1
|
Hwang I, Kim BS, Lee HY, Cho SW, Lee SE, Ahn JY. PA2G4/EBP1 ubiquitination by PRKN/PARKIN promotes mitophagy protecting neuron death in cerebral ischemia. Autophagy 2024; 20:365-379. [PMID: 37712850 PMCID: PMC10813645 DOI: 10.1080/15548627.2023.2259215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebral ischemia induces massive mitochondrial damage, leading to neuronal death. The elimination of damaged mitochondria via mitophagy is critical for neuroprotection. Here we show that the level of PA2G4/EBP1 (proliferation-associated 2G4) was notably increased early during transient middle cerebral artery occlusion and prevented neuronal death by eliciting cerebral ischemia-reperfusion (IR)-induced mitophagy. Neuron-specific knockout of Pa2g4 increased infarct volume and aggravated neuron loss with impaired mitophagy and was rescued by introduction of adeno-associated virus serotype 2 expressing PA2G4/EBP1. We determined that PA2G4/EBP1 is ubiquitinated on lysine 376 by PRKN/PARKIN on the damaged mitochondria and interacts with receptor protein SQSTM1/p62 for mitophagy induction. Thus, our study suggests that PA2G4/EBP1 ubiquitination following cerebral IR-injury promotes mitophagy induction, which may be implicated in neuroprotection.Abbreviations: AAV: adeno-associated virus; ACTB: actin beta; BNIP3L/NIX: BCL2 interacting protein 3 like; CA1: Cornu Ammonis 1; CASP3: caspase 3; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; PA2G4/EBP1: proliferation-associated 2G4; FUNDC1: FUN14 domain containing 1; IB: immunoblotting; ICC: immunocytochemistry; IHC: immunohistochemistry; IP: immunoprecipitation; MCAO: middle cerebral artery occlusion; MEF: mouse embryonic fibroblast; OGD: oxygen-glucose deprivation; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced kinase 1; RBFOX3/NeuN: RNA binding fox-1 homolog 3; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; WT: wild-type.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Byeong-Seong Kim
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan, College of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, Seongbuk-gu, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
2
|
Barranco R, Bonsignore A, Ventura F. Immunohistochemistry in postmortem diagnosis of acute cerebral hypoxia and ischemia: A systematic review. Medicine (Baltimore) 2021; 100:e26486. [PMID: 34160462 PMCID: PMC8238305 DOI: 10.1097/md.0000000000026486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND : Discovery of evidence of acute brain ischemia or hypoxia and its differentiation from agonal hypoxia represents a task of interest but extremely difficult in forensic neuropathology. Generally, more than 50% of forensic autopsies indicate evidence of brain induced functional arrest of the organ system, which can be the result of a hypoxic/ischemic brain event. Even if the brain is the target organ of hypoxic/ischemic damage, at present, there are no specific neuropathological (macroscopic and histological) findings of hypoxic damage (such as in drowning, hanging, intoxication with carbon monoxide) or acute ischemia. In fact, the first histological signs appear after at least 4 to 6 hours. Numerous authors have pointed out how an immunohistochemical analysis could help diagnose acute cerebral hypoxia/ischemia.Data sources: This review was based on articles published in PubMed and Scopus databases in the past 25 years, with the following keywords "immunohistochemical markers," "acute cerebral ischemia," "ischemic or hypoxic brain damage," and "acute cerebral hypoxia". OBJECTIVES : Original articles and reviews on this topic were selected. The purpose of this review is to analyze and summarize the markers studied so far and to consider the limits of immunohistochemistry that exist to date in this specific field of forensic pathology. RESULTS : We identified 13 markers that had been examined (in previous studies) for this purpose. In our opinion, it is difficult to identify reliable and confirmed biomarkers from multiple studies in order to support a postmortem diagnosis of acute cerebral hypoxia/ischemia. Microtubule-associated protein 2 (MAP2) is the most researched marker in the literature and the results obtained have proven to be quite useful. CONCLUSION Immunohistochemistry has provided interesting and promising results, but further studies are needed in order to confirm and apply them in standard forensic practice.
Collapse
|
3
|
Lee CH, Ahn JH, Lee TK, Sim H, Lee JC, Park JH, Shin MC, Cho JH, Kim DW, Won MH, Choi SY. Comparison of Neuronal Death, Blood-Brain Barrier Leakage and Inflammatory Cytokine Expression in the Hippocampal CA1 Region Following Mild and Severe Transient Forebrain Ischemia in Gerbils. Neurochem Res 2021; 46:2852-2866. [PMID: 34050880 DOI: 10.1007/s11064-021-03362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022]
Abstract
Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam, 50510, Republic of Korea
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk, 38066, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Gangwon, 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University Hospital, Kangwon National University, Chuncheon, Gangwon, 24289, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
4
|
Readnower RD, Hubbard WB, Kalimon OJ, Geddes JW, Sullivan PG. Genetic Approach to Elucidate the Role of Cyclophilin D in Traumatic Brain Injury Pathology. Cells 2021; 10:199. [PMID: 33498273 PMCID: PMC7909250 DOI: 10.3390/cells10020199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demonstrate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening, is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors, such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell neurological deficits. However, some pharmacological inhibitors of CypD have multiple biological targets and, as such, do not directly implicate a role for CypD in arbitrating cell death after TBI. Here, we reviewed the current understanding of the role CypD plays in TBI pathobiology. Further, we directly assessed the role of CypD in mediating cell death following TBI by utilizing mice lacking the CypD encoding gene Ppif. Following controlled cortical impact (CCI), the genetic knockout of CypD protected acute mitochondrial bioenergetics at 6 h post-injury and reduced subacute cortical tissue and hippocampal cell loss at 18 d post-injury. The administration of CsA following experimental TBI in Ppif-/- mice improved cortical tissue sparing, highlighting the multiple cellular targets of CsA in the mitigation of TBI pathology. The loss of CypD appeared to desensitize the mitochondrial response to calcium burden induced by TBI; this maintenance of mitochondrial function underlies the observed neuroprotective effect of the CypD knockout. These studies highlight the importance of maintaining mitochondrial homeostasis after injury and validate CypD as a therapeutic target for TBI. Further, these results solidify the beneficial effects of CsA treatment following TBI.
Collapse
Affiliation(s)
- Ryan D. Readnower
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - William Brad Hubbard
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Olivia J. Kalimon
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - James W. Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; (R.D.R.); (W.B.H.); (O.J.K.); (J.W.G.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
5
|
Halis H, Bitiktaş S, Baştuğ O, Tan B, Kavraal Ş, Güneş T, Süer C. Differential Effects of Pentoxifylline on Learning and Memory Impairment Induced by Hypoxic-ischemic Brain Injury in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:388-399. [PMID: 31352705 PMCID: PMC6705102 DOI: 10.9758/cpn.2019.17.3.388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/10/2023]
Abstract
Objective Hypoxic-ischemic (HI) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal HI injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, the present study investigated the long-term effects of HI and potential behavioral protective effect of pentoxifylline. Methods Seven-day-old rats underwent right carotid ligation, followed by hypoxia (FiO2 = 0.08). Rats received pentoxifylline immediately after and again 2 hours after hypoxia (two doses, 60‒100 mg/kg/dose), or serum physiologic. Another set of seven-day-old rats was included to sham group exposed to surgical stress but not ligated. These rats were tested for spatial learning and memory on the simple place task in the Morris water maze from postnatal days 77 to 85. Results HI rats displayed significant tissue loss in the right hippocampus, as well as severe spatial memory deficits. Low-dose treatment with pentoxifylline resulted in significant protection against both HI-induced hippocampus tissue losses and spatial memory impairments. Beneficial effects are, however, negated if pentoxifylline is administered at high dose. Conclusion These findings indicate that unilateral HI brain injury in a neonatal rodent model is associated with cognitive deficits, and that low dose pentoxifylline treatment is protective against spatial memory impairment.
Collapse
Affiliation(s)
- Hülya Halis
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Soner Bitiktaş
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Osman Baştuğ
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Şehrazat Kavraal
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tamer Güneş
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
7
|
Yuan D, Liu C, Wu J, Hu B. Inactivation of NSF ATPase Leads to Cathepsin B Release After Transient Cerebral Ischemia. Transl Stroke Res 2018; 9:201-213. [PMID: 29039034 PMCID: PMC5904019 DOI: 10.1007/s12975-017-0571-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/25/2023]
Abstract
Neurons have extraordinary large cell membrane surface area, thus requiring extremely high levels of intracellular membrane-trafficking activities. Consequently, defects in the membrane-trafficking activities preferentially affect neurons. A critical molecule for controlling the membrane-trafficking activities is the N-ethylmaleimide-sensitive factor (NSF) ATPase. This study is to investigate the cascade of events of NSF ATPase inactivation, resulting in a massive buildup of late endosomes (LEs) and fatal release of cathepsin B (CTSB) after transient cerebral ischemia using the 2-vessel occlusion with hypotension (2VO+Hypotension) global brain ischemia model. Rats were subjected to 20 min of transient cerebral ischemia followed by 0.5, 4, 24, and 72 h of reperfusion. Neuronal histopathology and ultrastructure were examined by the light and electron microscopy, respectively. Western blotting and confocal microscopy were utilized for analyzing the levels, redistribution, and co-localization of Golgi apparatus and endosome or lysosome markers. Transient cerebral ischemia leads to delayed neuronal death that occurs at 48-72 h of reperfusion mainly in hippocampal CA1 and neocortical (Cx) layers 3 and 5 pyramidal neurons. During the delayed period, NSF ATPase is irreversibly trapped into inactive protein aggregates selectively in post-ischemic neurons destined to die. NSF inactivation leads to a massive buildup of Golgi fragments, transport vesicles (TVs) and late endosomes (LEs), and release of the 33 kDa LE type of CTSB, which is followed by delayed neuronal death after transient cerebral ischemia. The results support a novel hypothesis that transient cerebral ischemia leads to NSF inactivation, resulting in a cascade of events of fatal release of CTSB and delayed neuronal death after transient cerebral ischemia.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Neurology, The First Teaching Hospital, Jilin University, Changchun, China
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chunli Liu
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jiang Wu
- Department of Neurology, The First Teaching Hospital, Jilin University, Changchun, China
| | - Bingren Hu
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Yuan D, Liu C, Hu B. Dysfunction of Membrane Trafficking Leads to Ischemia-Reperfusion Injury After Transient Cerebral Ischemia. Transl Stroke Res 2018; 9:215-222. [PMID: 29022237 PMCID: PMC5895539 DOI: 10.1007/s12975-017-0572-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023]
Abstract
Neurons require an extraordinarily high level of membrane trafficking activities because of enriched axonal terminals and dendritic branches. For that reason, defects in the membrane trafficking pathway are a hallmark of most, and may be all, neurodegenerative disorders. A major cellular membrane trafficking pathway is the Golgi apparatus (Golgi hereafter)-late endosome-lysosome axis for supplying lysosomal enzymes. This pathway is regulated by N-ethylmaleimide-sensitive factor (NSF) ATPase. This review article is to discuss a novel hypothesis that brain ischemia inactivates NSF ATPase, resulting in a cascade of events of disruption of the Golgi-endosome-lysosome pathway, release of cathepsin B (CTSB), and induction of mitochondrial outer membrane permeabilization (MOMP) during the postischemic phase. This hypothesis is supported by recent studies demonstrating that NSF is trapped into inactive protein aggregates in neurons destined to die after brain ischemia. Consequently, Golgi, transport vesicles (TVs), and late endosomes (LEs) are accumulated and damaged, which is followed by CTSB release from these damaged structures. Moderate release of CTSB cleaves Bax-like BH3 protein (Bid) to become active truncated Bid (tBid). Active tBid is then translocated to the mitochondrial outer membrane, resulting in oligomerization of BCL2-associated X protein (Bax) forming the mitochondrial outer membrane pores, and releasing mitochondrial intramembranous proteins. Extensive CTSB release, however, can digest cellular proteins indiscriminately to induce cell death. Based on these new observations, we propose a novel hypothesis, i.e., brain ischemia leads to NSF inactivation, resulting in a massive buildup of damaged Golgi, TVs and LEs, fatal release of CTSB, induction of MOMP, and eventually brain ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Chunli Liu
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bingren Hu
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Du X, Wang D, Li Y, Huo X, Li C, Lu J, Wang Y, Guo M, Chen Z. Newly breeding an inbred strain of ischemia-prone Mongolian gerbils and its reproduction and genetic characteristics. Exp Anim 2018; 67:83-90. [PMID: 29046492 PMCID: PMC5814317 DOI: 10.1538/expanim.17-0071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/09/2017] [Indexed: 12/01/2022] Open
Abstract
The Mongolian gerbil has been a useful laboratory animal in many research fields, especially in ischemia studies. However, due to the variation of the circle of Willis (COW), the ischemic model is unstable and various. To solve this problem, we newly established an inbred strain of gerbils, restricting breeding and keeping to F23. The data on the breeding and growth of the animals are described in the present study. The genetic characteristics of F4 to F20 detected by microsatellite DNA and biochemical markers are also shown here. The results demonstrated that the frequency of ischemic model by unilateral carotid occlusion and the frequency of incomplete COW increased, increasing from 50% and 75% in F1 to 88.89% and 100% in F20, respectively. The ratios of consistent patterns of COW in parents were positively related with the number of inbred generations. A reproductive performance analysis indicated that the average size of litters in the inbred gerbils was less than that of outbred gerbils and that adult body weight was also lower in inbred gerbils; also, the pups in the 2nd litter were the best ones chosen to reproduce. The genetic detection results indicated that 26 out of 28 microsatellite loci and all 26 biochemical markers were homozygous in F20, showing comparably identical genetic composition in inbred gerbils. All the data demonstrated that an inbred strain of ischemia-prone gerbil has been established successfully. This strain can be used in stroke research and can largely reduce the number of animals needed in experiments.
Collapse
Affiliation(s)
- Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
- Department of Laboratory Animal, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Dongping Wang
- Institute of Jingfeng Medical Laboratory Animals, No. 20 Dongdajie, Fengtai District, Beijing 100071, P.R. China
| | - Ying Li
- Institute of Jingfeng Medical Laboratory Animals, No. 20 Dongdajie, Fengtai District, Beijing 100071, P.R. China
- Animal Science and Technology College, Jilin Agricultural University, No. 2888 Xin Cheng Da Jie, Changchun 130118, P.R. China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
- Department of Laboratory Animal, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
- Department of Laboratory Animal, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, P.R. China
| |
Collapse
|
10
|
DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28097803 DOI: 10.1002/wrna.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.
Collapse
|
11
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Choi HY, Park JH, Chen BH, Shin BN, Lee YL, Kim IH, Cho JH, Lee TK, Lee JC, Won MH, Ahn JH, Tae HJ, Yan BC, Hwang IK, Cho JH, Kim YM, Kim SK. Increases of Catalase and Glutathione Peroxidase Expressions by Lacosamide Pretreatment Contributes to Neuroprotection Against Experimentally Induced Transient Cerebral Ischemia. Neurochem Res 2016; 41:2380-90. [DOI: 10.1007/s11064-016-1951-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 12/29/2022]
|
13
|
Lee JC, Won MH. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol 2014; 47:149-56. [PMID: 25276473 PMCID: PMC4178189 DOI: 10.5115/acb.2014.47.3.149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 11/27/2022] Open
Abstract
Experimentally transient global cerebral ischemia using animal models have been thoroughly studied and numerous reports suggest the involvement of oxidative stress in the pathogenesis of neuronal death in ischemic lesions. In animal models, during the reperfusion period after ischemia, increased oxygen supply results in the overproduction of reactive oxygen species (ROS), which are involved in the process of cell death. ROS, such as superoxide anions, hydroxyl free radicals, hydrogen peroxide and nitric oxide are produced as a consequence of metabolic reactions and central nervous system activity. These reactive species are directly involved in the oxidative damage of cellular macromolecules such as nucleic acids, lipids and proteins in ischemic tissues, which can lead to cell death. Antioxidant enzymes are believed to be among the major mechanisms by which cells counteract the deleterious effect of ROS after cerebral ischemia. Consequently, antioxidant strategies have been long suggested as a therapy for experimental ischemic stroke; however, clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. This article focuses on the contribution of oxidative stress or antioxidants to the post-ischemic neuronal death following transient global cerebral ischemia by using a gerbil model.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
14
|
Park S, Kang S, Kim DS, Shin BK, Moon NR, Daily JW. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and β-cell survival in gerbils. Free Radic Res 2014; 48:864-74. [PMID: 24807533 DOI: 10.3109/10715762.2014.917410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transient carotid artery occlusion causes ischemia/reperfusion (I/R) injury resulting in neuron and pancreatic β-cell death with consequential post-stroke hyperglycemia, which can lead to diabetes and may accelerate the development of Alzheimer's disease. Antioxidants have been shown to protect against the I/R injury and destruction of neurons. However, it is unknown whether the protection against I/R injury extends to the pancreatic β-cells. Therefore, we investigated whether treatment with ebselen, a glutathione peroxidase mimic, prevents neuronal and β-cell death following I/R in gerbils susceptible to stroke. After 28 days post artery occlusion, there was widespread neuronal cell death in the CA1 of the hippocampus and elevated IL-1β and TNF-α levels. Pretreatment with ebselen prevented the death by 56% and attenuated neurological damage (abnormal eyelid drooping, hair bristling, muscle tone, flexor reflex, posture, and walking patterns). Ischemic gerbils also exhibited impaired glucose tolerance and insulin sensitivity which induced post-stroke hyperglycemia associated with decreased β-cell mass due to increased β-cell apoptosis. Ebselen prevented the increased β-cell apoptosis, possibly by decreasing IL-1β and TNF-α in islets. Ischemia also attenuated hepatic insulin signaling, and expression of GLUT2 and glucokinase, whereas ebselen prevented the attenuation and suppressed gluconeogenesis by decreasing PEPCK expression. In conclusion, antioxidant protection by ebselen attenuated I/R injury of neurons and pancreatic β-cells and prevented subsequent impairment of glucose regulation that could lead to diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- S Park
- Department of Food and Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University , Asan-Si , Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Park JH, Park OK, Cho JH, Chen BH, Kim IH, Ahn JH, Lee JC, Yan BC, Yoo KY, Lee CH, Hwang IK, Kwon SH, Lee YL, Won MH, Choi JH. Anti-inflammatory effect of tanshinone I in neuroprotection against cerebral ischemia-reperfusion injury in the gerbil hippocampus. Neurochem Res 2014; 39:1300-12. [PMID: 24760430 DOI: 10.1007/s11064-014-1312-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 12/25/2022]
Abstract
Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia-reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Park S, Kim DS, Kang S. Exercise training attenuates cerebral ischemic hyperglycemia by improving hepatic insulin signaling and β-cell survival. Life Sci 2013; 93:153-60. [PMID: 23782996 DOI: 10.1016/j.lfs.2013.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/01/2013] [Accepted: 06/07/2013] [Indexed: 01/04/2023]
Abstract
AIMS Preventing hyperglycemia after acute stroke attenuates complications of cerebral ischemia and reduces the risk of mortality. We investigated whether regular exercise prevents neuronal cell death and post-stroke hyperglycemia in gerbils after cerebral ischemia. MAIN METHODS Cerebral ischemia was induced by carotid artery occlusion for 8min. The gerbils that underwent ischemic or sham operations were randomly subdivided into exercise (ran on inclined treadmill at 20m/min for 30min 5days per week for 1week prior to surgery) or non-exercise groups. Gerbils were fed a 40% fat diet and after 28days, glucose metabolism, serum cytokine levels and cognitive function was measured. KEY FINDINGS Artery occlusion resulted in a 64% reduction in hippocampal CA1 neurons in comparison to the sham gerbils, and caused decreased neuronal mass and impaired cognitive function. Exercise partially prevented neuronal death and improved ischemia-induced glucose intolerance. Ischemia decreased hepatic insulin signaling and exacerbated insulin resistance whereas exercise prevented the disturbance. Insulin secretion was lower in ischemic gerbils than sham gerbils, due to lowered pancreatic β-cell mass caused by increased β-cell apoptosis and decreased β-cell proliferation, which were also prevented by exercise. Increase of apoptosis was associated with elevated caspase-3 activity, consistent with increased serum tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels. SIGNIFICANCE Hippocampal neuronal cell death induces hyperglycemia due to attenuated hepatic insulin signaling and decreased β-cell mass by increased β-cell apoptosis through increased TNF-α and IL-1β levels. Exercise partially prevents this phenomenon suggesting that exercise training may provide neuroprotective benefits from cerebral ischemic hyperglycemia.
Collapse
Affiliation(s)
- Sunmin Park
- Dept. of Food & Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University, Asan-Si, South Korea.
| | | | | |
Collapse
|
17
|
Rojas JJ, Deniz BF, Miguel PM, Diaz R, Hermel ÉDES, Achaval M, Netto CA, Pereira LO. Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia–ischemia in the rat. Exp Neurol 2013; 241:25-33. [DOI: 10.1016/j.expneurol.2012.11.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022]
|
18
|
Teste IS, Tamos YM, Cruz YR, Cernada AM, Rodríguez JC, Martínez NS, Antich RMC, González-Quevedo A, Rodríguez JCG. Dose effect evaluation and therapeutic window of the neuro-EPO nasal application for the treatment of the focal ischemia model in the Mongolian gerbil. ScientificWorldJournal 2012; 2012:607498. [PMID: 22701364 PMCID: PMC3366217 DOI: 10.1100/2012/607498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 01/24/2012] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular disease is the third leading cause of death and the leading cause of disability in Cuba and in several developed countries. A possible neuroprotective agent is the rHu-EPO, whose effects have been demonstrated in models of brain ischemia. The Neuro-EPO is a derivative of the rHu-EPO that avoids the stimulation of erythropoiesis. The aim of this study was to determine the Neuro-EPO delivery into the central nervous system (CNS) to exert a neuroprotective effect in cerebral ischemia model of the Mongolian gerbil. The Neuro-EPO in a rate of 249.4 UI every 8 hours for 4 days showed 25% higher viability efficacy (P > 0.01), improving neurological score and behavior of the spontaneous exploratory activity, the preservation of CA3 areas of the hippocampus, the cortex, and thalamic nuclei in the focal ischemia model of the Mongolian gerbil. In summary, this study, the average dose-used Neuro-EPO (249.4 UI/10 μL/every 8 hours for 4 days), proved to be valid indicators of viability, neurological status, and spontaneous exploratory activity, being significantly lower than that reported for the systemically use of the rHu-EPO as a neuroprotectant. Indeed, up to 12 h after brain ischemia is very positive Neuro-EPO administration by the nasal route as a candidate for neuroprotection.
Collapse
|
19
|
Lee MC, Jin CY, Kim HS, Kim JH, Kim MK, Kim HI, Lee YJ, Son YJ, Kim YO, Woo YJ. Stem cell dynamics in an experimental model of stroke. Chonnam Med J 2011; 47:90-8. [PMID: 22111067 PMCID: PMC3214868 DOI: 10.4068/cmj.2011.47.2.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/28/2011] [Indexed: 12/27/2022] Open
Abstract
We investigated the migration of endogenous neural stem cells (NSCs) toward an infarct lesion in a photo-thrombotic stroke model. The lesions produced by using rose bengal dye (20 mg/kg) with cold light in the motor cortex of Sprague-Dawley rats were also evaluated with sequential magnetic resonance imaging (MRI) from 30 minutes through 8 weeks. Migration of NSCs was identified by immunohistochemistry for nestin monoclonal antibody in the lesion cortex, subventricular zone (SVZ), and corpus callosum (CC). The contrast to noncontrast ratio (CNR) on MRI was greatest at 12 hours in DWI and decreased over time. By contrast, T1-weighted and T2-weighted images showed a constant CNR from the beginning through 8 weeks. MRI of the lesional cortex correlated with histopathologic findings, which could be divided into three stages: acute (edema and necrosis) within 24 hours, subacute (acute and chronic inflammatory cell infiltration) at 2 to 7 days, and chronic (gliofibrosis) at 2 to 4 weeks. The volume of the infarct was significantly reduced by reparative gliofibrosis. The number of nestin+ NSCs in the contralateral SVZ was similar to that of the ipsilateral SVZ in each group. However, the number of nestin+ NSCs in the ipsilateral cortex and CC increased at 12 hours to 3 days compared with the contralateral side (p<0.01) and was reduced significantly by 7 days (p<0.01). Active emigration of internal NSCs from the SVZ toward the infarct lesion may also contribute to decreased volume of the infarct lesion, but the self-repair mechanism by endogenous NSCs is insufficient to treat stroke causing extensive neuronal death. Further studies should be focused on amplification technologies of NSCs to enhance the collection of endogenous or transplanted NSCs for the treatment of stroke.
Collapse
Affiliation(s)
- Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jeong HK, Ji KM, Kim B, Kim J, Jou I, Joe EH. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury. PLoS One 2010; 5:e13756. [PMID: 21060796 PMCID: PMC2966428 DOI: 10.1371/journal.pone.0013756] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 10/12/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc) and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+) and Iba-1(+) cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+) cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side) did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS Different cellular components (microglia, astrocytes, monocytes, and neutrophils) and different factors (proinflammatory and neurotrophic) could be produced in inflammatory processes depending on the nature of the injury. The results in this study suggest that the inflammatory responses of microglia and monocytes in response to ATP-induced acute injury could not be neurotoxic.
Collapse
Affiliation(s)
- Hey-Kyeong Jeong
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Kyung-min Ji
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Beomsue Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Jun Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Eun-hye Joe
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
21
|
Choi JH, Yoo KY, Park OK, Lee CH, Kim SK, Hwang IK, Lee YL, Shin HC, Won MH. Relation among neuronal death, cell proliferation and neuronal differentiation in the gerbil main olfactory bulb after transient cerebral ischemia. Cell Mol Neurobiol 2010; 30:929-38. [PMID: 20405201 PMCID: PMC11498874 DOI: 10.1007/s10571-010-9522-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Neurogenesis occurs during the embryonic stage and throughout life. Brain injuries such as ischemic insults enhance cell proliferation in some areas of the brain. We examined proliferation of newly generated cells in each layer of the gerbil main olfactory bulb (MOB) after 5 min of transient cerebral ischemia using bromodeoxyuridine (BrdU) immunohistochemistry. Ischemia-related neuronal death in the MOB was not detected using Fluoro-Jade B histofluorescence and TUNEL staining. Many BrdU-positive ((+)) cells were found in the rostral migratory stream in control and ischemic MOBs. Significant increase of BrdU(+) cells was observed in the granule cell layer (GCL) and glomerular layer (GL) from 15 days post-ischemia, and BrdU(+) cells were very much higher than those of the control group 30 days post-ischemia. At this time point after ischemia/reperfusion, a few BrdU(+) cells in the GL and GCL were co-localized with calretinin(+) cells, and many BrdU(+) cells expressed doublecortin, a marker of immature neurons. These results indicate that cell proliferation is increased in the GCL and GL without apparent neuronal loss from 15 days after transient cerebral ischemia in gerbils.
Collapse
Affiliation(s)
- Jung Hoon Choi
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Ki-Yeon Yoo
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Ok Kyu Park
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Sung Koo Kim
- Department of Pediatrics, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 150-950 South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Hyung-Cheul Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Moo-Ho Won
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| |
Collapse
|
22
|
Choi JH, Yoo KY, Lee CH, Park OK, Yan BC, Li H, Moon YS, Hwang IK, Lee YL, Shin HC, Won MH. Transient cerebral ischemia induces active astrocytosis without distinct neuronal death in the gerbil main olfactory bulb: a long-term analysis. Neurochem Res 2010; 35:1588-98. [PMID: 20593235 DOI: 10.1007/s11064-010-0219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2010] [Indexed: 02/02/2023]
Abstract
In the present study, we examined ischemia-induced neuronal and glial changes in the gerbil MOB at various time points during 60 days after 5 min of transient cerebral ischemia. The number of neuronal neuclei-immunoreactive neurons was not changed after ischemia/reperfusion (I/R). Myelin basic protein immunoreaction was well preserved after I/R. Five days after I/R, reactive form of GFAP-immunoreactive astrocytes began to increase in the external plexiform layer and granule cell layer: These reactive astrocytes peaked 10 days after I/R, thereafter, they decreased with time after I/R. Iba-1-immunoreactive microglia were ubiquitously distributed in all layers of the MOB. After I/R, significant changes in their morphology and immunoreactivity were not detected. The results of western blot analyses for GFAP, Iba-1 and MBP were similar to the immunohistochemical data. In addition, 8-hydroxy-2'-deoxyguanosine (a marker for DNA damage) immunoreactivity and SOD1, an antioxidant, protein levels were not changed in the ischemic MOB. These results indicate that neurons in the MOB are resistant to ischemic insult, showing that astrocytes are activated late in the ischemic MOB.
Collapse
Affiliation(s)
- Jung Hoon Choi
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Ischemia has been an inevitable event accompanying kidney transplantation. Ischemic changes start with brain death, which is associated with severe hemodynamic disturbances: increasing intracranial pressure results in bradycardia and decreased cardiac output; the Cushing reflex causes tachycardia and increased blood pressure; and after a short period of stabilization, systemic vascular resistance declines with hypotension leading to cardiac arrest. Free radical-mediated injury releases proinflammatory cytokines and activates innate immunity. It has been suggested that all of these changes-the early innate response and the ischemic tissue damage-play roles in the development of adaptive responses, which in turn may lead to an acute font of kidney rejection. Hypothermic kidney storage of various durations before transplantation add to ischemic tissue damage. The final stage of ischemic injury occurs during reperfusion. Reperfusion injury, the effector phase of ischemic injury, develops hours or days after the initial insult. Repair and regeneration processes occur together with cellular apoptosis, autophagy, and necrosis; the fate of the organ depends on whether cell death or regeneration prevails. The whole process has been described as the ischemia-reperfusion (I-R) injury. It has a profound influence on not only the early but also the late function of a transplanted kidney. Prevention of I-R injury should be started before organ recovery by donor pretreatment. The organ shortage has become one of the most important factors limiting extension of deceased donor kidney transplantation worldwide. It has caused increasing use of suboptimal deceased donors (high risk, extended criteria [ECD], marginal donors) and uncontrolled non-heart-beating (NHBD) donors. Kidneys from such donors are exposed to much greater ischemic damage before recovery and show reduced chances for proper early as well as long-term function. Storage of kidneys, especially those recovered from ECD (or NHBD) donors, should use machine perfusion.
Collapse
|
24
|
DeGracia DJ, Jamison JT, Szymanski JJ, Lewis MK. Translation arrest and ribonomics in post-ischemic brain: layers and layers of players. J Neurochem 2008; 106:2288-301. [PMID: 18627434 DOI: 10.1111/j.1471-4159.2008.05561.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A persistent translation arrest (TA) correlates precisely with the selective vulnerability of post-ischemic neurons. Mechanisms of post-ischemic TA that have been assessed include ribosome biochemistry, the link between TA and stress responses, and the inactivation of translational components via sequestration in subcellular structures. Each of these approaches provides a perspective on post-ischemic TA. Here, we develop the notion that mRNA regulation via RNA-binding proteins, or ribonomics, also contributes to post-ischemic TA. We describe the ribonomic network, or structures involved in mRNA regulation, including nuclear foci, polysomes, stress granules, embryonic lethal abnormal vision/Hu granules, processing bodies, exosomes, and RNA granules. Transcriptional, ribonomic, and ribosomal regulation together provide multiple layers mediating cell reprogramming. Stress gene induction via the heat-shock response, immediate early genes, and endoplasmic reticulum stress represents significant reprogramming of post-ischemic neurons. We present a model of post-ischemic TA in ischemia-resistant neurons that incorporates ribonomic considerations. In this model, selective translation of stress-induced mRNAs contributes to translation recovery. This model provides a basis to study dysfunctional stress responses in vulnerable neurons, with a key focus on the inability of vulnerable neurons to selectively translate stress-induced mRNAs. We suggest a ribonomic approach will shed new light on the roles of mRNA regulation in persistent TA in vulnerable post-ischemic neurons.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
25
|
Oida Y, Izuta H, Oyagi A, Shimazawa M, Kudo T, Imaizumi K, Hara H. Induction of BiP, an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia in gerbil. Brain Res 2008; 1208:217-24. [PMID: 18395193 DOI: 10.1016/j.brainres.2008.02.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/15/2008] [Accepted: 02/17/2008] [Indexed: 11/18/2022]
Abstract
Endoplasmic reticulum (ER) stress, which is caused by the accumulation of unfolded proteins in the ER lumen, is associated with stroke and neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. We evaluated the effect of a selective inducer of immunoglobulin heavy chain binding protein (BiP) (BiP inducer X; BIX) against both tunicamycin-induced cell death (in SH-SY5Y cells) and the effects of global transient forebrain ischemia (in gerbils). BIX significantly induced BiP expression both in vitro and in vivo. Pretreatment with BIX at 2 or 5 microM reduced the cell death induced by tunicamycin in SH-SY5Y cells. In gerbils subjected to forebrain ischemia, prior treatment with BIX (intracerebroventricular injection at 10 or 40 microg) protected against cell death and decreased TUNEL-positive cells in the hippocampal CA1 subfield. These findings indicate that this selective inducer of BiP could be used to prevent the neuronal damage both in vitro and in vivo.
Collapse
Affiliation(s)
- Y Oida
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Oida Y, Shimazawa M, Imaizumi K, Hara H. Involvement of endoplasmic reticulum stress in the neuronal death induced by transient forebrain ischemia in gerbil. Neuroscience 2008; 151:111-9. [DOI: 10.1016/j.neuroscience.2007.10.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 11/26/2022]
|
27
|
Roberge MC, Hotte-Bernard J, Messier C, Plamondon H. Food restriction attenuates ischemia-induced spatial learning and memory deficits despite extensive CA1 ischemic injury. Behav Brain Res 2007; 187:123-32. [PMID: 17949826 DOI: 10.1016/j.bbr.2007.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/27/2007] [Accepted: 09/01/2007] [Indexed: 01/14/2023]
Abstract
The purpose of the present study was to examine whether short-term food restriction (40% less food over a 3-month period) can attenuate ischemia-induced CA1 neuronal degeneration, and whether this attenuation translated into improved recovery of functional impairments following global ischemia. There was a significant loss of pyramidal CA1 neurons in ischemic compared to sham-operated rats but no difference between the ad lib and food-restricted ischemic animals. Although the diet did not influence neuronal damage in ischemic animals, the performance of food-restricted ischemic rats in spatial task such as the radial arm maze was significantly better than that of ad lib fed ischemic rats. Food-restricted ischemic rats made equivalent numbers of working memory errors as sham-operated animals and took the same time to complete a standard 8-arm radial arm maze task. They also displayed higher activity level in the open field compared to ad libitum fed ischemic rats, and spent considerably more time in the open arms of the elevated plus maze compared to the other groups, suggesting decreased anxiety in these ischemic rats. The relative sparing of spatial memory performance in food-restricted ischemic animals suggests that food restriction facilitates functional recovery.
Collapse
|
28
|
DeGracia DJ, Rudolph J, Roberts GG, Rafols JA, Wang J. Convergence of stress granules and protein aggregates in hippocampal cornu ammonis 1 at later reperfusion following global brain ischemia. Neuroscience 2007; 146:562-72. [PMID: 17346899 PMCID: PMC1954683 DOI: 10.1016/j.neuroscience.2007.01.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 12/12/2022]
Abstract
The delayed and selective vulnerability of post-ischemic hippocampal cornu ammonis (CA) 1 pyramidal neurons correlates with a lack of recovery of normal protein synthesis. Recent evidence implicates sequestration of translational machinery into protein aggregates and stress granules as factors underlying persistent translation arrest in CA1 neurons. However, the relationship between protein aggregates and stress granules during brain reperfusion is unknown. Here we investigated the colocalization of protein aggregates and stress granules using immunofluorescence microscopy and pair-wise double labeling for ubiquitin/T cell internal antigen (TIA-1), ubiquitin/small ribosomal subunit protein 6 (S6), and TIA-1/S6. We evaluated the rat dorsal hippocampus at 1, 2 or 3 days of reperfusion following a 10 min global brain ischemic insult. At 1 day of reperfusion, ubiquitin-containing aggregates (ubi-protein clusters) occurred in neurons but did not colocalize with stress granules. At 2 days' reperfusion, only in CA1, cytoplasmic protein aggregates colocalized with stress granules, and ubiquitin-containing inclusions accumulated in the nuclei of CA1 pyramidal neurons. Functionally, a convergence of stress granules and protein aggregates would be expected to sustain translation arrest and inhibit clearance of ubiquitinated proteins, both factors expected to contribute to CA1 pyramidal neuron vulnerability.
Collapse
Affiliation(s)
- D J DeGracia
- Department of Physiology, Wayne State University School of Medicine, 4116 Scott Hall, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
30
|
Henrich-Noack P, Gorkin AG, Reymann KG. Predictive value of changes in electroencephalogram and excitatory postsynaptic field potential for CA1 damage after global ischaemia in rats. Exp Brain Res 2007; 181:79-86. [PMID: 17431602 DOI: 10.1007/s00221-007-0907-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Recordings of the electroencephalogram (EEG) are regularly used to asses the severity of transient global ischaemia in rats. Here, we investigated whether the EEG obtained from electrodes placed in the hippocampus does indeed give valuable information about the consequences of an ischaemic event. Furthermore, we evaluated how evoked synaptic responses from the same electrodes placed in the hippocampal CA1 area changed with time and in relation to damage. We performed transient two vessel-occlusion with hypobaric hypotension in rats to induce selective, delayed neuronal death in CA1. Beforehand, the animals had been chronically implanted with electrodes. Stimulating electrodes had been placed into the Schaffer collaterals and recording electrodes into the CA1 area. EEG was recorded from shortly before ischaemia until up to 40 min post-ischaemia. Field excitatory post-synaptic potentials (fEPSP) were recorded before ischaemia or sham-operation and 2 and 7 days afterwards. We found a significant negative correlation between the duration of the EEG amplitude decrease (flattening) and the number of surviving neurons in CA1, which were quantified by histology after 7 days post-ischaemia. However, substantial neuronal damage was only seen when the time of flattening was more than 12 min and outlasted the time of ischaemia. The impairment of synaptic function, measured as the decrease of fEPSP slope 2 days post-ischaemia correlated with the later maturated structural damage in CA1. The fEPSP remained decreased until day 7 post-ischaemia. Animals with no damage (sham condition) showed a transient decrease of the fEPSP slope. In conclusion, our data show that the duration of EEG-flattening predicts the extent of neuronal damage. However, EEG-flattening just during the period of clamping both common carotid arteries--albeit an essential precondition for substantial CA1 cell loss to occur--is not sufficient to predict damage. The degree of impairment of evoked synaptic function of CA1 neurons (fEPSP) 2 days after ischaemia predicts the final extent of damage with significant probability.
Collapse
Affiliation(s)
- Petra Henrich-Noack
- Leibniz Institute for Neurobiology, Brenneckestreet 6, 39118, Magdeburg, Germany
| | | | | |
Collapse
|
31
|
Perez Velazquez JL, Kokarovtseva L, Sarbaziha R, Jeyapalan Z, Leshchenko Y. Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage. Eur J Neurosci 2006; 23:1-10. [PMID: 16420410 DOI: 10.1111/j.1460-9568.2005.04523.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18alpha-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries.
Collapse
Affiliation(s)
- Jose L Perez Velazquez
- Brain and Behaviour Programme and Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
32
|
Plamondon H, Khan S. The CRH1 antagonist CP154,526 failed to alter ischemia-induced neurodegeneration and spatial memory deficits in rats but inhibited behavioral activity in the novel open field. Behav Brain Res 2006; 166:85-92. [PMID: 16183143 DOI: 10.1016/j.bbr.2005.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 11/26/2022]
Abstract
Corticotropin-releasing hormone (CRH) has been implicated in ischemia-induced neurotoxicity, due in part to excitatory effects at the hippocampus, and the demonstrated neuroprotective effects of centrally administered, non-specific CRH antagonists. However, a number of issues remain to be clarified from these studies, including the relative contribution of CRH receptor subtypes, and the efficacy of these compounds to alter ischemia-induced behavioral impairments. In the current study, a highly selective, systemically administered CRH1 antagonist (CP154,526) failed to reverse global ischemia-induced cell death in hippocampal CA1 neurons or spatial memory impairments as assessed in the radial arm maze. Similarly, central administration of alpha-helical CRH failed to confer protection against ischemic damage. Interestingly, CRH1 antagonism reversed ischemia-induced hyperactivity in a novel open field, suggesting that modulation of this behavior is independent of effects on hippocampal CA1 cell loss. Failure of the current study to demonstrate neuroprotective effects of either the selective or non-selective CRH antagonists tested challenges the proposed neurotoxic role of CRH in global ischemia. These findings are discussed in relationship to recent findings reconsidering the participation of CRH in excitotoxic-mediated cellular damage.
Collapse
Affiliation(s)
- Hélène Plamondon
- University of Ottawa, School of Psychology, Ottawa, Ont. K1N 9A9, Canada.
| | | |
Collapse
|
33
|
Okada Y, Sakai H, Kohiki E, Suga E, Yanagisawa Y, Tanaka K, Hadano S, Osuga H, Ikeda JE. A dopamine D4 receptor antagonist attenuates ischemia-induced neuronal cell damage via upregulation of neuronal apoptosis inhibitory protein. J Cereb Blood Flow Metab 2005; 25:794-806. [PMID: 15729293 DOI: 10.1038/sj.jcbfm.9600078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal apoptosis inhibitory protein (NAIP/BIRC1), the inhibitor of apoptosis protein (IAP) family member, suppresses neuronal cell death induced by a variety of insults, including cell death from ischemia and stroke. The goal of the present study was to develop an efficient method for identification of compounds with the ability to upregulate endogenous NAIP and to determine the effects on these compounds on the cellular response to ischemia. A novel NAIP-enzyme-linked immunosorbent assay (ELISA)-based in vitro drug-screening system is established. Use of this system identified an antagonist of dopamine D4 receptor, termed L-745,870, with a potent NAIP upregulatory effect. L-745,870-mediated NAIP upregulation in neuronal and nonneuronal cultured cells resulted in decreased vulnerability to oxidative stress-induced apoptosis. Reducing NAIP expression via RNA interference techniques resulted in prevention of L-745,870-mediated protection from oxidative stress. Further, systemic administration of L-745,870 attenuated ischemia-induced damage of the hippocampal CA1 neurons and upregulated NAIP expression in the rescued hippocampal CA1 neurons in a gerbil model. These data suggest that the NAIP upregulating compound, L-745,870, has therapeutic potential in acute ischemic disorders and that our NAIP-ELISA-based drug screening may facilitate the discovery of novel neuroprotective compounds.
Collapse
Affiliation(s)
- Yoshinori Okada
- Department of Molecular Neuroscience, The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Selkirk JV, Nottebaum LM, Vana AM, Verge GM, Mackay KB, Stiefel TH, Naeve GS, Pomeroy JE, Petroski RE, Moyer J, Dunlop J, Foster AC. Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus. Eur J Neurosci 2005; 21:3217-28. [PMID: 16026460 DOI: 10.1111/j.1460-9568.2005.04162.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is tightly regulated by cell surface transporters to avoid increases in concentration and associated neurotoxicity. Selective blockers of glutamate transporter subtypes are sparse and so knock-out animals and antisense techniques have been used to study their specific roles. Here we used WAY-855, a GLT-1-preferring blocker, to assess the role of GLT-1 in rat hippocampus. GLT-1 was the most abundant transporter in the hippocampus at the mRNA level. According to [(3)H]-l-glutamate uptake data, GLT-1 was responsible for approximately 80% of the GLAST-, GLT-1-, and EAAC1-mediated uptake that occurs within dissociated hippocampal tissue, yet when this transporter was preferentially blocked for 120 h with WAY-855 (100 microm), no significant neurotoxicity was observed in hippocampal slices. This is in stark contrast to results obtained with TBOA, a broad-spectrum transport blocker, which, at concentrations that caused a similar inhibition of glutamate uptake (10 and 30 microm), caused substantial neuronal death when exposed to the slices for 24 h or longer. Likewise, WAY-855, did not significantly exacerbate neurotoxicity associated with simulated ischemia, whereas TBOA did. Finally, intrahippocampal microinjection of WAY-855 (200 and 300 nmol) in vivo resulted in marginal damage compared with TBOA (20 and 200 nmol), which killed the majority of both CA1-4 pyramidal cells and dentate gyrus granule cells. These results indicate that selective inhibition of GLT-1 is insufficient to provoke glutamate build-up, leading to NMDA receptor-mediated neurotoxic effects, and suggest a prominent role of GLAST and/or EAAC1 in extracellular glutamate maintenance.
Collapse
Affiliation(s)
- Julie V Selkirk
- Neurosciences Department, Neurocrine Biosciences Inc., 12970 El Camino Real, San Diego, CA 92130, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kayali F, Montie HL, Rafols JA, DeGracia DJ. Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules. Neuroscience 2005; 134:1223-45. [PMID: 16055272 DOI: 10.1016/j.neuroscience.2005.05.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/22/2005] [Accepted: 05/25/2005] [Indexed: 11/29/2022]
Abstract
Global brain ischemia and reperfusion cause phosphorylation of the alpha subunit of eukaryotic initiation factor 2alpha, a reversible event associated with neuronal translation inhibition. However, the selective vulnerability of cornu Ammonis (CA) 1 pyramidal neurons correlates with irreversible translation inhibition. Phosphorylation of eukaryotic initiation factor 2alpha also leads to the formation of stress granules, cytoplasmic foci containing, in part, components of the 48S pre-initiation complex and the RNA binding protein T cell internal antigen-1 (TIA-1). Stress granules are sites of translationally inactive protein synthesis machinery. Here we evaluated stress granules in rat hippocampal formation neurons after 10 min global brain ischemia and 10 min, 90 min or 4 h of reperfusion by double-labeling immunofluorescence for two stress granule components: small ribosomal subunit protein 6 and TIA-1. Stress granules in CA3, hilus and dentate gyrus, but not CA1, increased at 10 min reperfusion and returned to control levels by 90 min reperfusion. Dynamic changes in the nuclear distribution of TIA-1 occurred in resistant neurons. At 4 h reperfusion, small ribosomal subunit protein 6 was solely localized within stress granules only in CA1 pyramidal neurons. Both TIA-1 and small ribosomal subunit protein 6 levels decreased approximately 50% in hippocampus homogenates. Electron microscopy showed stress granules to be composed of electron dense bodies 100-200 nm in diameter, that were not membrane bound, but were associated with endoplasmic reticulum. Alterations in stress granule behavior in CA1 pyramidal neurons provide a definitive mechanism for the continued inhibition of protein synthesis in reperfused CA1 pyramidal neurons following dephosphorylation of eukaryotic initiation factor 2alpha.
Collapse
Affiliation(s)
- F Kayali
- Department of Physiology, Wayne State University, 4116 Scott Hall, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
36
|
Henrich-Noack P, Gorkin AG, Krautwald K, Pforte C, Schröder UH, Reymann KG. Tetanus-induced re-activation of evoked spiking in the post-ischemic dentate gyrus. Neuroscience 2005; 133:571-81. [PMID: 15885918 DOI: 10.1016/j.neuroscience.2005.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 11/25/2022]
Abstract
This study aimed at investigating and influencing the basic electrophysiological functions and neuronal plasticity in the dentate gyrus in freely moving rats at several time-points after global ischemia. Although neuronal death was induced selectively in the cornu ammonis, subfield 1 (CA1)-region of the hippocampus, we found an additional loss of the population spike in the dentate gyrus after stimulation of the perforant path. Input/output-measurements revealed that as early as 1 day post-ischemia population spike generation in the granular cell layer is greatly decreased when compared with pre-ischemic values and to sham-operated animals, despite an apparently intact morphology of granular cells as evidenced by Nissl-staining. In contrast, the synaptic transmission (excitatory postsynaptic field potential) shows no significant difference when comparing values before and after ischemia and ischemic and sham-operated animals. Despite reduced output function, indicated by very small population spike amplitudes, long lasting potentiation can be induced 10 days after ischemia. Surprisingly, even "silent" populations of neurons, which appear selectively post-ischemia and do not show any evoked population spike, can be re-activated by tetanisation which is followed by a normal appearing long-term potentiation. However, this functional recovery seems to be partial and transient under current conditions: population spike-values do not reach pre-ischemic values and return to the low pre-tetanic baseline values the next day. Electrophysiological measurements ex vivo after ischemia indicate that the neuronal dysfunction in the dentate gyrus is not due to locally destroyed structures but that the activity of granular cells is merely suppressed only under in vivo conditions. In summary, global ischemia leaves a neighboring morphologically intact input area, functionally impaired. However, neuronal function can be partially regenerated by electrophysiological tetanic stimulation.
Collapse
Affiliation(s)
- P Henrich-Noack
- Research Institute for Applied Neurosciences, FAN gGmbH, ZENIT, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Liu CL, Siesjö BK, Hu BR. Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience 2004; 127:113-23. [PMID: 15219674 PMCID: PMC3518049 DOI: 10.1016/j.neuroscience.2004.03.062] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2004] [Indexed: 11/20/2022]
Abstract
Transient hypoxia-ischemia (HI) leads to delayed neuronal death in both mature and immature neurons but the underlying mechanisms are not fully understood. To understand whether the pathogenesis of HI-induced neuronal death is different between mature and immature neurons, we used a rat HI model at postnatal days 7 (P7), 15 (P15), 26 (P26) and 60 (P60) in order to investigate ultrastructural changes and active caspase-3 distribution in HI-injured neurons as a function of developmental age. In P7 pups, despite more than 95% of HI-injured neurons highly expressing active caspase-3, most of these active caspase-3-positive neurons revealed mixed features of apoptosis and necrosis (a chimera type) under electron microscopy (EM). Classical apoptosis was observed only in small populations of HI-injured P7 neurons. Furthermore, in rats older than P7, most HI-injured neurons displayed features of necrotic cell death under EM and, concomitantly, active caspase-3-positive neurons after HI declined dramatically. Classical apoptosis after HI was rarely found in neurons older than P15. In P60 rats, virtually all HI-injured neurons showed the shrinkage necrotic morphology under EM and were negative for active caspase-3. These results strongly suggest that pathogenesis of HI-induced neuronal death is shifting from apoptosis to necrosis during brain development.
Collapse
Affiliation(s)
| | | | - B. R. Hu
- Corresponding author. Tel: +1-305-243-4854; fax: +1-305-243-7183.
| |
Collapse
|
38
|
Hwang IK, Yoo KY, Kim DS, Jeong YK, Kim JD, Shin HK, Lim SS, Yoo ID, Kang TC, Kim DW, Moon WK, Won MH. Neuroprotective effects of grape seed extract on neuronal injury by inhibiting DNA damage in the gerbil hippocampus after transient forebrain ischemia. Life Sci 2004; 75:1989-2001. [PMID: 15306166 DOI: 10.1016/j.lfs.2004.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 05/18/2004] [Indexed: 11/27/2022]
Abstract
Grape seed extract (GSE) possess cardioprotective abilities by functioning as in vivo antioxidants and by virtue of their ability to directly scavenge ROS including hydroxyl and peroxyl radicals. In the present study, we investigated the neuroprotective effects of grape seed extract (GSE) in the gerbil hippocampus after 5 min transient forebrain ischemia. Neuronal cell density in GSE-treated ischemic animals was significantly increased as compared with vehicle-treated ischemic animals 4 days after ischemic insult. In the GSE-treated groups, about 60% of pyramidal cells of the sham-operated group were stained with cresyl violet 4 days after ischemic insult. In this study, we found that GSE had neuroprotective effects on neuronal injury by inhibiting DNA damage in the CA1 region after ischemia. In vehicle-treated groups, 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunoreactivity was significantly changed time-dependently, whereas the immunoreactivity in the GSE-treated group was similar to the sham-operated group. In addition, we confirmed that astrocytes and microglia did not show significant activation in the CA1 region 4 days after ischemia-reperfusion, because many CA1 pyramidal cells were not damaged. Therefore, these results suggest that GSE can protect ischemic neuronal damage by inhibiting DNA damage after transient forebrain ischemia.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cimini A, Cristiano L, Bernardo A, Benedetti E, Di Loreto S, Cerù MP. Peroxisomes and PPARs in cultured neural cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 544:271-80. [PMID: 14713241 DOI: 10.1007/978-1-4419-9072-3_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Annamaria Cimini
- Department of Basic and Applied Biology, University of L'Aquila, via Vetoio n. 10, 67010 Coppito (AQ), Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Watanabe T, Tanaka M, Watanabe K, Takamatsu Y, Tobe A. [Research and development of the free radical scavenger edaravone as a neuroprotectant]. YAKUGAKU ZASSHI 2004; 124:99-111. [PMID: 15049127 DOI: 10.1248/yakushi.124.99] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing data suggest that oxygen free radical species play detrimental roles in ischemic diseases. A free radical scavenger capable of inhibiting oxidative injury is expected to become a new drug for the treatment of ischemic diseases such as cerebral ischemia. Edaravon (3-methyl-1-phenyl-2-pyrazolin-5-one), which has been developed as an neuroprotective agent for more than 15 years since its discovery, is approved for the treatment of acute cerebral infarction. In this paper, the pharmacologic characteristics and clinical effects of edaravone are reviewed. In early stage of investigation, edaravone was found to have promising activities as an antioxidative radical scavenger, quenching hydroxyl radical (.OH) and inhibiting both .OH-dependent and .OH-independent lipid peroxidation. Edaravone showed inhibitory effects on both water-soluble and lipid-soluble peroxyl radical-induced peroxidation systems, which are different from the inhibitory effects of vitamins C and E in each system, respectively. Oxidative injury to cultured endothelial cells caused by arachidonate (AA) peroxides is prevented in the existence of edaravone. To clarify the characteristics of this free radical scavenger, further investigation was carried out. Edaravone ameliorated exacerbation of cortical edema induced by a focal ischemia-reperfusion model in rats, suggesting inhibitory effects on oxidative injury to the blood-brain barrier (BBB). Additionally, edaravone also prevented rat cortical edema caused by intracortical AA infusion in which free radical production and subsequent oxidative injury to the BBB are involved. With advances in in vivo measurement technology of oxygen radicals, edaravone was shown to inhibit postischemic increases in .OH production and tissue injury in the penumbral or recirculated area in rat cerebral ischemia models. In clinical studies, edaravone improved the core neurologic deficits, activities of daily living, and functional outcome of stroke patients. Furthermore, a study using proton magnetic resonance spectroscopic techniques showed that edaravone preserved N-acetyl-aspartate in stroke patients, a promising neuronal marker in the brain. Further investigation is essential for a better understanding of free radical-mediated cerebral injury during ischemia followed by recirculation. We hope that edaravone represents a promising neuroprotectant for drug therapy in acute cerebral ischemia.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Mitsubishi Pharma Corporation, Sales & Marketing Division, 2-5-6 Awaji-machi, Chuo-ku, Osaka 541-0047, Japan.
| | | | | | | | | |
Collapse
|
41
|
Berger R, Middelanis J, Vaihinger HM, Mies G, Wilken B, Jensen A. Creatine protects the immature brain from hypoxic-ischemic injury. ACTA ACUST UNITED AC 2004; 11:9-15. [PMID: 14706677 DOI: 10.1016/j.jsgi.2003.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We tested the neuroprotective effects of creatine against hypoxic-ischemic injury in the immature brain. METHODS Hippocampal slices were prepared from fetal guinea pigs at 0.9 gestation and incubated in artificial cerebrospinal fluid (aCSF) equilibrated with carbogen. Slices were subjected to oxygen-glucose deprivation (OGD) for 30 or 40 minutes. Two hours after OGD, adenosine triphosphate (ATP) and protein synthesis were analyzed. Creatine (3 mM) was applied to tissue slices of the study groups 2 hours before the insult. In a second set of experiments 7-day-old Wistar rats were anesthetized, and the left carotid artery was ligated. After 1 hour of recovery the pups were subjected to a hypoxic gas mixture (8% oxygen and 92% nitrogen) for 80 minutes. Seven days later the brains of the neonates were removed and analyzed for hypoxic-ischemic injury. The rat pups of the test group were treated with creatine (3 g/kg subcutaneously) before (-64 hours, -40 hours, and -16 hours) and after (+3 hours) the hypoxic-ischemic insult, with zero time corresponding to the start of hypoxia, whereas the animals of the control group received the solvent. RESULTS Creatine significantly improved the recovery of protein synthesis 2 hours after OGD in hippocampal slices but had no effect on ATP levels. Whereas seven animals of the control group developed severe cystic cerebral infarction, only mild to moderate damage was observed in the rat pups of the study group. In contrast to creatine-treated pups, the volume of the ipsilateral hemisphere was considerably smaller than that of the contralateral one in control animals (104 +/- 22 versus 138 +/- 14 mL, P<.001). Except at the frontal level (A 6.0 mm), neuronal cell injury was significantly lower in the cortex of the animals that had received creatine. This was also true for the evaluated subfields in the hippocampus. CONCLUSION We conclude that creatine protects the immature brain from hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Richard Berger
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Katayama T, Imaizumi K, Yoneda T, Taniguchi M, Honda A, Manabe T, Hitomi J, Oono K, Baba K, Miyata S, Matsuzaki S, Takatsuji K, Tohyama M. Role of ARF4L in recycling between endosomes and the plasma membrane. Cell Mol Neurobiol 2004; 24:137-47. [PMID: 15049518 PMCID: PMC11529921 DOI: 10.1023/b:cemn.0000012719.12015.ec] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human ADP-ribosylation factor-like protein, ARF4L is a member of the ARF family, which are small GTP-binding proteins that play significant roles in vesicle transport and protein secretion. However, little is known about the physiological roles of ARF4L. In this study, to understand the biological functions of ARF4L, we carried out immunocytochemical analysis of ARF4L molecules with mutations in the functional domains. ARF4L was shown to be distributed to the plasma membrane following binding to GTP (Q80L), and into endosomes following binding to GDP (T35N). Moreover, the inactive-form of ARF4L (T35N) causes localization of transferrin receptors to the endosomal compartment, while the active form (Q80L) causes transport to the plasma membrane. These findings indicate that ARF4L drive the transport of cargo protein and subsequent fusion of recycling vesicles with the plasma membrane for maintenance of the cell surface.
Collapse
Affiliation(s)
- Taiichi Katayama
- Department of Anatony & Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zukin RS, Jover T, Yokota H, Calderone A, Simionescu M, Lau CG. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50049-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Burda J, Hrehorovská M, Bonilla LG, Danielisová V, Cízková D, Burda R, Némethová M, Fando JL, Salinas M. Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 2003; 28:1213-9. [PMID: 12834261 DOI: 10.1023/a:1024232513106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although ischemic preconditioning of the heart and brain is a well-documented neuroprotective phenomenon, the mechanism underlying the increased resistance to severe ischemia induced by a preceding mild ischemic exposure remains unclear. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated translation inhibition in the neocortex and hippocampus of the rat. We studied the effect of the duration on the sublethal ischemic episode (3, 4, 5 or 8 min), as well as the amount of time elapsed between sublethal and lethal ischemia on the cell death 7 days after the last ischemic episode. In addition, the rate of protein synthesis in vitro and expression of the 72-kD heat shock protein (hsp) were determined under the different experimental conditions. Our results suggest that two different mechanisms are essential for the acquisition of ischemic tolerance, at least in the CA1 sector of hippocampus. The first mechanism implies a highly significant reduction in translation inhibition after lethal ischemia, especially at an early time of reperfusion, in both vulnerable and nonvulnerable neurons. For the acquisition of full tolerance, a second mechanism, highly dependent on the time interval between preconditioning (sublethal ischemia) and lethal ischemia, is absolutely necessary; this second mechanism involves synthesis of protective proteins, which prevent the delayed death of vulnerable neurons.
Collapse
Affiliation(s)
- Jozef Burda
- Department of Neurochemistry, Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kanemitsu H, Nakagomi T, Tamura A, Tsuchiya T, Kono G, Sano K. Differences in the extent of primary ischemic damage between middle cerebral artery coagulation and intraluminal occlusion models. J Cereb Blood Flow Metab 2002; 22:1196-204. [PMID: 12368658 DOI: 10.1097/01.wcb.0000037992.07114.95] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors studied the differences between heat-shock/stress protein 70 (hsp70) gene expression and protein synthesis in the unilateral middle cerebral artery (MCA) microsurgical direct occlusion (Tamura's) model and the unilateral intraluminal occlusion model. In Tamura's model, expression of hsp70 mRNA and HSP70 protein and decreased protein synthesis were detected in the ischemic areas, including the ipsilateral cortex and caudate. These phenomena, however, were not observed in the areas outside the MCA territory, including the ipsilateral thalamus, hippocampus, and substantia nigra. These results were consistent among the experimental rats. In the intraluminal occlusion model, however, induction of both hsp70 mRNA and HSP70 protein and impairment of protein synthesis were noted in the areas outside the MCA territory, including the ipsilateral thalamus, hypothalamus, hippocampus, and substantia nigra, as well as in the MCA territory, including the ipsilateral cortex and caudate. These results were not consistent among the experimental rats. These different results might be due to widespread damage resulting from internal carotid artery (ICA) occlusion in the intraluminal occlusion model. Accordingly, the authors suggest that this model be called an ICA occlusion model, rather than a pure MCA occlusion model.
Collapse
Affiliation(s)
- Hideaki Kanemitsu
- Department of Neurosurgery, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Differences in the Extent of Primary Ischemic Damage Between Middle Cerebral Artery Coagulation and Intraluminal Occlusion Models. J Cereb Blood Flow Metab 2002. [DOI: 10.1097/00004647-200210000-00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Nakatomi H, Kuriu T, Okabe S, Yamamoto SI, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110:429-41. [PMID: 12202033 DOI: 10.1016/s0092-8674(02)00862-0] [Citation(s) in RCA: 1075] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The adult brain is extremely vulnerable to various insults. The recent discovery of neural progenitors in adult mammals, however, raises the possibility of repairing damaged tissue by recruiting their latent regenerative potential. Here we show that activation of endogenous progenitors leads to massive regeneration of hippocampal pyramidal neurons after ischemic brain injury. Endogenous progenitors proliferate in response to ischemia and subsequently migrate into the hippocampus to regenerate new neurons. Intraventricular infusion of growth factors markedly augments these responses, thereby increasing the number of newborn neurons. Our studies suggest that regenerated neurons are integrated into the existing brain circuitry and contribute to ameliorating neurological deficits. These results expand the possibility of novel neuronal cell regeneration therapies for stroke and other neurological diseases.
Collapse
Affiliation(s)
- Hirofumi Nakatomi
- Department of Neurobiology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci 2002. [PMID: 11896151 DOI: 10.1523/jneurosci.22-06-02115.2002] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The importance of postmenopausal estrogen replacement therapy in affording protection against the selective and delayed neuronal death associated with cardiac arrest or cardiac surgery in women remains controversial. Here we report that exogenous estrogen at levels that are physiological for hormone replacement in postmenopausal women affords protection against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1 of male gerbils. Global ischemia induced a marked increase in activated caspase-3 in CA1, evident at 6 hr after ischemia. Global ischemia induced a marked upregulation of the proapoptotic neurotrophin receptor p75(NTR) in CA1, evident at 48 hr. p75(NTR) expression was induced primarily in terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling-positive cells, indicating expression in neurons undergoing apoptosis. Global ischemia also induced a marked downregulation of mRNA encoding the AMPA receptor GluR2 subunit in CA1. Caspase-3, p75(NTR), and GluR2 were not significantly changed in CA3 and dentate gyrus, indicating that the ischemia-induced changes in gene expression were cell specific. Exogenous estrogen attenuated the ischemia-induced increases in activated caspase-3 and blocked the increase in p75(NTR) in post-ischemic CA1 neurons but did not prevent ischemia-induced downregulation of GluR2. These findings demonstrate that long-term estrogen at physiological levels ameliorates ischemia-induced hippocampal injury and indicate that estrogen intervenes at the level of apoptotic signaling cascades to prevent onset of death in neurons otherwise "destined to die."
Collapse
|
49
|
Semchenko VV, Stepanov SS, Nikel AE, Akulinin VA. Post-ischemic reorganization of the dendroarchitectonics of field CA3 of the hippocampus of white rats with high levels of convulsive readiness of the brain. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2001; 31:617-22. [PMID: 11766901 DOI: 10.1023/a:1012325228747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- V V Semchenko
- Department of Histology and Embryology, Omsk Medical Academy
| | | | | | | |
Collapse
|
50
|
Hayashi Y, Jikihara I, Yagi T, Fukumura M, Ohashi Y, Ohta Y, Takagi H, Maeda M. Immunohistochemical investigation of caspase-1 and effect of caspase-1 inhibitor in delayed neuronal death after transient cerebral ischemia. Brain Res 2001; 893:113-20. [PMID: 11222999 DOI: 10.1016/s0006-8993(00)03307-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The localization of caspase-1 protein, interleukin-1beta (IL-1beta)-converting enzyme, was immunohistochemically examined in the hippocampal CA-1 subfield by a transient occlusion of bilateral common carotid arteries in Mongolian gerbils. Immunoreactivities for caspase-1 were found in microglias, astrocytes, endothelial cells of capillaries and some non-pyramidal neurons. Immunopositive microglias increased in number from 3 days until 7 days from the transient ischemia, and astrocytes also increased in number from 3 days until 28 days. At the electron microscopic level, caspase-1 immunoreaction endproducts were associated with Golgi apparatus in glial cells, endothelial cells of blood vessels and non-pyramidal neurons. The delayed neuronal death of CA-1 pyramidal cells was significantly protected by the treatment of specific caspase-1 inhibitor (Ac-WEHD-CHO) or broad caspase family inhibitor (z-VAD-FMK). Cell death was protected in a dose dependent manner by the former by 43-57%, and by the latter by 66-91% when injected at 1 and 10 microg, respectively. On the other hand, the protective effect of specific caspase-3 inhibitor (Ac-DMQD-CHO) was less significant at higher dose (10 microg) by 33% (P<0.05), and not detectable at lower dose (1 microg) by 13% (P=0.27). Furthermore, a significant decrease of microglias and astrocytes was found in the CA-1 as well as the reduction of IL-1beta and caspase-1 immunoreactivities by the treatment of Ac-WEHD-CHO. Extravasation of serum albumin was also extremely reduced by this treatment. These findings suggest that the inhibition of caspase-1 activity ameliorates the ischemic injury by inhibiting the activity of IL-1beta.
Collapse
Affiliation(s)
- Y Hayashi
- First Department of Anatomy, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|