1
|
Huang Y, Luo L, Hu X, Yu F, Yang Y, Deng Z, Wu J, Chen R, Zhang M. Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus. FRONTIERS IN PLANT SCIENCE 2017; 8:924. [PMID: 28638390 PMCID: PMC5461294 DOI: 10.3389/fpls.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/17/2017] [Indexed: 06/16/2023]
Abstract
Erianthus arundinaceus is an important wild species of the genus Saccharum with many valuable traits. However, the composition and structure of its genome are largely unknown, which have hindered its utilization in sugarcane breeding and evolutionary research. Retrotransposons constitute an appreciable fraction of plant genomes and may have played a significant role in the evolution and sequence organization of genomes. In the current study, we investigate the phylogenetic diversity and genomic abundance of Ty1-copia retrotransposons for the first time and inspect their chromosomal distribution patterns in E. arundinaceus. In total, 70 Ty1-copia reverse transcriptase (RT) sequences with significant levels of heterogeneity were obtained. The phylogenetic analysis revealed these Ty1-copia retrotransposons were classified into four distinct evolutionary lineages (Tork/TAR, Tork/Angela, Retrofit/Ale, and Sire/Maximus). Dot-blot analysis showed estimated the total copy number of Ty1-copia retrotransposons to be about 4.5 × 103 in the E. arundinaceus genome, indicating they were a significant component. Fluorescence in situ hybridization revealed that Ty1-copia retrotransposons from the four lineages had strikingly similar patterns of chromosomal enrichment, being exclusively enriched in the subterminal heterochromatic regions of most E. arundinaceus chromosomes. This is the first clear evidence of the presence of Ty1-copia retrotransposons in the subterminal heterochromatin of E. arundinaceus. Altogether, these results promote the understanding of the diversification of Ty1-copia retrotransposons and shed light on their chromosomal distribution patterns in E. arundinaceus.
Collapse
Affiliation(s)
- Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xuguang Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yongqing Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and BiorefineryGuangzhou, China
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research InstituteGuangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muqing Zhang
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| |
Collapse
|
2
|
Čížková J, Hřibová E, Humplíková L, Christelová P, Suchánková P, Doležel J. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS One 2013; 8:e54808. [PMID: 23372772 PMCID: PMC3553004 DOI: 10.1371/journal.pone.0054808] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/17/2012] [Indexed: 02/03/2023] Open
Abstract
Satellite DNA sequences consist of tandemly arranged repetitive units up to thousands nucleotides long in head-to-tail orientation. The evolutionary processes by which satellites arise and evolve include unequal crossing over, gene conversion, transposition and extra chromosomal circular DNA formation. Large blocks of satellite DNA are often observed in heterochromatic regions of chromosomes and are a typical component of centromeric and telomeric regions. Satellite-rich loci may show specific banding patterns and facilitate chromosome identification and analysis of structural chromosome changes. Unlike many other genomes, nuclear genomes of banana (Musa spp.) are poor in satellite DNA and the information on this class of DNA remains limited. The banana cultivars are seed sterile clones originating mostly from natural intra-specific crosses within M. acuminata (A genome) and inter-specific crosses between M. acuminata and M. balbisiana (B genome). Previous studies revealed the closely related nature of the A and B genomes, including similarities in repetitive DNA. In this study we focused on two main banana DNA satellites, which were previously identified in silico. Their genomic organization and molecular diversity was analyzed in a set of nineteen Musa accessions, including representatives of A, B and S (M. schizocarpa) genomes and their inter-specific hybrids. The two DNA satellites showed a high level of sequence conservation within, and a high homology between Musa species. FISH with probes for the satellite DNA sequences, rRNA genes and a single-copy BAC clone 2G17 resulted in characteristic chromosome banding patterns in M. acuminata and M. balbisiana which may aid in determining genomic constitution in interspecific hybrids. In addition to improving the knowledge on Musa satellite DNA, our study increases the number of cytogenetic markers and the number of individual chromosomes, which can be identified in Musa.
Collapse
Affiliation(s)
- Jana Čížková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Lenka Humplíková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pavla Christelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pavla Suchánková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
3
|
Butorina AK, Kornienko AV. Molecular genetic investigation of sugar beet (Beta vulgaris L.). RUSS J GENET+ 2011. [DOI: 10.1134/s102279541110005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Hu G, Hawkins JS, Grover CE, Wendel JF. The history and disposition of transposable elements in polyploid Gossypium. Genome 2010; 53:599-607. [PMID: 20725147 DOI: 10.1139/g10-038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposable elements (TEs) are a major component of plant genomes. It is of particular interest to explore the potential activation of TE proliferation, especially in hybrids and polyploids, which often are associated with rapid genomic and epigenetic restructuring. Here we explore the consequences of genomic merger and doubling on copia and gypsy-like Gorge3 long terminal repeat (LTR) retrotransposons as well as on non-LTR long interspersed nuclear elements (LINEs) in allotetraploid cotton, Gossypium hirsutum. Using phylogenetic and quantitative methods, we describe the composition and genomic origin of TEs in polyploid Gossypium. In addition, we present information on ancient and recent transposition activities of the three TE types and demonstrate the absence of an impressive proliferation of TEs following polyploidization in Gossypium. Further, we provide evidence for present-day transcription of LINEs, a relatively minor component of Gossypium genomes, whereas the more abundant LTR retrotransposons display limited expression and only under stressed conditions.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
5
|
Kishchenko EM, Komarnitskii IK, Kuchuk NV. Transposition of the maize transposable element dSpm in transgenic sugar beets. CYTOL GENET+ 2010. [DOI: 10.3103/s009545271004002x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Fat element—a new marker for chromosome and genome analysis in the Triticeae. Chromosome Res 2010; 18:697-709. [DOI: 10.1007/s10577-010-9151-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/05/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
7
|
Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T. The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Res 2009; 18:247-63. [DOI: 10.1007/s10577-009-9104-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/25/2009] [Indexed: 01/22/2023]
|
8
|
Wenke T, Holtgräwe D, Horn AV, Weisshaar B, Schmidt T. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. PLANT MOLECULAR BIOLOGY 2009; 71:585-97. [PMID: 19697140 DOI: 10.1007/s11103-009-9542-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/10/2009] [Indexed: 05/18/2023]
Abstract
We describe a non-LTR retrotransposon family,BvL, of the long interspersed nuclear elements L1 clade isolated from sugar beet (Beta vulgaris). Characteristic molecular domains of three full-length BvL elements were determined in detail, showing that coding sequences are interrupted and most likely non-functionally. In addition,eight highly conserved endonuclease regions were defined by comparison with other plant LINEs. The abundant BvL family is widespread within the genus Beta, however, the vast majority of BvL copies are extremely 50 truncated indicating an error-prone reverse transcriptase activity. The dispersed distribution of BvL copies on all sugar beet chromosomes with exclusion of most heterochromatic regions was shown by fluorescent in situ hybridization. The analysis of BvL 30 end sequences and corresponding flanking regions, respectively, revealed the preferred integration of BvL into A/T-rich regions of the sugar beet genome, but no specific target sequences.
Collapse
Affiliation(s)
- Torsten Wenke
- Institute of Botany, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | |
Collapse
|
9
|
Heitkam T, Schmidt T. BNR - a LINE family from Beta vulgaris - contains a RRM domain in open reading frame 1 and defines a L1 sub-clade present in diverse plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:872-82. [PMID: 19473321 DOI: 10.1111/j.1365-313x.2009.03923.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We characterized a novel type of plant non-LTR retrotransposons, identified as the BNR family, in sugar beet (Beta vulgaris) genomes. Although their ORF2 sequences were similar to those of previously analysed LINEs (long interspersed nuclear elements) of the L1 clade, their ORF1 sequences differ strongly from those of most plant LINEs. Two novel domains were identified, containing a conserved secondary motif, known as the RNA recognition motif (RRM). ORF1 lacks the zinc finger motif that is typical of plant LINEs, but has an RRM that is likely to have a RNA-binding function. BNR LINEs are highly diverse, and were characterized by gel-blot and fluorescent in situ hybridization, showing a widespread occurrence and clustering along chromosome arms. Insertion of BNR1 into a well-described satellite repeat was detected in two cultivars only, indicating recent activity. Database searches revealed the existence of LINE families possessing an ORF1 sequence similar to that of BNR in the genomes of higher plants such as poplar, lotus and soybean. Comparing their reverse transcriptase regions with those of other retrotransposons, these LINEs were assigned to the L1 clade, but form a distinct group, providing evidence of a major separation of L1 elements in plants. This indicates a common origin of BNR-like LINEs, suggesting that these elements form a sub-clade designated as the BNR sub-clade.
Collapse
Affiliation(s)
- Tony Heitkam
- Dresden University of Technology, Institute of Botany, 01069 Dresden, Germany
| | | |
Collapse
|
10
|
Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res 2009; 17:379-96. [PMID: 19322668 DOI: 10.1007/s10577-009-9029-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 12/18/2022]
Abstract
LTR retrotransposons belong to a major group of DNA sequences that are often localized in plant centromeres. Using BAC inserts originating from the centromere of a monosomic wild beet (Beta procumbens) chromosome fragment in Beta vulgaris, two complete LTR retrotransposons were identified. Both elements, designated Beetle1 and Beetle2, possess a coding region with genes in the order characteristic for Ty3-gypsy retrotransposons. Beetle1 and Beetle2 have a chromodomain in the C-terminus of the integrase gene and are highly similar to the centromeric retrotransposons (CRs) of rice, maize, and barley. Both retroelements were localized in the centromeric region of B. procumbens chromosomes by fluorescence in-situ hybridization. They can therefore be classified as centromere-specific chromoviruses. PCR analysis using RNA as template indicated that Beetle1 and Beetle2 are transcriptionally active. On the basis of the sequence diversity between the LTR sequences, it was estimated that Beetle1 and Beetle2 transposed within the last 60,000 years and 130,000 years, respectively. The centromeric localization of Beetle1 and Beetle2 and their transcriptional activity combined with high sequence conservation within each family play an important structural role in the centromeres of B. procumbens chromosomes.
Collapse
|
11
|
Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome. J Appl Genet 2009; 49:313-20. [PMID: 19029678 DOI: 10.1007/bf03195629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, a novel repetitive sequence pTaq10 was isolated from the Taq I digest of the genomic DNA of the pseudocereal Chenopodium quinoa. Sequence analysis indicated that this 286-bp monomer is not homologous to any known retroelement sequence. FISH and Southern blot analysis showed that this sequence is characterized by an interspersed genomic organization. After FISH, hybridization signals were observed as small dots spread throughout all of the chromosomes. pTaq hybridization signals were excluded from 45S rRNA gene loci, but they partly overlapped with 5S rDNA loci. pTaq10 is not a species-specific sequence, as it was also detected in C. berlandieri.
Collapse
|
12
|
Kuykendall D, Shao J, Trimmer K. A Nest of LTR Retrotransposons Adjacent the Disease Resistance-Priming Gene NPR1 in Beta vulgaris L. U.S. Hybrid H20. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:576742. [PMID: 19390694 PMCID: PMC2669250 DOI: 10.1155/2009/576742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 01/25/2009] [Indexed: 05/02/2023]
Abstract
A nest of long terminal repeat (LTR) retrotransposons (RTRs), discovered by LTR_STRUC analysis, is near core genes encoding the NPR1 disease resistance-activating factor and a heat-shock-factor-(HSF-) like protein in sugarbeet hybrid US H20. SCHULTE, a 10 833 bp LTR retrotransposon, with 1372 bp LTRs that are 0.7% divergent, has two ORFs with unexpected introns but encoding a reverse transcriptase with rve and Rvt2 domains similar to Ty1/copia-type retrotransposons and a hypothetical protein. SCHULTE produced significant nucleotide BLAST alignments with repeat DNA elements from all four families of plants represented in the TIGR plant repeat database (PRD); the best nucleotide sequence alignment was to ToRTL1 in Lycopersicon esculentum. A second sugarbeet LTR retrotransposon, SCHMIDT, 11 565 bp in length, has 2561 bp LTRs that share 100% identity with each other and share 98-99% nucleotide sequence identity over 10% of their length with DRVs, a family of highly repetitive, relatively small DNA sequences that are widely dispersed over the sugarbeet genome. SCHMIDT encodes a complete gypsy-like polyprotein in a single ORF. Analysis using LTR_STRUC of an in silico deletion of both of the above two LTR retrotransposons found that SCHULTE and SCHMIDT had inserted within an older LTR retrotransposon, resulting in a nest that is only about 10 Kb upstream of NPR1 in sugarbeet hybrid US H20.
Collapse
Affiliation(s)
- David Kuykendall
- Molecular Plant Pathology Laboratory, ARS, USDA, Beltsville, MD 20705, USA
- *David Kuykendall:
| | - Jonathan Shao
- Molecular Plant Pathology Laboratory, ARS, USDA, Beltsville, MD 20705, USA
| | - Kenneth Trimmer
- Molecular Plant Pathology Laboratory, ARS, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
13
|
Wawrzynski A, Ashfield T, Chen NWG, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai H, Del Campo SM, Metcalf M, O'Bleness M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Ségurens B, Sévignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND, Innes RW. Replication of nonautonomous retroelements in soybean appears to be both recent and common. PLANT PHYSIOLOGY 2008; 148:1760-71. [PMID: 18952860 PMCID: PMC2593652 DOI: 10.1104/pp.108.127910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/22/2008] [Indexed: 05/19/2023]
Abstract
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
Collapse
Affiliation(s)
- Adam Wawrzynski
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). ANNALS OF BOTANY 2008; 102:521-30. [PMID: 18682437 PMCID: PMC2701778 DOI: 10.1093/aob/mcn131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The aim of this work was the identification and molecular characterization of novel sugar beet (Beta vulgaris) repetitive sequences to unravel the impact of repetitive DNA on size and evolution of Beta genomes via amplification and diversification. METHODS Genomic DNA and a pool of B. vulgaris repetitive sequences were separately used as probes for a screening of high-density filters from a B. vulgaris plasmid library. Novel repetitive motifs were identified by sequencing and further used as probes for Southern analyses in the genus Beta. Chromosomal localization of the repeats was analysed by fluorescent in situ hybridization on chromosomes of B. vulgaris and two other species of the section Beta. KEY RESULTS Two dispersed repetitive families pDvul1 and pDvul2 and the tandemly arranged repeat family pRv1 were isolated from a sugar beet plasmid library. The dispersed repetitive families pDvul1 and pDvul2 were identified in all four sections of the genus Beta. The members of the pDvul1 and pDvul2 family are scattered over all B. vulgaris chromosomes, although amplified to a different extent. The pRv1 satellite repeat is exclusively present in species of the section Beta. The centromeric satellite pBV1 by structural variations of the monomer and interspersion of pRv1 units forms complex satellite structures, which are amplified in different degrees on the centromeres of 12 chromosomes of the three species of the Beta section. CONCLUSIONS The complexity of the pBV1 satellite family observed in the section Beta of the genus Beta and, in particular, the strong amplification of the pBV1/pRv1 satellite in the domesticated B. vulgaris indicates the dynamics of centromeric satellite evolution during species radiation within the genus. The dispersed repeat families pDvul1 and pDvul2 might represent derivatives of transposable elements.
Collapse
Affiliation(s)
- Gerhard Menzel
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daryna Dechyeva
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Torsten Wenke
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
| | - Daniela Holtgräwe
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Bernd Weisshaar
- Institute of Genome Research, University of Bielefeld, D-33594 Bielefeld, Germany
| | - Thomas Schmidt
- Institute of Botany, Dresden University of Technology, D-01062 Dresden, Germany
- For correspondence. E-mail
| |
Collapse
|
15
|
Lou Q, Chen J. Ty1-copiaretrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 2007; 50:802-10. [PMID: 17893720 DOI: 10.1139/g07-067] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three long terminal repeat (LTR) sequences of Ty1-copia retrotransposons were identified in cucumber ( Cucumis sativus L.) and named Tcs 1, Tcs 2, and Tcs 3. A sequence-specific amplification polymorphism (SSAP) marker system based on these LTR sequences displayed a higher level of polymorphism than AFLPs in cucumber. This marker system could also detect loci in other Cucumis species for genetic diversity analysis. The three Tcs LTRs existed within the exons of genes because of the effective amplification band patterns from the cDNA templates. The potential usefulness of the SSAP marker system in studies of the evolution of genes or genomes was verified after exploring loci changes in first and second generations of a synthetic allotetraploid in Cucumis. This study is the first report of the development of a retrotransposon-based marker system and the SSAP technique in cucurbits.
Collapse
Affiliation(s)
- Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Vegetable Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
16
|
Ramos KS, Partridge CR, Teneng I. Genetic and molecular mechanisms of chemical atherogenesis. Mutat Res 2007; 621:18-30. [PMID: 17433375 DOI: 10.1016/j.mrfmmm.2006.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 01/19/2023]
Abstract
Injury to the cellular components of the vascular wall and blood by endogenous and exogenous chemicals has been associated with atherosclerosis in humans and experimental systems. The genetic and molecular mechanisms responsible for initiation and promotion of atherosclerotic changes include modulation of extracellular matrix-integrin axis, genes involved in the regulation of growth and differentiation and possibly, genomic stability. This review summarizes seminal studies over the past 20 years that shed light on critical gene-gene and gene-environment interactions mediating the atherogenic response to chemical injury.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, United States.
| | | | | |
Collapse
|
17
|
Fregonezi JN, Vilas-Boas LA, Fungaro MHP, Gaeta ML, Vanzela ALL. Distribution of a Ty3/gypsy-like retroelement on the A and B-chromosomes of Cestrum strigilatum Ruiz & Pav. and Cestrum intermedium Sendtn. (Solanaceae). Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000400017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Kato M, Takashima K, Kakutani T. Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana. Genetics 2004; 168:961-9. [PMID: 15514067 PMCID: PMC1448851 DOI: 10.1534/genetics.104.029637] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/15/2004] [Indexed: 01/08/2023] Open
Abstract
Epigenetic mutation, heritable developmental variation not based on a change in nucleotide sequence, is widely reported in plants. However, the developmental and evolutionary significance of such mutations remains enigmatic. On the basis of our studies of the endogenous Arabidopsis transposon CACTA, we propose that the inheritance of epigenetic gene silencing over generations can function as a transgenerational genome defense mechanism against deleterious movement of transposons. We previously reported that silent CACTA1 is mobilized by the DNA hypomethylation mutation ddm1 (decrease in DNA methylation). In this study, we report that CACTA activated by the ddm1 mutation remains mobile in the presence of the wild-type DDM1 gene, suggesting that de novo silencing is not efficient for the defense of the genome against CACTA movement. The defense depends on maintenance of transposon silencing over generations. In addition, we show that the activated CACTA1 element transposes throughout the genome in DDM1 plants, as reported previously for ddm1 backgrounds. Furthermore, the CACTA1 element integrated into both the ddm1-derived and the DDM1-derived chromosomal regions in the DDM1 wild-type plants, demonstrating that this class of transposons does not exhibit targeted integration into heterochromatin, despite its accumulation in the pericentromeric regions in natural populations. The possible contribution of natural selection as a mechanism for the accumulation of transposons and evolution of heterochromatin is discussed.
Collapse
Affiliation(s)
- Masaomi Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
19
|
Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P. High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. PLANT PHYSIOLOGY 2004; 134:1733-41. [PMID: 15064383 PMCID: PMC419846 DOI: 10.1104/pp.103.033969] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2003] [Revised: 01/07/2004] [Accepted: 01/07/2004] [Indexed: 05/18/2023]
Abstract
Gametophytic apomixis is asexual reproduction as a consequence of parthenogenetic development of a chromosomally unreduced egg. The trait leads to the production of embryos with a maternal genotype, i.e. progeny are clones of the maternal plant. The application of the trait in agriculture could be a tremendous tool for crop improvement through conventional and nonconventional breeding methods. Unfortunately, there are no major crops that reproduce by apomixis, and interspecific hybridization with wild relatives has not yet resulted in commercially viable germplasm. Pennisetum squamulatum is an aposporous apomict from which the gene(s) for apomixis has been transferred to sexual pearl millet by backcrossing. Twelve molecular markers that are linked with apomixis coexist in a tight linkage block called the apospory-specific genomic region (ASGR), and several of these markers have been shown to be hemizygous in the polyploid genome of P. squamulatum. High resolution genetic mapping of these markers has not been possible because of low recombination in this region of the genome. We now show the physical arrangement of bacterial artificial chromosomes containing apomixis-linked molecular markers by high resolution fluorescence in situ hybridization on pachytene chromosomes. The size of the ASGR, currently defined as the entire hemizygous region that hybridizes with apomixis-linked bacterial artificial chromosomes, was estimated on pachytene and mitotic chromosomes to be approximately 50 Mbp (a quarter of the chromosome). The ASGR includes highly repetitive sequences from an Opie-2-like retrotransposon family that are particularly abundant in this region of the genome.
Collapse
Affiliation(s)
- Yukio Akiyama
- Department of Horticulture, University of Georgia, Tifton, Georgia 31793-0748, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T. Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Genet Genomics 2003; 270:524-32. [PMID: 14608503 DOI: 10.1007/s00438-003-0943-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/02/2003] [Indexed: 11/27/2022]
Abstract
The differentiation between gene-rich and transposon-rich (gene-poor) regions is a common feature of plant genomes. This may be due to preferential integration of transposons into gene-poor regions or may be due to purifying selection against transposon insertion into gene-rich regions. We examined the distribution of a low-copy-number mobile subfamily of Arabidopsis CACTA transposons in the genomes of 19 natural variants (ecotypes) of A. thaliana, and compared that to the pattern of integrations induced in the laboratory by mutation of the DDM1 (Decrease in DNA Methylation) gene. Sequences similar to mobile CACTA1 copies were distributed among the ecotypes and showed high degrees of polymorphism in genomic localization. Despite the high level of polymorphism, the copy number was low in all the ecotypes examined, and the elements were localized preferentially in pericentromeric and transposon-rich regions. This contrasts with the pattern of transposition induced by the ddm1 mutation, in which the range of integration sites is less biased and the copy number frequently increases. Based on these observations, we discuss the possible contribution of natural selection and chromatin structure to the distribution of transposons.
Collapse
Affiliation(s)
- A Miura
- Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, 411-8540 Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Dechyeva D, Gindullis F, Schmidt T. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res 2003; 11:3-21. [PMID: 12675302 DOI: 10.1023/a:1022005514470] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several repetitive sequences of the genome of Beta procumbens Chr. Sm., a wild beet species of the section Procumbentes of the genus Beta have been isolated. According to their genomic organization, the repeats were assigned to satellite DNA and families of dispersed DNA sequences. The tandem repeats are 229-246 bp long and belong to an AluI restriction satellite designated pAp11. Monomers of this satellite DNA form subfamilies which can be distinguished by the divergence or methylation of an internal restriction site. The satellite is amplified in the section Procumbentes, but is also found in species of the section Beta including cultivated beet (Beta vulgaris). The existence of the pAp11 satellite in distantly related species suggests that the AluI sequence family is an ancient component of Beta genomes and the ancestor of the diverged satellite subfamily pEV4 in B. vulgaris. Comparative fluorescent in-situ hybridization revealed remarkable differences in the chromosomal position between B. procumbens and B. vulgaris, indicating that the pAp11 and pEV4 satellites were most likely involved in the expansion or rearrangement of the intercalary B. vulgaris heterochromatin. Furthermore, we describe the molecular structure, and genomic and chromosomal organization of two repetitive DNA families which were designated pAp4 and pAp22 and are 1354 and 582 bp long, respectively. The families consist of sequence elements which are widely dispersed along B. procumbens chromosomes with local clustering and exclusion from distal euchromatic regions. FISH on meiotic chromosomes showed that both dispersed repeats are colocalized in some chromosomal regions. The interspersion of repeats of the pAp4 and pAp22 family was studied by PCR and enabled the determination of repeat flanking sequences. Sequence analysis revealed that pAp22 is either derived from or part of a long terminal repeat (LTR) of an Athila-like retrotransposon. Southern analysis and FISH with pAp4 and pAp22 showed that both dispersed repeats are species-specific and can be used as DNA probes to discriminate parental genomes in interspecific hybrids. This was tested in the sugar beet hybrid PRO1 which contains a small B. procumbens chromosome fragment.
Collapse
Affiliation(s)
- Daryna Dechyeva
- Plant Molecular Cytogenetics Group, Institute of Crop Science and Plant Breeding, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24118 Kiel, Germany
| | | | | |
Collapse
|
22
|
Zoller JF, Yang Y, Herrmann RG, Hohmann U. Comparative genomic in situ hybridization (cGISH) analysis on plant chromosomes revealed by labelled Arabidopsis DNA. Chromosome Res 2002; 9:357-75. [PMID: 11448038 DOI: 10.1023/a:1016767100766] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new approach for comparative cytogenetic banding analysis of plant chromosomes has been established. The comparative GISH (cGISH) technique is universally applicable to various complex genomes of Monocotyledonae (Triticum aestivum, Agropyron elongatum, Secale cereale, Hordeum vulgare, Allium cepa, Muscari armenaticum and Lilium longiflorum) and Dicotyledonae (Vicia faba, Beta vulgaris, Arabidopsis thaliana). Labelled total genomic DNA of A. thaliana generates signals at conserved chromosome regions. The nucleolus organizing regions (NORs) containing the majority of tandemly repeated rDNA sequences, N-band regions containing satellite DNA, conserved homologous sequences at telomeres and additional chromosome-characteristic markers were detected in heterologous FISH experiments. Multicolour FISH analysis with repetitive DNA probes simultaneously revealed the chromosome assignment of 56 cGISH signals in rye and 61 cGISH signals in barley. Further advantages of this technique are: (1) the fast and straightforward preparation of the probe; (2) the generation of signals with high intensity and reproducibility even without signal amplification; and (3) no requirement of species-specific sequences suitable for molecular karyotype analysis. Hybridization can be performed without competitive DNA. Signal detection without significant background is possible under low stringency conditions. The universal application of this fast and simple one-step fluorescence banding technique for plant cytogenetic and plant genome evolution is discussed.
Collapse
Affiliation(s)
- J F Zoller
- Botanisches Institut der Ludwig-Maximilians-Universität München, Germany
| | | | | | | |
Collapse
|
23
|
Belyayev A, Raskina O, Nevo E. Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosome Res 2001; 9:129-36. [PMID: 11321368 DOI: 10.1023/a:1009231019833] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A large portion of plant and particularly cereal genomes consist of repetitive DNA families, many of which are likely to be or to have evolved from retroelements. Molecular evidence suggests that repeated DNA sequences, although perhaps originating as innocuous or 'selfish' elements, can have dramatic effects on genome organization and function. Knowledge of chromosomal distribution of retroelements is important for understanding plant chromosome structure/functional organization, and could shed light on the dynamics of retroelements and their role in the evolutionary process. In the present study we aim to find a possible correlation between physical location of the regions with species-specific sequences and the distribution of conserved RT domains of the Ty1-copia, Ty3-gypsy and LINE groups of retroelements on the chromosomes of two diploid species that belong to the different branches of the tribe Triticeae, namely Aegilops speltoides Tausch (2n=2x=14) and Hordeum spontaneum L (2n=2x=14). All three groups of retroelements were found in large quantities in the genomes of the tested species. They are cluster-distributed, and the important role of these elements in the formation of terminal heterochromatin is shown. We found that there was a predominance of Ty1-copia and LINE elements in the chromosome regions with preferential content of species-specific sequences.
Collapse
Affiliation(s)
- A Belyayev
- Institute of Evolution, Haifa University, Mt. Carmel, Israel.
| | | | | |
Collapse
|
24
|
Hanson RE, Islam-Faridi MN, Crane CF, Zwick MS, Czeschin DG, Wendel JF, McKnight TD, Price HJ, Stelly DM. Ty1-copia-retrotransposon behavior in a polyploid cotton. Chromosome Res 2000; 8:73-6. [PMID: 10730591 DOI: 10.1023/a:1009239522541] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Retrotransposons constitute a ubiquitous and dynamic component of plant genomes. Intragenomic and intergenomic comparisons of related genomes offer potential insights into retrotransposon behavior and genomic effects. Here, we have used fluorescent in-situ hybridization to determine the chromosomal distributions of a Ty1-copia-like retrotransposon in the cotton AD-genome tetraploid Gossypium hirsutum and closely related putative A- and D-genome diploid ancestors. Retrotransposon clone A108 hybridized to all G. hirsutum chromosomes, approximately equal in intensity in the A- and D-subgenomes. Similar results were obtained by hybridization of A108 to the A-genome diploid G. arboreum, whereas no signal was detected on chromosomes of the D-genome diploid G. raimondii. The significance and potential causes of these observations are discussed.
Collapse
Affiliation(s)
- R E Hanson
- Department of Soil and Crop Sciences, Texas A&M University, College Station 77843-2474, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Retrotransposons are mobile genetic elements that transpose through reverse transcription of an RNA intermediate. Retrotransposons are ubiquitous in plants and play a major role in plant gene and genome evolution. In many cases, retrotransposons comprise over 50% of nuclear DNA content, a situation that can arise in just a few million years. Plant retrotransposons are structurally and functionally similar to the retrotransposons and retroviruses that are found in other eukaryotic organisms. However, there are important differences in the genomic organization of retrotransposons in plants compared to some other eukaryotes, including their often-high copy numbers, their extensively heterogeneous populations, and their chromosomal dispersion patterns. Recent studies are providing valuable insights into the mechanisms involved in regulating the expression and transposition of retrotransposons. This review describes the structure, genomic organization, expression, regulation, and evolution of retrotransposons, and discusses both their contributions to plant genome evolution and their use as genetic tools in plant biology.
Collapse
Affiliation(s)
- A Kumar
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland.
| | | |
Collapse
|
26
|
Molecular Cell Biology: Role of Repetitive DNA in Nuclear Architecture and Chromosome Structure. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/978-3-642-57203-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
|
27
|
Linares C, Serna A, Fominaya A. Chromosomal organization of a sequence related to LTR-like elements of Ty1-copia retrotransposons in Avena species. Genome 1999; 42:706-13. [PMID: 10464792 DOI: 10.1139/g99-007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 x 10(4) copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 x 10(4) copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.
Collapse
Affiliation(s)
- C Linares
- Department of Cell Biology and Genetics, University of Alcalá, Madrid, Spain
| | | | | |
Collapse
|
28
|
Wang S, Liu N, Peng K, Zhang Q. The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome. Proc Natl Acad Sci U S A 1999; 96:6824-8. [PMID: 10359797 PMCID: PMC22000 DOI: 10.1073/pnas.96.12.6824] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used 22 fragments corresponding to the reverse transcriptase domain of copia-like retrotransposons as representatives to study the organization and distribution of these elements in the rice genome. The loci detected by these 22 fragments were assigned to 47 locations in the molecular-linkage map involving all 12 chromosomes. The distributional features of copia-like retrotransposons found in the rice genome indicated that (i) the loci detected were located mainly in one arm of each chromosome; (ii) one fragment usually detected several loci that were mapped to similar locations of different chromosomes; (iii) retrotransposons sharing high identity in nucleotide sequences were usually assigned to similar locations of the chromosomes; and (iv) concurrences of multiple loci, detected by different fragments, in similar locations or stretches of different chromosomes were common in the rice genome. We also determined that the copy number of copia-like retrotransposons in rice genome may be as low as approximately 100 per haploid genome. The restricted distribution, along with low copy number, suggested that copia-like retrotransposons in rice were relatively inactive during evolution compared with those in other plants. The distributional features of the copia-like retrotransposons suggested the existence of possible lineages among the rice chromosomes, which in turn suggested that chromosome duplication and diversification may be a mechanism for the origin and evolution of the rice chromosomes. The information provided by fine mapping of the retroelements in the genetic linkage map may also be useful for gene tagging and molecular cloning.
Collapse
Affiliation(s)
- S Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
29
|
Yañez M, Verdugo I, Rodríguez M, Prat S, Ruiz-Lara S. Highly heterogeneous families of Ty1/copia retrotransposons in the Lycopersicon chilense genome. Gene 1998; 222:223-8. [PMID: 9831656 DOI: 10.1016/s0378-1119(98)00486-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have used the degenerated oligonucleotide primers-PCR (DOP-PCR) technique to determine the presence of Ty1/copia-related retrotransposons in the wild species of tomato, Lycopersicon chilense. Using degenerated oligonucleotides corresponding to highly conserved domains in the Ty1/copia retrotransposons, fragments of roughly 300 bp were obtained by PCR amplification. These were cloned in a plasmid vector and the nucleotide sequence determined for 20 clones, 19 of which showed sequence homology to retrotransposon-related sequences. Comparison of the deduced amino-acid sequence of these clones with those reported for other retrotransposons has allowed their classification into four distinct families: TLC1-TLC4. The level of amino-acid sequence similarity between these elements extends from 66.7% (between TLC1 and TLC2) to 42.6% (between TLC2 and TLC3). Altogether, the four families comprise about 0.17% of the L. chilense genome. RT-PCR analysis shows that the four TLC families are transcriptionally active, suggesting a mechanism for the generation of the observed diversity between the L. chilense retrotransposons.
Collapse
Affiliation(s)
- M Yañez
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Casilla, 747, Talca, Chile
| | | | | | | | | |
Collapse
|
30
|
Kuipers AG, Heslop-Harrison JS, Jacobsen E. Characterisation and physical localisation of Ty1-copia-like retrotransposons in four Alstroemeria species. Genome 1998; 41:357-67. [PMID: 9729770 DOI: 10.1139/g98-048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Alstroemeria contains species with large genomes (2C = 36.5-78.9 pg (17,600-38,000 Mb) in those species with 2n = 2x = 16). We investigated the diversity and genomic and chromosomal organisation of Ty1-copia-like retrotransposons in four Alstroemeria species. Analysis of 33 PCR-amplified sequences corresponding to a conserved domain of the Ty1-copia reverse transcriptase (rt) gene showed high heterogeneity among predicted amino acid sequences; no two sequences were identical, but most fell into one of five subgroups. Levels of inter- and intra-specific heterogeneity of sequences were similar. HaeIII-digested genomic DNA of various Alstroemeria species contained distinct bands upon hybridisation with individual rt gene fragments. Hybridisation with the heterogeneous PCR pool of rt fragments (retrotransposon pool) revealed additional bands; some minor bands were characteristic of either Brazilian or Chilean species. In situ hybridisation of the retrotransposon pool from three species to metaphase chromosomes from the same species showed a dispersed distribution of the retrotransposon pool with exclusion from rDNA and other chromosomal sites. Alstroemeria pelegrina, which is without major heterochromatic sites, showed some clustering and small negative bands. The retrotransposon pool was excluded from major DAPI-staining bands in Alstroemeria aurea, but in contrast, the sites of the major tandemly repeated sequences in Alstroemeria inodora showed a hybridisation signal similar to that in the rest of the chromosomes. The data are discussed in the context of the contribution of Ty1-copia-like retrotransposons to plant genome size, their evolution, and their value for phylogenetic and biodiversity studies.
Collapse
Affiliation(s)
- A G Kuipers
- Graduate School of Experimental Plant Sciences, Department of Plant Breeding, Wageningen Agricultural University, The Netherlands.
| | | | | |
Collapse
|
31
|
Gortner G, Nenno M, Weising K, Zink D, Nagl W, Kahl G. Chromosomal localization and distribution of simple sequence repeats and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chromosome Res 1998; 6:97-104. [PMID: 9543012 DOI: 10.1023/a:1009282828236] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used fluorescence in situ hybridization to probe the physical organization of five simple sequence repeat motifs and the Arabidopsis-type telomeric repeat in metaphase chromosomes and interphase nuclei of chickpea (Cicer arietinum L.). Hybridization signals were observed with the whole set of probes and on all chromosomes, but the distribution and intensity of signals varied depending on the motif. On root-tip metaphase chromosomes, CA and GATA repeats were mainly restricted to centromeric areas, with additional GATA signals along some chromosomes. TA, A and AAC repeats were organized in a more dispersed manner, with centromeric regions being largely excluded. In interphase nuclei of the inner integument, CA and GATA signals predominantly occurred in the heterochromatic endochromocentres, whereas the other motifs were found both in eu- and heterochromatin. The distribution of the Arabidopsis-type telomeric repeat (TTTAGGG)n on metaphase chromosomes was found to be quite exceptional. One major cluster of repeats was spread along the short arm of chromosome B, whereas a second, weaker signal occurred interstitially on chromosome A. Only faint and inconsistent hybridization signals were visualized with the same probe at the chromosomal termini.
Collapse
Affiliation(s)
- G Gortner
- Plant Molecular Biology, Biocentre, University of Frankfurt, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Pearce SR, Harrison G, Heslop-Harrison PJ, Flavell AJ, Kumar A. Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome 1997; 40:617-25. [PMID: 9352643 DOI: 10.1139/g97-081] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genomic organisation of the Ty1-copia retrotransposons in rye (Secale cereale) has been studied. We have used the polymerase chain reaction (PCR) to amplify sequences from a conserved domain of the reverse transcriptase gene of the Ty1-copia retrotransposons in this species. Sequence analysis of 26 of these PCR products shows them to be a highly heterogeneous population, a feature that is common in plants. Slot blot analysis shows that there are about 100,000 individual Ty1-copia retrotransposons in rye. In situ hybridization of a heterogeneous probe, representing the whole population of rye Ty1-copia retrotransposon sequences, to chromosome spreads of triticale (xTriticosecale), a rye-wheat hybrid, shows that these sequences are present throughout all the rye chromosomes but absent from the centromeric regions and, in particular, from the terminal heterochromatin. Southern analysis of oat, barley, wheat, and rye, using as a probe R9, one of the rye sequences that is closely similar to the BARE-1 element of barley, shows that close relatives of this retrotransposon subgroup are present in all these species in high copy number. Northern analysis on RNAs from seedlings shows that the BARE-1 subgroup is transcribed in all these cereal plants but in variable amounts: high in barley, moderate in wheat and rye, and extremely low in oat.
Collapse
Affiliation(s)
- S R Pearce
- Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Schondelmaier J, Schmidt T, Jung C, Heslop-Harrison JS. Genetic and chromosomal localization of the 5S rDNA locus in sugar beet (Beta vulgarisL.). Genome 1997; 40:171-5. [DOI: 10.1139/g97-024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A digoxigenin-labelled 5S rDNA probe containing the 5S rRNA gene and the adjacent intergenic spacer was used for in situ hybridization to metaphase and interphase chromosomes of a trisomic stock from sugar beet (Beta vulgaris L.). Three chromosomes of primary trisomic line IV (T. Butterfass. Z. Bot. 52: 46–77. 1964) revealed signals close to the centromeres. Polymorphisms of 5S rDNA repeats in a segregating population were used to map genetically the 5S rRNA genes within a cluster of markers in linkage group II of sugar beet. The concentration of genetic markers around the centromere presumably reflects the suppressed recombination frequency in centromeric regions. The correlation of physical and genetic data allowed the assignment of a linkage group to sugar beet chromosome IV according to line IV of the primary trisomics.Key words: Beta vulgaris, sugar beet, 5S rRNA, in situ hybridization, RFLPs, trisomics.
Collapse
|
34
|
Schwarzacher T, Wang ML, Leitch AR, Moore G, Heslop-Harrison JS, Miller N. Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1997; 94:91-7. [PMID: 19352750 DOI: 10.1007/s001220050386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/1996] [Revised: 05/24/1996] [Indexed: 05/27/2023]
Abstract
A rapidly growing, long-term suspension culture derived from Triticum aestivum L. (wheat) was synchronized using hydroxyurea and colchicine, and a chromosome suspension with 2-3 x 10(6) chromosomes ml(-1) was made. After staining with the DNA-specific fluorochromes Hoechst 33258 and Chromomycin A(3), univariate and bivariate flow-cytometry histograms showed 15 clearly resolved peaks corresponding to individual chromosome types or groups of chromosomes with similar DNA contents. The flow karyotype was closely similar to a histogram of DNA content measurements of Feulgen-stained chromosomes made by microdensitometry. We were able to show the stability of the flow karyotype of the cell line over a year, while a parallel subculture had a slightly different, stable, karyotype following different growth conditions. The data indicate that flow cytometric analysis of plant karyotypes enables accurate, statistically precise chromosome classification and karyotyping of cereals. There was little overlap between individual flow-histogram peaks, so the method is useful for flow sorting and the construction of chromosome specific-recombinant DNA libraries. Using bivariate analysis, the AT:GC ratio of all the chromosomes was remarkably similar, in striking contrast to mammalian flow karyotypes. We speculate about a fundamental difference in organization and homogenization of DNA sequences between chromosomes within mammalian and plant genomes.
Collapse
|
35
|
The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/978-94-011-4898-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Schmidt T, Heslop-Harrison JS. The physical and genomic organization of microsatellites in sugar beet. Proc Natl Acad Sci U S A 1996; 93:8761-5. [PMID: 8710945 PMCID: PMC38747 DOI: 10.1073/pnas.93.16.8761] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microsatellites, tandem arrays of short (2-5 bp) nucleotide motifs, are present in high numbers in most eukaryotic genomes. We have characterized the physical distribution of microsatellites on chromosomes of sugar beet (Beta vulgaris L.). Each microsatellite sequence shows a characteristic genomic distribution and motif-dependent dispersion, with site-specific amplification on one to seven pairs of centromeres or intercalary chromosomal regions and weaker, dispersed hybridization along chromosomes. Exclusion of some microsatellites from 18S-5.8S-25S rRNA gene sites, centromeres, and intercalary sites was observed. In-gel and in situ hybridization patterns are correlated, with highly repeated restriction fragments indicating major centromeric sites of microsatellite arrays. The results have implications for genome evolution and the suitability of particular microsatellite markers for genetic mapping and genome analysis.
Collapse
Affiliation(s)
- T Schmidt
- Department of Cell Biology, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
37
|
Pearce SR, Pich U, Harrison G, Flavell AJ, Heslop-Harrison JS, Schubert I, Kumar A. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res 1996; 4:357-64. [PMID: 8871824 DOI: 10.1007/bf02257271] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genomic organization and diversity of the Ty1-copia group retrotransposons has been investigated in a monocotyledonous plant, Allium cepa. We used the polymerase chain reaction (PCR) to generate sequences corresponding to a conserved domain of the reverse transcriptase gene of Ty1-copia retrotransposons in this plant. Sequence analysis of 27 of these PCR products shows that they are a highly heterogeneous population, a feature which is common in plants but not in yeast and Drosophila. Slot-blot analysis shows there are 100,000-200,000 copies of Ty1-copia group retrotransposons within the A. cepa genome (2C = 31.7 pg), indicating that they are a significant component of the genome of this plant. In situ hybridization to metaphase chromosomes reveals that Ty1-copia retrotransposons are distributed throughout the euchromatin of all chromosomes of A. cepa but are enriched in the terminal heterochromatic regions, which contain tandem arrays of satellite sequences. This is the first clear evidence for the presence of Ty1-copia retrotransposons in the terminal heterochromatin of plants and contrasts with the distribution of these elements in other plant species.
Collapse
Affiliation(s)
- S R Pearce
- Cell and Molecular Genetics Department, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Kamm A, Doudrick RL, Heslop-Harrison JS, Schmidt T. The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci U S A 1996; 93:2708-13. [PMID: 8610105 PMCID: PMC39695 DOI: 10.1073/pnas.93.7.2708] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A DNA sequence, TPE1, representing the internal domain of a Ty1-copia retroelement, was isolated from genomic DNA of Pinus elliottii Engelm. var. elliottii (slash pine). Genomic Southern analysis showed that this sequence, carrying partial reverse transcriptase and integrase gene sequences, is highly amplified within the genome of slash pine and part of a dispersed element >4.8 kbp. Fluorescent in situ hybridization to metaphase chromosomes shows that the element is relatively uniformly dispersed over all 12 chromosome pairs and is highly abundant in the genome. It is largely excluded from centromeric regions and intercalary chromosomal sites representing the 18S-5.8S-25S rRNA genes. Southern hybridization with specific DNA probes for the reverse transcriptase gene shows that TPE1 represents a large subgroup of heterogeneous Ty1-copia retrotransposons in Pinus species. Because no TPE1 transcription could be detected, it is most likely an inactive element--at least in needle tissue. Further evidence for inactivity was found in recombinant reverse transcriptase and integrase sequences. The distribution of TPE1 within different gymnosperms that contain Ty1-copia group retrotransposons, as shown by a PCR assay, was investigated by Southern hybridization. The TPE1 family is highly amplified and conserved in all Pinus species analyzed, showing a similar genomic organization in the three- and five-needle pine species investigated. It is also present in spruce, bald cypress (swamp cypress), and in gingko but in fewer copies and a different genomic organization.
Collapse
Affiliation(s)
- A Kamm
- Department of Cell Biology, John Innes Institute, Norwich United Kingdom
| | | | | | | |
Collapse
|
39
|
Katsiotis A, Schmidt T, Heslop-Harrison JS. Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome 1996; 39:410-7. [PMID: 8984007 DOI: 10.1139/g96-052] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cloned repetitive sequence, pAvKB30, obtained from an Avena vaviloviana (AB genome) genomic library, along with two polymerase chain reaction products derived from the conserved region of the reverse transcriptase (RT) gene of retrotransposons, were characterized molecularly and cytologically. The cloned DNA fragment was a dispersed repeat present in all Avena species used in this study (A. strigosa, A. clauda, A. vaviloviana, A. magna, and A. sativa). The fragment was sequenced (210 bp) and found to be 69.5% homologous to part of WIS-2-1A, and 60.5% homologous to the leader sequence of BARE-1; both of these elements have been characterized as Ty1-copia-like retrotransposons in wheat and barley, respectively. In situ hybridization of pAvKB30 to diploid, tetraploid, and hexaploid oat species revealed that the probe is present on both arms of all chromosomes (A, B, C, and D genomes) but is excluded from their centromeric and nucleolar organizer regions. By using double in situ hybridization in hexaploid A. sativa (ACD genome), pAvKB30 was found to be present in lower copy numbers in C-genome chromosomes compared with A- and D-genome chromosomes. Furthermore, under low stringency conditions, pAvKB30 hybridized on Southern blots containing barley, wheat, rye, and Arrhenatherum DNA. However, under high stringency conditions, it hybridized only on Arrhenatherum DNA, which is considered to be the genus most closely related to Avena. All Avena species included in this study yielded a PCR product when the primers from the RT domain of retrotransposons were used. Two products, rtA, obtained by using A. strigosa (A(s) genome) as template, and rtC, obtained by using A. clauda (Cp genome) as template, gave Southern and in situ hybridization results similar to pAvKB30, but each was more abundant in its genome of origin.
Collapse
Affiliation(s)
- A Katsiotis
- Karyobiology Group, John Innes Centre, Norwich, U.K
| | | | | |
Collapse
|
40
|
Schmidt T, Heslop-Harrison JS. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. PLANT MOLECULAR BIOLOGY 1996; 30:1099-1113. [PMID: 8704122 DOI: 10.1007/bf00019545] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour flourescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.
Collapse
Affiliation(s)
- T Schmidt
- Department of Cell Biology, John Innes Centre, Colney, Norwich, UK
| | | |
Collapse
|
41
|
Pearce SR, Harrison G, Li D, Heslop-Harrison J, Kumar A, Flavell AJ. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:305-15. [PMID: 8602145 DOI: 10.1007/bf02174388] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present an in-depth study of the Ty1-copia group of retrotransposons within the plant genus Vicia, which contains species with widely differing genome sizes. We have compared the numbers and sequence heterogeneities of these genetic elements in three diploid Vicia species chosen to represent large (V. faba, 1C = 13.3 pg), medium (V. melanops, 1C = 11.5 pg) and small (V. sativa, 1C = 2.3 pg) genomes within the genus. The copy numbers of the retrotransposons are all high but vary greatly, with V. faba containing approximately 10(6) copies, V. melanops about 1000 copies and V. sativa 5000 copies. The degree of sequence heterogeneity of Ty1-copia group elements correlates with their copy number within each genome, but neither heterogeneity nor copy number are related to the genome size of the host. In situ hybridization to metaphase chromosomes shows that the retrotransposons in V.faba are distributed throughout all chromosomes but are much less abundant in certain heterochromatic regions. These results are discussed in the context of plant retrotransposon evolution.
Collapse
Affiliation(s)
- S R Pearce
- Department of Biochemistry, University of Dundee, Dundee, UK
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- A Kumar
- Cell and Molecular Genetics Department, Scottish Crop Research Institute, Dundee, UK.
| |
Collapse
|