1
|
Abe Y, Aihara Y, Endo W, Hasegawa H, Ichida K, Uematsu M, Kure S. The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation. Mol Genet Metab Rep 2021; 26:100716. [PMID: 33552910 PMCID: PMC7859290 DOI: 10.1016/j.ymgmr.2021.100716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism that results from mutations in genes involved in molybdenum cofactor (Moco) biosynthesis. MoCD is characterized clinically by intractable seizures and severe, rapidly progressing neurodegeneration leading to death in early childhood in the majority of known cases. We report on a patient with an unusual late disease onset and mild phenotype, characterized by delayed development and a decline triggered by a febrile illness and a subsequent dystonic movement disorder. Magnetic resonance imaging showed abnormal signal intensities of the bilateral basal ganglia. Blood and urine chemistry tests demonstrated remarkably low serum and urinary uric acid levels. A urine sulfite test was positive. Specific diagnostic workup showed elevated levels of xanthine and hypoxanthine in serum with increased urinary sulfocysteine (SSC) levels. Genetic analysis revealed a homozygous missense mutation at c.1510C > T (p.504R > W) in exon 10 of the MOCS1 in isoform 7 (rs1387934803). At age 1 year 4 months, the patient was placed on a low protein diet to reduce cysteine load and accumulation of sulfite and SCC in tissues. At 3 months after introduction of protein restriction, the urine sulfite test became negative and the urine SCC level was decreased. After starting the protein restriction diet, dystonic movement improved, and the patient's course progressed without regression and seizures. Electroencephalogram findings were remarkably improved. This finding demonstrates that the dietary protein restriction suppresses disease progression in mild cases of MoCD and suggests the effectiveness of dietary therapy in MoCD.
Collapse
Affiliation(s)
- Yu Abe
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yu Aihara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Wakaba Endo
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroshi Hasegawa
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.,Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Development of a rapid UPLC–MS/MS determination of urine sulfocysteine for diagnosis of sulfocysteinuria and molybdenum co-factor deficiencies. Bioanalysis 2018; 10:747-756. [DOI: 10.4155/bio-2017-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Molybdenum co-factor deficiencies and isolated sulfite oxidase deficiency are rare autosomal recessively inherited diseases characterized by severe psychomotor impairment, intractable seizures, dislocated lens and dysmorphic facial features. The biochemical diagnosis of these diseases requires the determination of urine sulfocysteine. Materials & methods: Urine sulfocysteine was quantified by an ultra-high performance liquid chromatography–MS/MS assay. The method was validated for linearity, accuracy, precision, recovery and stability. Results & conclusion: Total imprecision of accuracy was less than 6%. Intra-assay and inter-assay precisions were less than 5%. The recovery was higher than 98%. The method is inexpensive, fast, accurate and has been successfully used for identifying five molybdenum co-factor deficient and six sulfite oxidase deficient patients since deployed.
Collapse
|
3
|
Belaidi AA, Arjune S, Santamaria-Araujo JA, Sass JO, Schwarz G. Molybdenum cofactor deficiency: a new HPLC method for fast quantification of s-sulfocysteine in urine and serum. JIMD Rep 2011; 5:35-43. [PMID: 23430915 PMCID: PMC3509921 DOI: 10.1007/8904_2011_89] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/20/2011] [Accepted: 09/01/2011] [Indexed: 02/10/2023] Open
Abstract
Molybdenum cofactor deficiency (MoCD) is a rare inherited metabolic disorder characterized by severe and progressive neurological damage mainly caused by the loss of sulfite oxidase activity. Elevated urinary levels of sulfite, thiosulfate, and S-sulfocysteine (SSC) are hallmarks in the diagnosis of MoCD and sulfite oxidase deficiency (SOD). Recently, a first successful treatment of a human MoCD type A patient based on a substitution therapy with the molybdenum cofactor precursor cPMP has been reported, resulting in nearly complete normalization of MoCD biomarkers. Knowing the rapid progression of the disease symptoms in nontreated patients, an early diagnosis of MoCD as well as a sensitive method to monitor daily changes in SSC levels, a key marker of sulfite toxicity, is crucial for treatment outcome. Here, we describe a fast and sensitive method for the analysis of SSC in human urine samples using high performance liquid chromatography (HPLC). The analysis is based on precolumn derivatization with O-phthaldialdehyde (OPA) and separation on a C18 reverse phase column coupled to UV detection. The method was extended to human serum analysis and no interference with endogenous amino acids was found. Finally, SSC values from 45 pediatric urine, 75 adult urine, and 24 serum samples from control individuals as well as MoCD patients are reported. Our method represents a cost-effective technique for routine diagnosis of MoCD and SOD, and can be used also to monitor treatment efficiency in those sulfite toxicity disorders on a daily basis.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| | - Sita Arjune
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| | - Jose Angel Santamaria-Araujo
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| | - Jörn Oliver Sass
- />Labor für Klinische Biochemie & Stoffwechsel, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany
| | - Guenter Schwarz
- />Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Str. 47, 50674 Cologne, Germany
| |
Collapse
|
4
|
Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 2011; 34:17-32. [PMID: 20162368 PMCID: PMC2901774 DOI: 10.1007/s10545-009-9006-9] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 11/30/2022]
Abstract
Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H₂S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions.
Collapse
Affiliation(s)
- Martha H. Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Iori Ueki
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Rashed MS, Saadallah AAA, Rahbeeni Z, Eyaid W, Seidahmed MZ, Al-Shahwan S, Salih MAM, Osman ME, Al-Amoudi M, Al-Ahaidib L, Jacob M. Determination of urinary S-sulphocysteine, xanthine and hypoxanthine by liquid chromatography-electrospray tandem mass spectrometry. Biomed Chromatogr 2005; 19:223-30. [PMID: 15558695 DOI: 10.1002/bmc.439] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molybdenum cofactor and isolated sulphite oxidase deficiencies are two related rare autosomal recessive diseases characterized by severe neurological abnormalities, dislocated lens and mental retardation. Determination of three biochemical markers S-sulphocysteine (SSC), xanthine (XAN) and hypoxanthine (HXAN) in urine is essential for a definitive diagnosis and identification of the exact defect. We developed a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the analysis of SSC, XAN and HXAN in urine. The analysis was carried out in the negative-ion selected-reaction monitoring mode. The turnaround time for the assay was 7 min. Linear calibration curves for the three biomarkers were obtained in the range of 12-480 micromol/L. The intra- and inter-day assay variations were <2.5%. Mean recoveries of SSC, XAN and HXAN added to urine at two significantly different concentrations were in the range 94.3-107.3%. At a normal SSC urine excretion value of 3.2 micromol/mmol creatinine, the signal-to-noise ratio was 337:1. This stable isotope dilution LC-MS/MS method is specific, rapid and simple, and provides definitive diagnosis for molybdenum cofactor and isolated sulphite oxidase deficiencies in very small volumes of urine. We have identified seven new cases of isolated sulphite oxidase deficiency from four Saudi families and one Sudanese family.
Collapse
Affiliation(s)
- Mohamed S Rashed
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004; 24:539-77. [PMID: 15189131 DOI: 10.1146/annurev.nutr.24.012003.132418] [Citation(s) in RCA: 714] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue concentrations of both homocysteine (Hcy) and cysteine (Cys) are maintained at low levels by regulated production and efficient removal of these thiols. The regulation of the metabolism of methionine and Cys is discussed from the standpoint of maintaining low levels of Hcy and Cys while, at the same time, ensuring an adequate supply of these thiols for their essential functions. S-Adenosylmethionine coordinately regulates the flux through remethylation and transsulfuration, and glycine N-methyltransferase regulates flux through transmethylation and hence the S-adenosylmethionine/S-adenosylhomocysteine ratio. Cystathionine beta-synthase activity is also regulated in response to the redox environment, and transcription of the gene is hormonally regulated in response to fuel supply (insulin, glucagon, and glucocorticoids). The H2S-producing capacity of cystathionine gamma-lyase may be regulated in response to nitric oxide. Cys is substrate for a variety of anabolic and catabolic enzymes. Its concentration is regulated primarily by hepatic Cys dioxygenase; the level of Cys dioxygenase is upregulated in a Cys-responsive manner via a decrease in the rate of polyubiquitination and, hence, degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
7
|
Edwards MC, Johnson JL, Marriage B, Graf TN, Coyne KE, Rajagopalan KV, MacDonald IM. Isolated sulfite oxidase deficiency: review of two cases in one family. Ophthalmology 1999; 106:1957-61. [PMID: 10519592 DOI: 10.1016/s0161-6420(99)90408-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The authors describe two cases of isolated sulfite oxidase deficiency found in one family. This is a rare autosomal-recessive disorder presenting at birth with seizures, severe neurologic disease, and ectopia lentis. It can be easily missed with metabolic screening; however, the finding of lens subluxation stresses the importance of ophthalmic assessment in making the diagnosis. DESIGN Two observational case reports. INTERVENTION/METHODS Ophthalmic assessment, biochemical assay for specific urinary and plasma metabolites, magnetic resonance imaging, and gene sequencing were used to make the diagnosis of the disease in the proband. The diagnosis was subsequently recognized in a previously affected sibling after the postmortem neuropathology was reviewed. Mutation analysis was performed on cultured fibroblasts from the proband to identify and categorize the specific mutation responsible for the disease in the family. From this, future prenatal detection of sulfite oxidase deficiency is possible. MAIN OUTCOME MEASURES The diagnosis of sulfite oxidase deficiency was established in this family, enabling appropriate genetic counseling and recurrence risk estimation. RESULTS Point mutations were found in both alleles of the sulfite oxidase gene in the proband. The first is a 623C-->A mutation, which predicts an A208D substitution, and the second is a 1109C-->A, which predicts an S370Y substitution. Both residues A208D and S370Y are critical for sulfite oxidase activity. CONCLUSIONS Isolated sulfite oxidase deficiency is a rare heritable disease for which mutation analysis can allow accurate prenatal screening. It often is difficult to diagnose by clinical presentation alone, but the critical finding of lens subluxation accompanying seizures and diffuse neurologic disease in an infant should alert the physician to the diagnosis.
Collapse
Affiliation(s)
- M C Edwards
- Department of Ophthalmology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Garrett RM, Johnson JL, Graf TN, Feigenbaum A, Rajagopalan KV. Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci U S A 1998; 95:6394-8. [PMID: 9600976 PMCID: PMC27738 DOI: 10.1073/pnas.95.11.6394] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.
Collapse
Affiliation(s)
- R M Garrett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
9
|
Xia W, Woltman SJ, Sandberg M, Weber SG. Cyclic voltammetry of S-sulfocysteine at a gold + mercury amalgam electrode and application to dual electrode electrochemical detection. J Electroanal Chem (Lausanne) 1997. [DOI: 10.1016/s0022-0728(96)05069-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Mize C, Johnson JL, Rajagopalan KV. Defective molybdopterin biosynthesis: clinical heterogeneity associated with molybdenum cofactor deficiency. J Inherit Metab Dis 1995; 18:283-90. [PMID: 7474893 DOI: 10.1007/bf00710416] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A patient with molybdenum cofactor deficiency (producing the biochemical abnormalities associated with deficiencies of sulphite oxidase and xanthine dehydrogenase) clinically expressed Marfan-like habitus with dislocated lenses, vertebral abnormality, learning disability, moderate hemiplegia, increased medial lentiform MRI signal and intermittent microscopic haematuria. S-Sulphocysteine was present in plasma and urine, and the oxidized derivative of a molybdopterin precursor (precursor Z), together with xanthine and hypoxanthine, were elevated in urine. Blood uric acid was < 1 mg/dl, while urinary urothione was not detected. These data indicate a functionally inadequate terminal enzyme for converting precursor Z to active molybdopterin (complementation group B of general molybdenum cofactor deficiency). Although the biochemical parameters were indicative of a severe deficiency state, the patient has survived into the third decade with a less severe clinical spectrum than has generally been associated with this disease.
Collapse
Affiliation(s)
- C Mize
- Department of Pediatrics, University of Texas Southwestern, Dallas 75235-9063, USA
| | | | | |
Collapse
|