Plant Genetics and Crop Plant Research, Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | |
Collapse
|
19
|
Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci U S A 1999; 96:290-5. [PMID: 9874811 PMCID: PMC15132 DOI: 10.1073/pnas.96.1.290] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of the shoot apical meristem to multiply and distribute its meristematic potential through the formation of axillary meristems is essential for the diversity of forms and growth habits of higher plants. In the lateral suppressor mutant of tomato the initiation of axillary meristems is prevented, thus offering the unique opportunity to study the molecular mechanisms underlying this important function of the shoot apical meristem. We report here the isolation of the Lateral suppressor gene by positional cloning and show that the mutant phenotype is caused by a complete loss of function of a new member of the VHIID family of plant regulatory proteins.
Collapse
Affiliation(s)
- K Schumacher
- Institut für Genetik, Universität zu Köln, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | | | | | |
Collapse
|
20
|
Ganal MW, Czihal R, Hannappel U, Kloos DU, Polley A, Ling HQ. Sequencing of cDNA clones from the genetic map of tomato (Lycopersicon esculentum). Genome Res 1998; 8:842-7. [PMID: 9724330 PMCID: PMC310761 DOI: 10.1101/gr.8.8.842] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The dense RFLP linkage map of tomato (Lycopersicon esculentum) contains >300 anonymous cDNA clones. Of those clones, 272 were partially or completely sequenced. The sequences were compared at the DNA and protein level to known genes in databases. For 57% of the clones, a significant match to previously described genes was found. The information will permit the conversion of those markers to STS markers and allow their use in PCR-based mapping experiments. Furthermore, it will facilitate the comparative mapping of genes across distantly related plant species by direct comparison of DNA sequences and map positions. [cDNA sequence data reported in this paper have been submitted to the EMBL database under accession nos. AA824695-AA825005 and the dbEST_Id database under accession nos. 1546519-1546862.]
Collapse
MESH Headings
- Arabidopsis/genetics
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary
- DNA, Plant/genetics
- Databases, Factual
- Genes, Plant
- Genetic Markers
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Polymorphism, Restriction Fragment Length
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sequence Tagged Sites
- Transcription, Genetic
Collapse
Affiliation(s)
- M W Ganal
- Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 1998; 125:1979-89. [PMID: 9570763 DOI: 10.1242/dev.125.11.1979] [Citation(s) in RCA: 312] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type ‘indeterminate’ plants, inflorescences are separated by three vegetative nodes. In ‘determinate’ plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by two consecutive inflorescences. We show here that the SP gene is the tomato ortholog of CENTRORADIALIS and TERMINAL FLOWER1, genes which maintain the indeterminate state of inflorescence meristems in Antirrhinum and Arabidopsis respectively. The sp mutation results in a single amino acid change (P76L), and the mutant phenotype is mimicked by overexpressing the SP antisense RNA. Ectopic and overexpression of the SP and CEN transgenes in tomato rescues the ‘indeterminate’ phenotype, conditions the replacement of flowers by leaves in the inflorescence and suppresses the transition of the vegetative apex to a reproductive shoot. The SELF-PRUNING gene is expressed in shoot apices and leaves from very early stages, and later in inflorescence and floral primordia as well. This expression pattern is similar to that displayed by the tomato ortholog LEAFY and FLORICAULA. Comparison of the sympodial, day-neutral shoot system of tomato and the monopodial, photoperiod-sensitive systems of Arabidopsis and Antirrhinum suggests that flowering genes that are required for the processing of floral induction signals in Arabidopsis and Antirrhinum are required in tomato to regulate the alternation between vegetative and reproductive cycles in sympodial meristems.
Collapse
Affiliation(s)
- L Pnueli
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kleine M, Jung C, Michalek W, Diefenthal T, Dargatz H. Construction of a MluI-YAC library from barley (Hordeum vulgare L.) and analysis of YAC insert terminal regions. Genome 1997; 40:896-902. [DOI: 10.1139/g97-116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the construction of a specific yeast artificial chromosome (YAC) library from barley (Hordeum vulgare L.) using the vector pYAC-RC. The library was generated by total digestion of high molecular weight DNA with the infrequently cutting restriction enzyme MluI. Only 10–30% of the colonies were recombinant, as visualized by red–white selection and subsequent pulsed-field gel electrophoresis analysis. About 17 000 individual recombinant YAC clones with insert sizes ranging from 50 to 700 kb, with a mean of 170 kb, were selected. No chloroplast sequences were detected and the proportion of YAC clones containing BARE–1 copia–like retroelements is about 5%. Screening of the library with a single-copy RFLP marker closely linked to the Mla locus yielded three identical clones of the same size. Insert termini of randomly chosen YAC clones were investigated with respect to their redundancy in the barley genome and compared with termini of YAC clones from an EcoRI-based YAC library, resulting in a fourfold enrichment of single-copy sequences at the MluI vector–insert junctions.Key words: yeast artificial chromosomes, YAC, Hordeum vulgare, pulsed-field gel electrophoresis.
Collapse
|
23
|
Simons G, van der Lee T, Diergaarde P, van Daelen R, Groenendijk J, Frijters A, Büschges R, Hollricher K, Töpsch S, Schulze-Lefert P, Salamini F, Zabeau M, Vos P. AFLP-based fine mapping of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics 1997; 44:61-70. [PMID: 9286701 DOI: 10.1006/geno.1997.4844] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Resistance of barley (Hordeum vulgare) to the powdery mildew fungus Erysiphe graminis f.sp. hordei is conferred by several dominant genes, but also by recessive alleles of the Mlo locus mapping on the long arm of chromosome 4. In addition, this single-factor-mediated resistance is active against all known physiological races of the parasite. Thus the mechanism underlying mlo-mediated resistance should differ substantially from that mediated by the dominant genes. A positional cloning strategy to isolate the Mlo gene from the barley genome, the size of which is almost double the size of the human genome, has been designed. The AFLP technique was employed to identify markers tightly linked to the Mlo locus and to produce a local high-resolution genetic map. The use of this high-volume marker technology allowed the rapid screening of approximately 250,000 loci for linkage to Mlo. A large number of Mlo-linked AFLP markers were identified, one of which cosegregated with Mlo on the basis of more than 4000 meiotic events. A four-genome-equivalent barley YAC library (average insert size 480 kb) was constructed and screened with this cosegregating marker. Four YACs containing this marker were isolated and subsequent characterization by AFLP-based physical mapping allowed the physical delimitation of the Mlo locus to a DNA segment of 30 kb.
Collapse
Affiliation(s)
- G Simons
- Keygene N.V., Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ori N, Eshed Y, Pinto P, Paran I, Zamir D, Fluhr R. TAO1, a representative of the molybdenum cofactor containing hydroxylases from tomato. J Biol Chem 1997; 272:1019-25. [PMID: 8995397 DOI: 10.1074/jbc.272.2.1019] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aldehyde oxidase and xanthine dehydrogenase are a group of ubiquitous hydroxylases, containing a molybdenum cofactor (MoCo) and two iron-sulfur groups. Plant aldehyde oxidase and xanthine dehydrogenase activities are involved in nitrogen metabolism and hormone biosynthesis, and their corresponding genes have not yet been isolated. Here we describe a new gene from tomato, which shows the characteristics of a MoCo containing hydroxylase. It shares sequence homology with xanthine dehydrogenases and aldehyde oxidases from various organisms, and similarly contains binding sites for two iron-sulfur centers and a molybdenum-binding region. However, it does not contain the xanthine dehydrogenase conserved sequences thought to be involved in NAD binding and in substrate specificity, and is likely to encode an aldehyde oxidase-type activity. This gene was designated tomato aldehyde oxidase 1 (TAO1). TAO1 belongs to a multigene family, whose members are shown to map to clusters on chromosomes 1 and 11. MoCo hydroxylase activity is shown to be recognized by antibodies raised against recombinant TAO1 polypeptides. Immunoblots reveal that TAO1 cross-reacting material is ubiquitously expressed in various organisms, and in plants it is mostly abundant in fruits and rapidly dividing tissues.
Collapse
Affiliation(s)
- N Ori
- Department of Plant Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Production of long inverse PCR products facilitates the isolation of YAC insert termini. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1366-2120(08)70016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A 1996; 93:15503-7. [PMID: 11038534 PMCID: PMC26434 DOI: 10.1073/pnas.93.26.15503] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A high-resolution physical and genetic map of a major fruit weight quantitative trait locus (QTL), fw2.2, has been constructed for a region of tomato chromosome 2. Using an F(2) nearly isogenic line mapping population (3472 individuals) derived from Lycopersicon esculentum (domesticated tomato) x Lycopersicon pennellii (wild tomato), fw2.2 has been placed near TG91 and TG167, which have an interval distance of 0.13 +/- 0.03 centimorgan. The physical distance between TG91 and TG167 was estimated to be </= 150 kb by pulsed-field gel electrophoresis of tomato DNA. A physical contig composed of six yeast artificial chromosomes (YACs) and encompassing fw2.2 was isolated. No rearrangements or chimerisms were detected within the YAC contig based on restriction fragment length polymorphism analysis using YAC-end sequences and anchored molecular markers from the high-resolution map. Based on genetic recombination events, fw2.2 could be narrowed down to a region less than 150 kb between molecular markers TG91 and HSF24 and included within two YACs: YAC264 (210 kb) and YAC355 (300 kb). This marks the first time, to our knowledge, that a QTL has been mapped with such precision and delimited to a segment of cloned DNA. The fact that the phenotypic effect of the fw2.2 QTL can be mapped to a small interval suggests that the action of this QTL is likely due to a single gene. The development of the high-resolution genetic map, in combination with the physical YAC contig, suggests that the gene responsible for this QTL and other QTLs in plants can be isolated using a positional cloning strategy. The cloning of fw2.2 will likely lead to a better understanding of the molecular biology of fruit development and to the genetic engineering of fruit size characteristics.
Collapse
Affiliation(s)
- K B Alpert
- Department of Plant Breeding and Biometry, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
28
|
Zhu T, Shi I, Funke RP, Gresshoff PM, Keim P. Characterization and application of soybean YACs to molecular cytogenetics. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:483-8. [PMID: 8879250 DOI: 10.1007/bf02173014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yeast artificial chromosomes (YACs) are widely used in the physical analysis of complex genomes. In addition to their value in chromosome walking for map-based cloning, YACs represent excellent probes for chromosome mapping using fluorescence in situ hybridization (FISH). We have screened such a library for low-copy-number clones by hybridization to total genomic DNA. Four clones were chosen for chromosome tagging based upon their low or moderate signal. By using degenerate oligonucleotide-primed PCR (DOP-PCR), we were able to use relatively small amounts of soybean YAC DNA, isolated directly by preparative pulsed-field gel electrophoresis, as FISH probes for both metaphase chromosome spreads and interphase nuclei. FISH chromosomal analysis using the three of the clones as probes resulted in relatively simple hybridization patterns consistent with a single homologous locus or two homoeologous loci. The fourth YAC probe resulted in a diffuse hybridization pattern with signal on all metaphase chromosomes. We conclude that YACs represent a valuable source of probes for chromosomal analysis in soybean.
Collapse
Affiliation(s)
- T Zhu
- Department of Biological Sciences, Northern Arizona University, Flagstaff 86011-5640, USA
| | | | | | | | | |
Collapse
|
29
|
Ling HQ, Pich A, Scholz G, Ganal MW. Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:87-92. [PMID: 8804407 DOI: 10.1007/bf02173208] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Iron is one of the most important micronutrients for plants. Like other organisms, plants have developed active mechanisms for the acquisition of sufficient iron from the soil. Nevertheless, very little is known about the genetic mechanisms that control the active uptake. In tomato, two spontaneously derived mutants are available, which are defective in key steps that control this process. The recessive mutation chloronerva (chln) affects a gene which controls the synthesis of the non-protein amino acid nicotianamine (NA), a key component in the iron physiology of plants. The root system of the recessive mutant fer is unable to induce any of the characteristic responses to iron deficiency and iron uptake is thus completely blocked. We present a characterization of the double mutant, showing that the fer gene is epistatic over the chln gene and thus very likely to be one of the major genetic elements controlling iron physiology in tomato. In order to gain access to these two genes at the molecular level, both mutants were precisely mapped onto the high density RFLP map of tomato. The chln gene is located on chromosome 1 and the fer gene is on chromosome 6 of tomato. Using this high-resolution map, a chromosome walk has been started to isolate the fer gene by map-based cloning. The isolation of the fer gene will provide new insights into the molecular mechanisms of iron uptake control in plants.
Collapse
Affiliation(s)
- H Q Ling
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | | | | | | |
Collapse
|
30
|
Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci U S A 1996; 93:8776-81. [PMID: 8710948 PMCID: PMC38750 DOI: 10.1073/pnas.93.16.8776] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It has been proposed that cloned plant disease resistance genes could be transferred from resistant to susceptible plant species to control important crop plant diseases. The recently cloned N gene of tobacco confers resistance to the viral pathogen, tobacco mosaic virus. We generated transgenic tomato plants bearing the N gene and demonstrate that N confers a hypersensitive response and effectively localizes tobacco mosaic virus to sites of inoculation in transgenic tomato, as it does in tobacco. The ability to reconstruct the N-mediated resistance response to tobacco mosaic virus in tomato demonstrates the utility of using isolated resistance genes to protect crop plants from diseases, and it demonstrates that all the components necessary for N-mediated resistance are conserved in tomato.
Collapse
Affiliation(s)
- S Whitham
- Department of Plant Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
31
|
Fuchs J, Kloos DU, Ganal MW, Schubert I. In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes. Chromosome Res 1996; 4:277-81. [PMID: 8817067 DOI: 10.1007/bf02263677] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In situ localization of short low- or single-copy sequences is still difficult in plants. One solution to this problem could be the use of large yeast artificial chromosomes (YACs) for fluorescence in situ hybridization. Two YACs specific for a single copy marker on the long arm of the NOR-chromosome 2 of tomato (Lycopersicon esculentum) were selected. Both probes hybridized exclusively to this chromosome, although one produced a slightly dispersed hybridization signal. Hybridization of these YACs onto potato chromosome showed a clear single locus on the homoeologous potato chromosome in both cases.
Collapse
Affiliation(s)
- J Fuchs
- Institut für Pflanzengenetik and Kulturpflanzenforschung, Gatersleben, Germany
| | | | | | | |
Collapse
|
32
|
Gmitter FG, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z. A localized linkage map of the citrus tristeza virus resistance gene region. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1996; 92:688-695. [PMID: 24166392 DOI: 10.1007/bf00226090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/1995] [Accepted: 10/06/1995] [Indexed: 06/02/2023]
Abstract
A localized genetic linkage map was developed of the region surrounding the citrus tristeza virus (CTV) resistance gene (designated Ctv) from Poncirus trifoliate L., a sexually compatible Citrus relative. Bulked segregant analysis (BSA) was used to identify potential resistance-associated RAPD fragment markers in four intergeneric backcross families that were segregating for CTV resistance. Eight RAPD fragments were found that were consistently linked to Ctv in the four families. Map distances and locus order were determined with MAPMAKER 3.0, using the results obtained from 59 individuals in the largest family. Also, a consensus map was constructed with JOINMAP 1.3, using pooled results from the four backcross families. Marker orders were identical, except for 1 marker, on these independently developed maps. Family-specific resistance-associated markers were also identified, as were numerous susceptibility-associated markers. The identification of markers tightly linked to Ctv will enable citrus breeders to identify plants likely to be CTV-resistant by indirect, marker-assisted selection, rather than by labor-intensive direct challenge with the pathogen. These markers also provide a basis for future efforts to isolate Ctv for subsequent genetic manipulation.
Collapse
Affiliation(s)
- F G Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, 33850, Lake Alfred, FL, USA
| | | | | | | | | | | |
Collapse
|
33
|
Frary A, Presting GG, Tanksley SD. Molecular mapping of the centromeres of tomato chromosomes 7 and 9. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:295-304. [PMID: 8602144 DOI: 10.1007/bf02174387] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The centromeres of two tomato chromosomes have been precisely localized on the molecular linkage map through dosage analysis of trisomic stocks. To map the centromeres of chromosomes 7 and 9, complementary telo-, secondary, and tertiary trisomic stocks were used to assign DNA markers to their respective chromosome arms and thus to localize the centromere at the junction of the short and long arms. It was found that both centromeres are situated within a cluster of cosegregating markers. In an attempt to order the markers within the centric clusters, genetic maps of the centromeric regions of chromosomes 7 and 9 were constructed from F2 populations of 1620 Lycopersicon esculentum x L. pennellii (E x P) plants and 1640 L. esculentum x L. pimpinellifolium (E x PM) plants. Despite the large number of plants analyzed, very few recombination events were detected in the centric regions, indicating a significant suppression of recombination at this region of the chromosome. The fact that recombination suppression is equally strong in crosses between closely related (E x PM) and remotely related (E x P) parents suggests that centromeric suppression is not due to DNA sequence mismatches but to some other mechanism. The greatest number of centromeric markers was resolved in the L. esculentum x L. pennellii F2 population. The centromere of chromosome 7 is surrounded by eight cosegregating markers: three on the short arm, five on the long arm. Similarly, the centric region of chromosome 9 contains ten cosegregating markers including one short arm marker and nine long arm markers. The localization of centromeres to precise intervals on the molecular linkage map represents the first step towards the characterization and ultimate isolation of tomato centromeres.
Collapse
Affiliation(s)
- A Frary
- Department of Plant Breeding and Biometry, Cornell University, Ithaca NY 14853, USA
| | | | | |
Collapse
|
34
|
Giovannoni JJ, Noensie EN, Ruezinsky DM, Lu X, Tracy SL, Ganal MW, Martin GB, Pillen K, Alpert K, Tanksley SD. Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:195-206. [PMID: 7651343 DOI: 10.1007/bf02190801] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ripening represents a complex developmental process unique to plants. We are using tomato fruit ripening mutants as tools to understand the regulatory components that control and coordinate the physiological and biochemical changes which collectively confer the ripe phenotype. We have genetically characterized two loci which result in significant inhibition of the ripening process in tomato, ripening-inhibitor (rin), and non-ripening (nor), as a first step toward isolating genes likely to encode key regulators of this developmental process. A combination of pooled-sample mapping as well as classical restriction fragment length polymorphism (RFLP) analysis has permitted the construction of high-density genetic maps for the regions of chromosomes 5 and 10 spanning the rin and nor loci, respectively. To assess the feasibility of initiating a chromosome walk, physical mapping of high molecular weight genomic DNA has been employed to estimate the relationship between physical distance (in kb) and genetic distance (in cM) around the targeted loci. Based on this analysis, the relationship in the region spanning the rin locus is estimated to be 200-300 kb/cM, while the nor locus region ratio is approximately 200 kb/1 cM. Using RFLP markers tightly linked to rin and nor, chromosome walks have been initiated to both loci in a yeast artificial chromosome (YAC) library of tomato genomic DNA. We have isolated and characterized several YAC clones linked to each of the targeted ripening loci and present genetic evidence that at least one YAC clone contains the nor locus.
Collapse
Affiliation(s)
- J J Giovannoni
- Department of Horticultural Sciences, Texas A&M University, College Station 77843-2133, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Loh YT, Martin GB. The disease-resistance gene Pto and the fenthion-sensitivity gene fen encode closely related functional protein kinases. Proc Natl Acad Sci U S A 1995; 92:4181-4. [PMID: 7753781 PMCID: PMC41907 DOI: 10.1073/pnas.92.10.4181] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Resistance to bacterial speck in tomato is governed by a gene-for-gene interaction in which a single resistance locus (Pto) in the plant responds to the expression of a specific avirulence gene (avrPto) in the pathogen. Disease susceptibility results if either Pto or avrPto are lacking from the corresponding organisms. Leaves of tomato cultivars that contain the Pto locus also exhibit a hypersensitive-like response upon exposure to an organophosphorous insecticide, fenthion. Recently, the Pto gene was isolated by a map-based cloning approach and was shown to be a member of a clustered multigene family with similarity to various protein-serine/threonine kinases. Another member of this family, termed Fen, was found to confer sensitivity to fenthion. The Pto protein shares 80% identity (87% similarity) with Fen. Here, Pto and Fen are shown to be functional protein kinases that probably participate in the same signal transduction pathway.
Collapse
Affiliation(s)
- Y T Loh
- Department of Agronomy, Purdue University, West Lafayette, IN 47907-1150, USA
| | | |
Collapse
|
36
|
Schumacher K, Ganal M, Theres K. Genetic and physical mapping of the lateral suppressor (ls) locus in tomato. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:761-6. [PMID: 7898446 DOI: 10.1007/bf00290724] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tomato plants homozygous for the recessive lateral suppressor (ls) mutation show a number of phenotypic abnormalities among which the lack of lateral meristem initiation during vegetative growth and the absence of petals on the flower are the most prominent. As a first step towards the isolation of the Ls gene by means of map-based cloning, we have determined its position on the restriction fragment length polymorphism (RFLP) map of tomato. RFLP analysis of 527 F2 plants segregating for the ls allele allowed us to define an interval of 0.8 cM in which the Ls gene is located. Analysis of the physical distance between the two flanking RFLP markers by pulsed field gel electrophoresis revealed that they lie no further than 375 kb apart. Knowledge of the physical distance together with the availability of a tomato yeast artificial chromosome (YAC) library, makes it feasible to isolate the Ls gene by a map-based cloning approach.
Collapse
Affiliation(s)
- K Schumacher
- Institut für Genetik, Universität zu Köln, Germany
| | | | | |
Collapse
|
37
|
Kleine M, Cai D, Elbl C, Herrmann RG, Jung C. Physical mapping and cloning of a translocation in sugar beet (Beta vulgaris L) carrying a gene for nematode (Heterodera schachtii) resistance from B. procumbens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:399-406. [PMID: 24173930 DOI: 10.1007/bf00221982] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/1994] [Accepted: 07/28/1994] [Indexed: 06/02/2023]
Abstract
Two diploid (2n=18) sugar beet (Beta vulgaris L.) lines which carry monogenic traits for nematode (Heterodera schachtii Schm.) resistance located on translocations from the wild beet species Beta procumbens were investigated. Short interspersed repetitive DNA elements exclusively hybridizing with wild beet DNA were found to be dispersed around the translocations. The banding pattern as revealed by genomic Southern hybridization was highly conserved among translocation lines of different origins indicating that the translocations are not affected by recombination events with sugar beet chromosomes. Physical mapping revealed that the entire translocation is represented by a single Sal I fragment 300 kb in size. A representative YAC (yeast artifical chromosome) library consisting of approximately 13,000 recombinant clones (2.2 genome equivalents) with insert sizes ranging between 50 and 450 kb and an average of 130kb has been constructed from the resistant line A906001. Three recombinant YACs were isolated from this library using the wild beet-specific repetitive elements as probes for screening. Colinearity between YAC inserts and donor DNA was confirmed by DNA fingerprinting utilizing these repetitive probes. The YACs were arranged into two contigs with a total size of 215 kb; these represent a minimum of 72% of the translocation.
Collapse
Affiliation(s)
- M Kleine
- Institut für Pflanzenbau und Pflanzenzüchtung, Christian-AlbrechtsUniversität zu Kiel, Olshausenstrasse 40, D-24118, Kiel, Germany
| | | | | | | | | |
Collapse
|
38
|
Ohmori T, Murata M, Motoyoshi F. Identification of RAPD markers linked to the Tm-2 locus in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:307-311. [PMID: 24173917 DOI: 10.1007/bf00221969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/1994] [Accepted: 09/22/1994] [Indexed: 06/02/2023]
Abstract
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.
Collapse
Affiliation(s)
- T Ohmori
- Research Institute for Bioresources, Okayama University, 710, Kurashiki, Japan
| | | | | |
Collapse
|
39
|
Abstract
Biotechnology and the use of biologically based agents for the betterment of mankind is an active field which is founded on the interaction between many basic sciences. This is achieved in coordination with engineering and technology for scaling up purposes. The application of modern recombinant DNA technology gave momentum and new horizons to the field of biotechnology both in the academic setting and in industry. The applications of biotechnology are being used in many fields including agriculture, medicine, industry, marine science and the environment. The final products of biotechnological applications are diverse. In the medical applications of biotechnology, for example, the field has been evolving in such a way that the final product could be a small molecule (e.g. drug/antibiotic) that can be developed based on genetic information by drug design or drug screening using a cloned and expressed target protein.
Collapse
Affiliation(s)
- M R el-Gewely
- Department of Biotechnology, University of Tromsø, Norway
| |
Collapse
|
40
|
|
41
|
Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 1994; 22:4922-31. [PMID: 7800481 PMCID: PMC523757 DOI: 10.1093/nar/22.23.4922] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The construction of representative large insert DNA libraries is critical for the analysis of complex genomes. The predominant vector system for such work is the yeast artificial chromosome (YAC) system. Despite the success of YACs, many problems have been described including: chimerism, tedious steps in library construction and low yields of YAC insert DNA. Recently a new E.coli based system has been developed, the bacterial artificial chromosome (BAC) system, which offers many potential advantages over YACs. We tested the BAC system in plants by constructing an ordered 13,440 clone sorghum BAC library. The library has a combined average insert size, from single and double size selections, of 157 kb. Sorghum inserts of up to 315 kb were isolated and shown to be stable when grown for over 100 generations in liquid media. No chimeric clones were detected as determined by fluorescence in situ hybridization of ten BAC clones to metaphase and interphase S.bicolor nuclei. The library was screened with six sorghum probes and three maize probes and all but one sorghum probe hybridized to at least one BAC clone in the library. To facilitate chromosome walking with the BAC system, methods were developed to isolate the proximal ends of restriction fragments inserted into the BAC vector and used to isolate both the left and right ends of six randomly selected BAC clones. These results demonstrate that the S. bicolor BAC library will be useful for several physical mapping and map-based cloning applications not only in sorghum but other related cereal genomes, such as maize. Furthermore, we conclude that the BAC system is suitable for most large genome applications, is more 'user friendly' than the YAC system, and will likely lead to rapid progress in cloning biologically significant genes from plants.
Collapse
Affiliation(s)
- S S Woo
- Soil and Crop Sciences Department, Texas A & M University, College Station 77843-2123
| | | | | | | | | |
Collapse
|
42
|
Klein-Lankhorst RM, Salentijn EM, Dirkse WG, Arens-de Reuver M, Stiekema WJ. Construction of a YAC library from a Beta vulgaris fragment addition and isolation of a major satellite DNA cluster linked to the beet cyst nematode resistance locus Hs1 (pat-1.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 89:426-434. [PMID: 24177891 DOI: 10.1007/bf00225377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/1994] [Accepted: 02/28/1994] [Indexed: 06/02/2023]
Abstract
A YAC library was constructed from the Beta vulgaris fragment addition AN5-203b. This monosomic fragment addition harbors an approximate 12-Mbp fragment of B.patellaris chromosome 1 accomodating the Hs1 (pat-1) conferring resistance to the beet cyst nematode (Heterodera schachtii). The YAC library consists of 20,000 YAC clones having an average size of 140 kb. Screening with organelle-specific probes showed that 12% of the clones contain chloroplast DNA while only 0.2% of the clones hybridizes with a mitochondrial specific probe. On the basis of a sugar beet haploid genome size of 750 Mbp this library represents 3.3 haploid genome equivalents. The addition fragment present in AN5-203b harbors a major satellite DNA cluster that is tightly linked to the Hs1 (pat-1) locus. The cluster is located on a single 250-kb EcoRI restriction fragment and consists of an estimated 700-800 copies of a 159-bp core sequence, most of which are arranged in tandem. Using this core sequence as a probe, we were able to isolate 1 YAC clone from the library that contains the entire 250-kb satellite DNA cluster.
Collapse
Affiliation(s)
- R M Klein-Lankhorst
- Department of Molecular Biology, DLO-Center for Plant Breeding and Reproduction Research (CPRO-DLO), P.O. Box 16, NL-6700 AA, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Zhang HB, Martin GB, Tanksley SD, Wing RA. Map-based cloning in crop plants: tomato as a model system II. Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:613-21. [PMID: 7969030 DOI: 10.1007/bf00282751] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A map-based cloning technique for crop plants is being developed using tomato as a model system. The target gene jointless is a recessive mutation that completely suppresses the formation of flower and fruit pedicel abscission zones. Previously, the jointless locus was mapped to a 3 cM interval between the two molecular markers TG523 and RPD158. Physical mapping of the jointless region by pulsed-field gel electrophoresis demonstrated that TG523 and RPD158 reside on a 600 kb SmaI fragment. In this study, TG523 was used as a probe to screen a tomato yeast artificial chromosome (YAC) library. Six tomato YAC (TY) clones were isolated, ranging from 220 to 380 kb in size. Genetic mapping of YAC ends demonstrated that this set of overlapping YACs encompasses the jointless locus. Two YAC ends, TY159L (L indicates left end) and TY143R (R indicates right end), cosegregate with the jointless locus. Only one of the six YACs (TY142) contained single-copy DNA sequences at both ends that could be mapped. The two ends of TY142 were mapped to either side of the jointless locus, indicating that TY142 contains a contiguous 285 kb tomato DNA fragment that probably includes the jointless locus. Physical mapping of the TY142 clone revealed that TY159L and TY143R reside on a 55 kb SalI fragment. Southern blot hybridization analysis of the DNAs of tomato lines nearly isogenic for the jointless mutation has allowed localization of the target locus to a region of less than 50 kb within the TY142 clone.
Collapse
Affiliation(s)
- H B Zhang
- Soil and Crop Sciences Department, Texas A&M University, College Station 77843-2123
| | | | | | | |
Collapse
|
44
|
Del-Favero J, Vauterin M, Weyens G, Edwards KE, Jacobs M. Construction and characterisation of a yeast artificial chromosome library containing five haploid sugarbeet (Beta vulgaris L.) genome equivalents. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:449-453. [PMID: 24186033 DOI: 10.1007/bf00223659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/1993] [Accepted: 09/09/1993] [Indexed: 06/02/2023]
Abstract
A yeast artificial chromosome (YAC) genomic library of Beta vulgaris was constructed in the pYAC4 vector. High-molecular-weight DNA was prepared from agarose-embedded leaf protoplasts from a triploid cultivar. The library was found to contain 33,500 clones in an ordered array of microtiter plates. Mean size of the inserts was estimated to be 135 kb, and the library should therefore represent the equivalent of five haploid genomes. The library was characterised for the presence of highly repetitive, chloroplast and single-copy sequences. In order to isolate single-copy sequences, 18 pools of DNA, each from 1920 individual YAC clones, were prepared for rapid screening of the library by the polymerase chain reaction. The results of these screenings showed that the number of isolated clones was at or near the frequency expected.
Collapse
Affiliation(s)
- J Del-Favero
- Instituut voor Moleculaire Biologie, Paardenstraat 65, 1640, Sint-Genesius-Rode, Belgium
| | | | | | | | | |
Collapse
|
45
|
Wing RA, Zhang HB, Tanksley SD. Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of jointless. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:681-8. [PMID: 7908716 DOI: 10.1007/bf00283423] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning--a chromosome walk or jump to jointless.
Collapse
Affiliation(s)
- R A Wing
- Soil & Crop Sciences Department, Texas A&M University, College Station 77843-2474
| | | | | |
Collapse
|
46
|
Liharska T. Molecular Markers in Genetic Analysis of Tomato. BIOTECHNOL BIOTEC EQ 1994. [DOI: 10.1080/13102818.1994.10818745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
47
|
Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993; 262:1432-6. [PMID: 7902614 DOI: 10.1126/science.7902614] [Citation(s) in RCA: 614] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Pto gene in tomato confers resistance to races of Pseudomonas syringae pv. tomato that carry the avirulence gene avrPto. A yeast artificial chromosome clone that spans the Pto region was identified and used to probe a leaf complementary DNA (cDNA) library. A cDNA clone was isolated that represents a gene family, at least six members of which genetically cosegregate with Pto. When susceptible tomato plants were transformed with a cDNA from this family, they were resistant to the pathogen. Analysis of the amino acid sequence revealed similarity to serine-threonine protein kinases, suggesting a role for Pto in a signal transduction pathway.
Collapse
Affiliation(s)
- G B Martin
- Department of Plant Breeding and Biometry, Cornell University, Ithaca, NY 14853-1902
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
van Daelen RA, Gerbens F, van Ruissen F, Aarts J, Hontelez J, Zabel P. Long-range physical maps of two loci (Aps-1 and GP79) flanking the root-knot nematode resistance gene (Mi) near the centromere of tomato chromosome 6. PLANT MOLECULAR BIOLOGY 1993; 23:185-192. [PMID: 8106010 DOI: 10.1007/bf00021430] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The root knot nematode resistance gene Mi in tomato has been mapped in the pericentromeric region of chromosome 6. With the objective of isolating Mi through a map-based cloning approach, we have previously identified and ordered into a high-resolution genetic linkage map a variety of tightly linked molecular markers. Using pulsed-field gelelectrophoresis and various rarely cutting restriction enzymes in single, double and partial digestions, we now report long-range physical maps of the two closest flanking markers, acid phosphatase-1 (Aps-1) and GP79, which span over 400 and 800 kb, respectively. It is concluded that the physical distance between both markers is larger than predicted on the basis of genetic linkage analysis. Furthermore, two RFLP markers (H3F8 and H4H10) which map genetically to the same locus as Aps-1 do not show physical linkage, indicating severe suppression of recombination in this region of the chromosome. Finally, no evidence was obtained showing the presence of a CpG island near Aps-1.
Collapse
Affiliation(s)
- R A van Daelen
- Wageningen Agricultural University, Department of Molecular Biology, Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Kleine M, Michalek W, Graner A, Herrmann RG, Jung C. Construction of a barley (Hordeum vulgare L.) YAC library and isolation of a Hor1-specific clone. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:265-72. [PMID: 8355658 DOI: 10.1007/bf00277065] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have constructed an EcoRI-based YAC (yeast artificial chromosome) library from barley (Hordeum vulgare L. cv. Franka) using the vector pYAC4. The library consists of approximately 18,000 recombinant YACs with insert sizes ranging between 100 and 1000 kb (average of 160 kb) corresponding to 50% of the barley genome. Size fractionation after ligation resulted in an increased average insert size (av. 370 kb) but also in a substantial decrease in cloning efficiency. Less than 1% of the colonies showed homology to a plastome-specific probe; approximately 50% of the colonies displayed a signal with a dispersed, highly repetitive barley-specific probe. Using a primer combination deduced from the sequence of a member of the small Hor1 gene family coding for the C-hordein storage proteins, the library was screened by polymerase chain reaction and subsequently by the colony hybridization technique. A single YAC, designated Y66C11, with a 120 kb insert was isolated. This DNA fragment represents a coherent stretch from the terminal part of the Hor1 gene region as judged from the correspondence of the restriction patterns between Y66C11 DNA and barley DNA after hybridization with the Hor1-specific probe. Restriction with the isoschizomeric enzymes HpaII/MspI suggests a high degree of methylation of the Hor1 region in mesophyll cells but not in YAC-derived (yeast) DNA.
Collapse
Affiliation(s)
- M Kleine
- Botanisches Institut der Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
The genetic transformation of most agriculturally important plant species is now possible. However, the application of this technology to rational plant-improvement is currently limited by a shortage of cloned genes for important traits. Recent technological advances in plant-gene isolation and identification, such as map-based cloning, insertional mutagenesis and large-scale cDNA sequencing, have accelerated the rate of gene isolation and significantly expanded the opportunities for genetic engineering of crop plants.
Collapse
Affiliation(s)
- S Gibson
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing 48824
| | | |
Collapse
|