1
|
Noguchi T. Mechanism of Proton Transfer through the D1-E65/D2-E312 Gate during Photosynthetic Water Oxidation. J Phys Chem B 2024; 128:1866-1875. [PMID: 38364371 DOI: 10.1021/acs.jpcb.3c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In photosystem II, the D1-E65/D2-E312 dyad in the Cl-1 channel has been proposed to play a pivotal role in proton transfer during water oxidation. However, the precise mechanism remains elusive. Here, the proton transfer mechanism within the Cl-1 channel was investigated using quantum mechanics/molecular mechanics calculations. The molecular vibration of the E65/E312 dyad and its deuteration effect revealed that the recently suggested stepwise proton transfer, i.e., initial proton release from the dyad followed by slow reprotonation, does not occur in the Cl-1 channel. Instead, proton transfer is proposed to take place via a conformational change at the E65/E312 dyad, acting as a gate. In its closed form, a proton is trapped within the dyad, preventing forward proton transfer. This closed form converts into the open form, where protonated D1-E65 provides a hydrogen bond to the water network, thereby facilitating fast Grotthuss-type proton transfer.
Collapse
Affiliation(s)
- Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
My remembrances of H.G. Khorana: exploring the mechanism of bacteriorhodopsin with site-directed mutagenesis and FTIR difference spectroscopy. Biophys Rev 2023; 15:103-110. [PMID: 36909952 PMCID: PMC9995631 DOI: 10.1007/s12551-023-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
H.G. Khorana's seminal contributions to molecular biology are well-known. He also had a lesser known but still major influence on current application of advanced vibrational spectroscopic techniques such as FTIR difference spectroscopy to explore the mechanism of bacteriorhodopsin and other integral membrane proteins. In this review, I provide a personal perspective of my collaborative research and interactions with Gobind, from 1982 to 1995 when our groups published over 25 papers together which resulted in an early picture of key features of the bacteriorhodopsin proton pump mechanism. Much of this early work served as a blueprint for subsequent advances based on combining protein bioengineering and vibrational spectroscopic techniques to study integral membrane proteins.
Collapse
|
3
|
Zhong YR, Yu TY, Chu LK. Roles of functional lipids in bacteriorhodopsin photocycle in various delipidated purple membranes. Biophys J 2022; 121:1789-1798. [PMID: 35440419 DOI: 10.1016/j.bpj.2022.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022] Open
Abstract
Purple membrane (PM) is composed of several native lipids and the transmembrane protein bacteriorhodopsin (bR) in trimeric configuration. The delipidated PM (dPM) samples can be prepared by treating PM with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) to partially remove native lipids while maintaining bR in the trimeric configuration. By correlating the photocycle kinetics of bR and the exact lipid compositions of the various dPM samples, one can reveal the roles of native PM lipids. However, it is challenging to compare the lipid compositions of the various dPM samples quantitatively. Here, we utilized the absorbances of extracted retinal at 382 nm to normalize the concentrations of the remaining lipids in each dPM sample, which were then quantified by mass spectrometry, allowing us to compare the lipid compositions of different samples in a quantitative manner. The corresponding photocycle kinetics of bR were probed by transient difference absorption spectroscopy. We found that the removal rate of the polar lipids follows the order of BPG ≈ GlyC < S-TGD-1 ≈ PG < PGP-Me ≈ PGS. Since BPG and GlyC have more nonpolar phytanyl groups than other lipids at the hydrophobic tail, causing a higher affinity with the hydrophobic surface of bR, the corresponding removal rates are slowest. In addition, as the reaction period of PM and CHAPS increases, the residual amounts of PGS and PGP-Me significantly decrease, in concomitance with the decelerated rates of the recovery of ground state and the decay of intermediate M, and the reduced transient population of intermediate O. PGS and PGP-Me are the lipids with the highest correlation to the photocycle activity among the six polar lipids of PM. From a practical viewpoint, combining optical spectroscopy and mass spectrometry appears a promising approach to simultaneously track the functions and the concomitant active components in a given biological system.
Collapse
Affiliation(s)
- Yi-Rui Zhong
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| |
Collapse
|
4
|
March K, Venkatraman K, Truong CD, Williams D, Chiu PL, Rez P. Protein secondary structure signatures from energy loss spectra recorded in the electron microscope. J Microsc 2020; 282:215-223. [PMID: 33305823 DOI: 10.1111/jmi.12995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
Infrared spectroscopy is a powerful technique for characterising protein structure. It is now possible to record energy losses corresponding to the infrared region in the electron microscope and to avoid damage by positioning the probe in the region adjacent to the structure being studied. Spectra from bacteriorhodopsin, a protein that is predominately a α helix, and OmpF porin, a protein that is mainly β sheet show significant differences over a spectral range from ∼0.1 to 0.25 eV (∼1000 to 1800 cm-1 ). Although the energy resolution equivalent to 60 cm-1 is inferior to Fourier Transform InfraRed Spectroscopy (FTIR) the spectra are very sensitive to molecular orientation. Polar bonds aligned parallel to the specimen grid make particularly strong contributions to the energy loss spectra. Ultra-high-resolution energy loss spectroscopy in the electron microscope can potentially add useful information to imaging and diffraction for determining the secondary structure misfolding believed to be responsible for dementia diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Katia March
- Eyring Materials Center, Arizona State University, Tempe, Arizona.,Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Kartik Venkatraman
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona
| | - Chloe Du Truong
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona.,School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Dewight Williams
- Eyring Materials Center, Arizona State University, Tempe, Arizona
| | - Po-Lin Chiu
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona.,School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Peter Rez
- Department of Physics, Arizona State University, Tempe, Arizona
| |
Collapse
|
5
|
Ye M, Crozier KB. Metasurface with metallic nanoantennas and graphene nanoslits for sensing of protein monolayers and sub-monolayers. OPTICS EXPRESS 2020; 28:18479-18492. [PMID: 32680046 DOI: 10.1364/oe.394564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Biomolecule sensing plays an important role in both fundamental biological studies and medical diagnostic applications. Infrared (IR) spectroscopy presents opportunities for sensing biomolecules as it allows their fingerprints to be determined by directly measuring their absorption spectra. However, the detection of biomolecules at low concentrations is difficult with conventional IR spectroscopy due to signal-to-noise considerations. This has led to recent interest on the use of nanostructured surfaces to boost the signals from biomolecules in a method termed surface enhanced infrared spectroscopy. So far, efforts have largely involved the use of metallic nanoantennas (which produce large field enhancement) or graphene nanostructures (which produce strong field confinement and provide electrical tunability). Here, we propose a nanostructured surface that combines the large field enhancement of metallic nanoantennas with the strong field confinement and electrical tunability of graphene plasmons. Our device consists of an array of plasmonic nanoantennas and graphene nanoslits on a resonant substrate. We perform systematic electromagnetic simulations to quantify the sensing performance of the proposed device and show that it outperforms designs in which only plasmons from metallic nanoantennas or plasmons from graphene are utilized. These investigations consider the model system of a representative protein-goat anti-mouse immunoglobulin G (IgG) - in monolayer or sub-monolayer form. Our findings provide guidance for future biosensors for the sensitive quantification and identification of biomolecules.
Collapse
|
6
|
Terpugov EL. Fourier Transform Infrared Emission Spectroscopy in the Study of Biological Molecules. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Calculated vibrational properties of semiquinones in the A1 binding site in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:699-707. [DOI: 10.1016/j.bbabio.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
|
8
|
Giliberti V, Polito R, Ritter E, Broser M, Hegemann P, Puskar L, Schade U, Zanetti-Polzi L, Daidone I, Corni S, Rusconi F, Biagioni P, Baldassarre L, Ortolani M. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches. NANO LETTERS 2019; 19:3104-3114. [PMID: 30950626 PMCID: PMC6745627 DOI: 10.1021/acs.nanolett.9b00512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/02/2019] [Indexed: 05/21/2023]
Abstract
Photosensitive proteins embedded in the cell membrane (about 5 nm thickness) act as photoactivated proton pumps, ion gates, enzymes, or more generally, as initiators of stimuli for the cell activity. They are composed of a protein backbone and a covalently bound cofactor (e.g. the retinal chromophore in bacteriorhodopsin (BR), channelrhodopsin, and other opsins). The light-induced conformational changes of both the cofactor and the protein are at the basis of the physiological functions of photosensitive proteins. Despite the dramatic development of microscopy techniques, investigating conformational changes of proteins at the membrane monolayer level is still a big challenge. Techniques based on atomic force microscopy (AFM) can detect electric currents through protein monolayers and even molecular binding forces in single-protein molecules but not the conformational changes. For the latter, Fourier-transform infrared spectroscopy (FTIR) using difference-spectroscopy mode is typically employed, but it is performed on macroscopic liquid suspensions or thick films containing large amounts of purified photosensitive proteins. In this work, we develop AFM-assisted, tip-enhanced infrared difference-nanospectroscopy to investigate light-induced conformational changes of the bacteriorhodopsin mutant D96N in single submicrometric native purple membrane patches. We obtain a significant improvement compared with the signal-to-noise ratio of standard IR nanospectroscopy techniques by exploiting the field enhancement in the plasmonic nanogap that forms between a gold-coated AFM probe tip and an ultraflat gold surface, as further supported by electromagnetic and thermal simulations. IR difference-spectra in the 1450-1800 cm-1 range are recorded from individual patches as thin as 10 nm, with a diameter of less than 500 nm, well beyond the diffraction limit for FTIR microspectroscopy. We find clear spectroscopic evidence of a branching of the photocycle for BR molecules in direct contact with the gold surfaces, with equal amounts of proteins either following the standard proton-pump photocycle or being trapped in an intermediate state not directly contributing to light-induced proton transport. Our results are particularly relevant for BR-based optoelectronic and energy-harvesting devices, where BR molecular monolayers are put in contact with metal surfaces, and, more generally, for AFM-based IR spectroscopy studies of conformational changes of proteins embedded in intrinsically heterogeneous native cell membranes.
Collapse
Affiliation(s)
- Valeria Giliberti
- Istituto
Italiano di Tecnologia, Center for Life NanoScience, Viale Regina Elena 291, I-00161 Roma, Italy
- E-mail:
| | - Raffaella Polito
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, I-00185 Roma, Italy
| | - Eglof Ritter
- Humboldt-Universität
zu Berlin, Institut für
Biologie, Invalidenstraße
42, D-10115 Berlin, Germany
| | - Matthias Broser
- Humboldt-Universität
zu Berlin, Institut für
Biologie, Invalidenstraße
42, D-10115 Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität
zu Berlin, Institut für
Biologie, Invalidenstraße
42, D-10115 Berlin, Germany
| | - Ljiljana Puskar
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Ulrich Schade
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Laura Zanetti-Polzi
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, I-67010 L’Aquila, Italy
| | - Isabella Daidone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, I-67010 L’Aquila, Italy
| | - Stefano Corni
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- CNR
Institute
of Nanoscience, Via Campi
213/A, I-41125 Modena, Italy
| | - Francesco Rusconi
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Paolo Biagioni
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Leonetta Baldassarre
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, I-00185 Roma, Italy
| | - Michele Ortolani
- Istituto
Italiano di Tecnologia, Center for Life NanoScience, Viale Regina Elena 291, I-00161 Roma, Italy
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, I-00185 Roma, Italy
- E-mail:
| |
Collapse
|
9
|
Terpugov EL, Degtyareva OV, Fesenko EE. Microwave-Induced Structural Changes in Bacteriorhodopsin: Studies by Optical and Fourier Transform Infrared Difference Spectroscopy. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918050226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ding X, Sun C, Cui H, Chen S, Gao Y, Yang Y, Wang J, He X, Iuga D, Tian F, Watts A, Zhao X. Functional roles of tyrosine 185 during the bacteriorhodopsin photocycle as revealed by in situ spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1006-1014. [PMID: 29800547 DOI: 10.1016/j.bbabio.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/15/2018] [Accepted: 05/20/2018] [Indexed: 01/22/2023]
Abstract
Tyrosine 185 (Y185), one of the aromatic residues within the retinal (Ret) chromophore binding pocket in helix F of bacteriorhodopsin (bR), is highly conserved among the microbial rhodopsin family proteins. Many studies have investigated the functions of Y185, but its underlying mechanism during the bR photocycle remains unclear. To address this research gap, in situ two-dimensional (2D) magic-angle spinning (MAS) solid-state NMR (ssNMR) of specifically labelled bR, combined with light-induced transient absorption change measurements, dynamic light scattering (DLS) measurements, titration analysis and site-directed mutagenesis, was used to elucidate the functional roles of Y185 during the bR photocycle in the native membrane environment. Different interaction modes were identified between Y185 and the Ret chromophore in the dark-adapted (inactive) state and M (active) state, indicating that Y185 may serve as a rotamer switch maintaining the protein dynamics, and plays an important role in the efficient proton-pumping mechanism in the bR purple membrane.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, PA 17033-0850, USA
| | - Chao Sun
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Haolin Cui
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Sijin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Yujiao Gao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Yanan Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Juan Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Xiao He
- Shang Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Dinu Iuga
- The UK 850 MHz Solid-State NMR Facility, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, PA 17033-0850, USA.
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Xin Zhao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
11
|
Giliberti V, Badioli M, Nucara A, Calvani P, Ritter E, Puskar L, Aziz EF, Hegemann P, Schade U, Ortolani M, Baldassarre L. Heterogeneity of the Transmembrane Protein Conformation in Purple Membranes Identified by Infrared Nanospectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701181. [PMID: 28960799 DOI: 10.1002/smll.201701181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Cell membranes are intrinsically heterogeneous, as the local protein and lipid distribution is critical to physiological processes. Even in template systems embedding a single protein type, like purple membranes, there can be a different local response to external stimuli or environmental factors, resulting in heterogeneous conformational changes. Despite the dramatic advances of microspectroscopy techniques, the identification of the conformation heterogeneity is still a challenging task. Tip-enhanced infrared nanospectroscopy is here used to identify conformational changes connected to the hydration state of the transmembrane proteins contained in a 50 nm diameter cell membrane area, without the need for fluorescent labels. In dried purple membrane monolayers, areas with fully hydrated proteins are found among large numbers of molecules with randomly distributed hydration states. Infrared nanospectroscopy results are compared to the spectra obtained with diffraction-limited infrared techniques based on the use of synchrotron radiation, in which the diffraction limit still prevents the observation of nanoscale heterogeneity.
Collapse
Affiliation(s)
- Valeria Giliberti
- Istituto Italiano di Tecnologia, Center for Life NanoScience, Viale Regina Elena 291, I-00161, Roma, Italy
| | - Michela Badioli
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy
| | - Alessandro Nucara
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy
| | - Paolo Calvani
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy
| | - Eglof Ritter
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Ljiljana Puskar
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Emad Flear Aziz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Ulrich Schade
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Michele Ortolani
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy
| | - Leonetta Baldassarre
- Istituto Italiano di Tecnologia, Center for Life NanoScience, Viale Regina Elena 291, I-00161, Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy
| |
Collapse
|
12
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
13
|
Srour B, Bruechert S, Andrade SLA, Hellwig P. Secondary Structure Determination by Means of ATR-FTIR Spectroscopy. Methods Mol Biol 2017; 1635:195-203. [PMID: 28755370 DOI: 10.1007/978-1-4939-7151-0_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Specialized infrared spectroscopic techniques have been developed that allow studying the secondary structure of membrane proteins and the influence of crucial parameters like lipid content and detergent. Here, we focus on an ATR-FTIR spectroscopic study of Af-Amt1 and the influence of LDAO/glycerol on its structural integrity. Our results clearly indicate that infrared spectroscopy can be used to identify the adapted sample conditions.
Collapse
Affiliation(s)
- Batoul Srour
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, Strasbourg, France
| | - Stefan Bruechert
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Susana L A Andrade
- BIOSS Centre for Biological Signalling Studies, Schänzlestr. 1, 79104, Freiburg, Germany
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Tuning the Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs. Biophys J 2016; 109:1899-906. [PMID: 26536266 DOI: 10.1016/j.bpj.2015.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/19/2015] [Accepted: 09/11/2015] [Indexed: 11/22/2022] Open
Abstract
Monodisperse lipid nanodiscs are particularly suitable for characterizing membrane protein in near-native environment. To study the lipid-composition dependence of photocycle kinetics of bacteriorhodopsin (bR), transient absorption spectroscopy was utilized to monitor the evolution of the photocycle intermediates of bR reconstituted in nanodiscs composed of different ratios of the zwitterionic lipid (DMPC, dimyristoyl phosphatidylcholine; DOPC, dioleoyl phosphatidylcholine) to the negatively charged lipid (DOPG, dioleoyl phosphatidylglycerol; DMPG, dimyristoyl phosphatidylglycerol). The characterization of ion-exchange chromatography showed that the negative surface charge of nanodiscs increased as the content of DOPG or DMPG was increased. The steady-state absorption contours of the light-adapted monomeric bR in nanodiscs composed of different lipid ratios exhibited highly similar absorption features of the retinal moiety at 560 nm, referring to the conservation of the tertiary structure of bR in nanodiscs of different lipid compositions. In addition, transient absorption contours showed that the photocycle kinetics of bR was significantly retarded and the transient populations of intermediates N and O were decreased as the content of DMPG or DOPG was reduced. This observation could be attributed to the negatively charged lipid heads of DMPG and DOPG, exhibiting similar proton relay capability as the native phosphatidylglycerol (PG) analog lipids in the purple membrane. In this work, we not only demonstrated the usefulness of nanodiscs as a membrane-mimicking system, but also showed that the surrounding lipids play a crucial role in altering the biological functions, e.g., the ion translocation kinetics of the transmembrane proteins.
Collapse
|
15
|
Yeh V, Hsin Y, Lee TY, Chan JCC, Yu TY, Chu LK. Lipids influence the proton pump activity of photosynthetic protein embedded in nanodiscs. RSC Adv 2016. [DOI: 10.1039/c6ra13650h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We report the lipid-composition dependent photocycle kinetics and proton pump activity of bacteriorhodopsin (bR) embedded in nanodiscs composed of different lipids.
Collapse
Affiliation(s)
- Vivien Yeh
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
- Department of Chemistry
| | - Yin Hsin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Tsung-Yen Lee
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | | | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Li-Kang Chu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| |
Collapse
|
16
|
Harris A, Ljumovic M, Bondar AN, Shibata Y, Ito S, Inoue K, Kandori H, Brown LS. A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1518-29. [PMID: 26260121 DOI: 10.1016/j.bbabio.2015.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
One of the main functions of microbial rhodopsins is outward-directed light-driven proton transport across the plasma membrane, which can provide sources of energy alternative to respiration and chlorophyll photosynthesis. Proton-pumping rhodopsins are found in Archaea (Halobacteria), multiple groups of Bacteria, numerous fungi, and some microscopic algae. An overwhelming majority of these proton pumps share the common transport mechanism, in which a proton from the retinal Schiff base is first transferred to the primary proton acceptor (normally an Asp) on the extracellular side of retinal. Next, reprotonation of the Schiff base from the cytoplasmic side is mediated by a carboxylic proton donor (Asp or Glu), which is located on helix C and is usually hydrogen-bonded to Thr or Ser on helix B. The only notable exception from this trend was recently found in Exiguobacterium, where the carboxylic proton donor is replaced by Lys. Here we describe a new group of efficient proteobacterial retinal-binding light-driven proton pumps which lack the carboxylic proton donor on helix C (most often replaced by Gly) but possess a unique His residue on helix B. We characterize the group spectroscopically and propose that this histidine forms a proton-donating complex compensating for the loss of the carboxylic proton donor.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics, University of Guelph, ON, Canada
| | | | | | - Yohei Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan; PRESTO, Japan Science and Technology Agency, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.
| | - Leonid S Brown
- Department of Physics, University of Guelph, ON, Canada.
| |
Collapse
|
17
|
Tsai FK, Fu HY, Yang CS, Chu LK. Photochemistry of a Dual-Bacteriorhodopsin System in Haloarcula marismortui: HmbRI and HmbRII. J Phys Chem B 2014; 118:7290-301. [DOI: 10.1021/jp503629v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fu-Kuo Tsai
- Department
of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsu-Yuan Fu
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chii-Shen Yang
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute
of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Kang Chu
- Department
of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
18
|
Ono H, Inoue K, Abe-Yoshizumi R, Kandori H. FTIR Spectroscopy of a Light-Driven Compatible Sodium Ion-Proton Pumping Rhodopsin at 77 K. J Phys Chem B 2014; 118:4784-92. [DOI: 10.1021/jp500756f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | | | | |
Collapse
|
19
|
Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun 2014; 4:2154. [PMID: 23877168 PMCID: PMC3759039 DOI: 10.1038/ncomms3154] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/17/2013] [Indexed: 01/28/2023] Open
Abstract
Infrared absorption spectroscopy is a powerful biochemical analysis tool as it extracts detailed molecular structural information in a label-free fashion. Its molecular specificity renders the technique sensitive to the subtle conformational changes exhibited by proteins in response to a variety of stimuli. Yet, sensitivity limitations and the extremely strong absorption bands of liquid water severely limit infrared spectroscopy in performing kinetic measurements in biomolecules’ native, aqueous environments. Here we demonstrate a plasmonic chip-based technology that overcomes these challenges, enabling the in-situ monitoring of protein and nanoparticle interactions at high sensitivity in real time, even allowing the observation of minute volumes of water displacement during binding events. Our approach leverages the plasmonic enhancement of absorption bands in conjunction with a non-classical form of internal reflection. These features not only expand the reach of infrared spectroscopy to a new class of biological interactions but also additionally enable a unique chip-based technology. Infrared absorption spectroscopy provides important information about molecules, but is hampered by the absorption of water. Adato and Altug exploit the plasmonic enhancement from nanoantennas to overcome this, enabling chip-based monitoring of biological samples in aqueous environments.
Collapse
Affiliation(s)
- Ronen Adato
- Insititute of Bioengineering, Ecole Polytechnique Federale De Lausanne, Lausanne 1015, Switzerland
| | | |
Collapse
|
20
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 836] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
21
|
Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J Ginseng Res 2013; 38:52-8. [PMID: 24558311 PMCID: PMC3915324 DOI: 10.1016/j.jgr.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.
Collapse
|
22
|
|
23
|
|
24
|
|
25
|
Honig B, Ottolenghi M, Sheves M. Acid-Base Equilibria and the Proton Pump in Bacteriorhodopsin. Isr J Chem 2013. [DOI: 10.1002/ijch.199500041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Althaus T, Eisfeld W, Lohrmann R, Stockburger M. Application of Raman Spectroscopy to Retinal Proteins. Isr J Chem 2013. [DOI: 10.1002/ijch.199500029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
|
28
|
Maeda A. Application of FTIR Spectroscopy to the Structural Study on the Function of Bacteriorhodopsin. Isr J Chem 2013. [DOI: 10.1002/ijch.199500038] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
El-Sayed MA, Yang D, Yoo SK, Zhang N. The Effect of Different Metal Cation Binding on the Proton Pumping in Bacteriorhodopsin. Isr J Chem 2013. [DOI: 10.1002/ijch.199500043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Chou KC. A molecular piston mechanism of pumping protons by bacteriorhodopsin. Amino Acids 2013; 7:1-17. [PMID: 24185969 DOI: 10.1007/bf00808442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1993] [Accepted: 12/20/1993] [Indexed: 10/26/2022]
Abstract
In this review the proton-pumping mechanism proposed recently for bacteriorhodopsin [Chou, K. C. (1993) Journal of Protein Chemistry, 12: 337-350] is illustrated in terms of a phenomenological model. According to the model, theβ-ionone of the retinal chromophore in bacteriorhodopsin can be phenomenologically imagined as a molecular "piston". The photon capture by bacteriorhodopsin would "pull" it up while the spontaneous decrease in potential energy would "push" it down so that it would be up and down alternately during the photocycle process. When it is pulled up, the gate of pore is open and the water channel for the proton translocation is through; when it is pushed down, the gate of pore is closed and the water channel is shut up. Such a model not only is quite consistent with experimental observations, but also provides useful insights and a different view to elucidate the protonpumping mechanism of bacteriorhodopsin. The essence of the model might be useful in investigating the mechanism of ion-channels of other membrane proteins.
Collapse
Affiliation(s)
- K C Chou
- Computational Chemistry, Upjohn Laboratories, 49001-4940, Kalamazoo, Michigan, USA
| |
Collapse
|
31
|
Furutani Y, Kandori H. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:598-605. [PMID: 24041645 DOI: 10.1016/j.bbabio.2013.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022]
Abstract
Microbial rhodopsins are classified into type-I rhodopsins, which utilize light energy to perform wide varieties of function, such as proton pumping, ion pumping, light sensing, cation channels, and so on. The crystal structures of several type-I rhodopsins were solved and the molecular mechanisms have been investigated based on the atomic structures. However, the crystal structures of proteins of interest are not always available and the basic architectures are sometimes quite similar, which obscures how the proteins achieve different functions. Stimulus-induced difference FTIR spectroscopy is a powerful tool to detect minute structural changes providing a clue for elucidating the molecular mechanisms. In this review, the studies on type-I rhodopsins from fungi and marine bacteria, whose crystal structures have not been solved yet, were summarized. Neurospora rhodopsin and Leptosphaeria rhodopsin found from Fungi have sequence similarity. The former has no proton pumping function, while the latter has. Proteorhodopsin is another example, whose proton pumping machinery is altered at alkaline and acidic conditions. We described how the structural changes of protein were different and how water molecules were involved in them. We reviewed the results on dynamics of the internal water molecules in pharaonis halorhodopsin as well. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
32
|
Probing protein-protein interaction in biomembranes using Fourier transform infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2265-71. [PMID: 23624429 DOI: 10.1016/j.bbamem.2013.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/05/2013] [Indexed: 11/27/2022]
Abstract
The position, intensity and width of bands in infrared spectra that arise from vibrational modes within a protein can be used to probe protein secondary structure, amino acid side chain structure as well as protein dynamics and stability. FTIR spectroscopic studies on protein-protein interaction have been severely limited due to extensive overlap of peaks, from the interacting proteins. This problem is being addressed by combining data processing and acquisition techniques (difference spectroscopy and two-dimensional spectroscopy) with judicious modifications in the protein primary structure through molecular biological and chemical methods. These include the ability to modify amino acids (site-directed mutagenesis; chemical synthesis) and produce isotopically labelled proteins and peptides. Whilst great progress is being made towards overcoming the congestion of overlapping peaks, the slow progress in the assignment of bands continues to be a major hindrance in the use of infrared spectroscopy for obtaining highly accurate and precise information on protein structure. This review discusses some of these problems and presents examples of infrared studies on protein-protein interaction in biomembrane systems. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
|
33
|
Furutani Y, Okitsu T, Reissig L, Mizuno M, Homma M, Wada A, Mizutani Y, Sudo Y. Large Spectral Change due to Amide Modes of a β-Sheet upon the Formation of an Early Photointermediate of Middle Rhodopsin. J Phys Chem B 2013; 117:3449-58. [DOI: 10.1021/jp308765t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex
Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi,
Saitama, 332-0012, Japan
| | - Takashi Okitsu
- Graduate School of Organic Chemistry
for Life Science, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Louisa Reissig
- Division of Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Homma
- Division of Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Akimori Wada
- Graduate School of Organic Chemistry
for Life Science, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Sudo
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi,
Saitama, 332-0012, Japan
- Division of Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
34
|
Karjalainen EL, Barth A. Vibrational coupling between helices influences the amide I infrared absorption of proteins: application to bacteriorhodopsin and rhodopsin. J Phys Chem B 2012; 116:4448-56. [PMID: 22435481 DOI: 10.1021/jp300329k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The amide I spectrum of multimers of helical protein segments was simulated using transition dipole coupling (TDC) for long-range interactions between individual amide oscillators and DFT data from dipeptides (la Cour Jansen et al. J. Chem. Phys.2006, 125, 44312) for nearest neighbor interactions. Vibrational coupling between amide groups on different helices shift the helix absorption to higher wavenumbers. This effect is small for helix dimers (1 cm(-1)) at 10 Å distance and only moderately affected by changes in the relative orientation between the helices. However, the effect becomes considerable when several helices are bundled in membrane proteins. Particular examples are the 7-helix membrane proteins bacteriorhodopsin (BR) and rhodopsin, where the upshift is 4.3 and 5.3 cm(-1), respectively, due to interhelical coupling within a BR monomer. A further upshift of 4.0 cm(-1) occurs when BR monomers associate to trimers. We propose that interhelical vibrational coupling explains the experimentally observed unusually high wavenumber of the amide I band of BR.
Collapse
Affiliation(s)
- Eeva-Liisa Karjalainen
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
35
|
Fischer WB, Wang YT, Schindler C, Chen CP. Mechanism of function of viral channel proteins and implications for drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:259-321. [PMID: 22364876 PMCID: PMC7149447 DOI: 10.1016/b978-0-12-394305-7.00006-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral channel-forming proteins comprise a class of viral proteins which, similar to their host companions, are made to alter electrochemical or substrate gradients across lipid membranes. These proteins are active during all stages of the cellular life cycle of viruses. An increasing number of proteins are identified as channel proteins, but the precise role in the viral life cycle is yet unknown for the majority of them. This review presents an overview about these proteins with an emphasis on those with available structural information. A concept is introduced which aligns the transmembrane domains of viral channel proteins with those of host channels and toxins to give insights into the mechanism of function of the viral proteins from potential sequence identities. A summary of to date investigations on drugs targeting these proteins is given and discussed in respect of their mode of action in vivo.
Collapse
Affiliation(s)
- Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Ting Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Christina Schindler
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Pei Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
36
|
Clair ECS, Ogren JI, Mamaev S, Kralj JM, Rothschild KJ. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks. J Biol Phys 2011; 38:153-68. [PMID: 23277676 DOI: 10.1007/s10867-011-9246-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/25/2011] [Indexed: 11/30/2022] Open
Abstract
Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing.
Collapse
Affiliation(s)
- Erica C Saint Clair
- Department of Physics, Photonics Center and Molecular Biophysics Laboratory, Boston University, Boston, MA 02215 USA
| | | | | | | | | |
Collapse
|
37
|
Protein-protein interaction changes in an archaeal light-signal transduction. J Biomed Biotechnol 2010; 2010:424760. [PMID: 20671933 PMCID: PMC2910557 DOI: 10.1155/2010/424760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
Negative phototaxis in Natronomonas pharaonis is initiated by transient interaction changes between photoreceptor and transducer. pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) and the cognate transducer protein, pHtrII, form a tight 2 : 2 complex in the unphotolyzed state, and the interaction is somehow altered during the photocycle of ppR. We have studied the signal transduction mechanism in the ppR/pHtrII system by means of low-temperature Fourier-transform infrared (FTIR) spectroscopy. In the paper, spectral comparison in the absence and presence of pHtrII provided fruitful information in atomic details, where vibrational bands were identified by the use of isotope-labeling and site-directed mutagenesis. From these studies, we established the two pathways of light-signal conversion from the receptor to the transducer; (i) from Lys205 (retinal) of ppR to Asn74 of pHtrII through Thr204 and Tyr199, and (ii) from Lys205 of ppR to the cytoplasmic loop region of pHtrII that links Gly83.
Collapse
|
38
|
The branched photocycle of the slow-cycling channelrhodopsin-2 mutant C128T. J Mol Biol 2010; 398:690-702. [PMID: 20346954 DOI: 10.1016/j.jmb.2010.03.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 11/22/2022]
Abstract
Channelrhodopsins (ChRs) of green algae such as Chlamydomonas are used as neuroscience tools to specifically depolarize cells with light. A crude model of the ChR2 photocycle has been recently established, but details of the photoreactions are widely unknown. Here, we present the photoreactions of a slow-cycling ChR2 mutant (step function rhodopsin), with C128 replaced by threonine and 200-fold extended lifetime of the conducting-state P520. At a late state of the photocycle, a fraction of the proteins branches off into an inactive species, P380, which accumulates during prolonged illumination. At neutral pH, P380 is converted into P353, a species with a characteristic fine-structured spectrum that is interpreted as retroretinyl chromophore. The described branching reactions should be considered, when ChR is used as a neuroscience tool, especially in the case of fluorescence imaging at high light intensities.
Collapse
|
39
|
Fujimoto KJ, Asai K, Hasegawa JY. Theoretical study of the opsin shift of deprotonated retinal schiff base in the M state of bacteriorhodopsin. Phys Chem Chem Phys 2010; 12:13107-16. [DOI: 10.1039/c0cp00361a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J Biol Chem 2008; 283:35033-41. [PMID: 18927082 DOI: 10.1074/jbc.m806353200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.
Collapse
Affiliation(s)
- Eglof Ritter
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
41
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
42
|
Han X, Hristova K, Wimley WC. Protein folding in membranes: insights from neutron diffraction studies of a membrane beta-sheet oligomer. Biophys J 2008; 94:492-505. [PMID: 17872952 PMCID: PMC2157250 DOI: 10.1529/biophysj.107.113183] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 08/28/2007] [Indexed: 11/18/2022] Open
Abstract
Studies of the assembly of the hexapeptide Acetyl-Trp-Leu(5) (AcWL(5)) into beta-sheets in membranes have provided insights into membrane protein folding. Yet, the exact structure of the oligomer in the lipid bilayer is unknown. Here we use neutron diffraction to study the disposition of the peptides in bilayers. We find that pairs of adjacent deuterium-labeled leucines have no well-defined peak or dip in the transmembrane distribution profiles, indicative of heterogeneity in the depth of membrane insertion. At the same time, the monomeric homolog AcWL(4) exhibits a homogeneous, well-defined, interfacial location in neutron diffraction experiments. Thus, although the bilayer location of monomeric AcWL(4) is determined by hydrophobicity matching or complementarity within the bilayer, the AcWL(5) molecules in the oligomer are positioned at different depths within the bilayer because they assemble into a staggered transmembrane beta-sheet. The AcWL(5) assembly is dominated by protein-protein interactions rather than hydrophobic complementarity. These results have implications for the structure and folding of proteins in their native membrane environment and highlight the importance of the interplay between hydrophobic complementarity and protein-protein interactions in determining the structure of membrane proteins.
Collapse
Affiliation(s)
- Xue Han
- The Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
43
|
Hasegawa JY, Nakatsuji H. Exploring Photobiology and Biospectroscopy with the Sac-Ci (Symmetry-Adapted Cluster-Configuration Interaction) Method. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-1-4020-8184-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
44
|
Massaro S, Zlateva T, Torre V, Quaroni L. Detection of molecular processes in the intact retina by ATR-FTIR spectromicroscopy. Anal Bioanal Chem 2007; 390:317-22. [DOI: 10.1007/s00216-007-1710-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Revised: 10/10/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
|
45
|
Barth A. Infrared spectroscopy of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1073-101. [PMID: 17692815 DOI: 10.1016/j.bbabio.2007.06.004] [Citation(s) in RCA: 3018] [Impact Index Per Article: 167.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 12/12/2022]
Abstract
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.
Collapse
Affiliation(s)
- Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
46
|
Tittor J, Oesterhelt D, Bamberg E. Bacteriorhodopsin mutants D85N, D85T and D85,96N as proton pumps. Biophys Chem 2007; 56:153-7. [PMID: 17023320 DOI: 10.1016/0301-4622(95)00027-u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton translocation in the BR mutants D85N, D85T and D85,96N was studied by attachment of purple membranes to planar lipid bilayers. Pump currents in these mutants were measured via capacitive coupling and by use of the appropriate ionophores. All mutants have a reduced pK of their Schiff bases around 8-8.5 in common. At physiological pH, a mixture of chromophores absorbing at 410 nm (deprotonated form) and around 600 nm (protonated form) coexists. Excitation with continuous blue light induces in all three mutants an outwardly directed stationary pump current. These currents are enhanced upon addition of azide in D85N and D85,96N by a factor of 50, but no azide enhancement is observed in D85T. Yellow light alone induces transient inwardly directed currents in the mutants but additional blue light leads to a stationary current with the same direction. All the observed currents are carried by protons, so that the consecutive absorption of a yellow and a blue photon leads to inverted stationary photocurrents by the mutants, as observed with halorhodopsin (HR). A mechanistic model describing the inversion of proton pumping is discussed by the cis-trans, trans-cis isomerization of the retinal and the different proton accessibility of the Schiff base from the extracellular or the cytoplasmic side of the membrane.
Collapse
Affiliation(s)
- J Tittor
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
47
|
Balashov SP, Ebrey TG. Trapping and Spectroscopic Identification of the Photointermediates of Bacteriorhodopsin at Low Temperatures¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730453tasiot2.0.co2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Kietis BP, Saudargas P, Vàró G, Valkunas L. External electric control of the proton pumping in bacteriorhodopsin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:199-211. [PMID: 17186234 DOI: 10.1007/s00249-006-0120-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 10/18/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Comparative analysis of the photoelectric response of dried films of purple membranes (PM) depending on their degree of orientation is presented. Time dependence of the photo-induced protein electric response signal (PERS) of oriented and non-oriented films to a single laser pulse in the presence of the external electric field (EEF) was experimentally determined. The signal does not appear in the non-oriented films when the EEF is absent, whereas the PERS of the oriented PM films demonstrates the variable polarity on the microsecond time scale. In the presence of the EEF the PERS of the non-oriented film rises exponentially preserving the same polarization. The polarization of the PERS changes by changing the polarity of the EEF with no influence on the time constant of the PERS kinetics. The EEF effect on the PERS of the oriented films is more complicated. By subtracting the PERS when EEF not equal 0 from the PERS when EEF = 0 the resulting signal is comparable to that of the non-oriented films. Generalizing the experimental data we conclude that the EEF influence is of the same origin for the films of any orientation. To explain the experimental results the two-state model is suggested. It assumes that the EEF directionally changes the pK(a) values of the Schiff base (SB) and of the proton acceptor aspartic acid D85 in bacteriorhodopsin. Because of that the SB-->D85 proton transfer might be blocked and consequently the L-->M intermediate transition should vanish. Thus, on the characteristic time scale tau( L --> M ) approximately 30 micros; both intermediates, the M intermediate, appearing under normal conditions, and the L intermediate as persisting under the blocked conditions when D85 is protonated, should coexist in the film. The total PERS is a result of the potentials corresponding to the electrogenic products of intermediates L and M that are of the opposite polarity. It is concluded that the ratio of bacteriorhodopsin concentrations corresponding to the L and M intermediates is driven by the EEF and, consequently, it should define the PERS of the non-oriented films. According to this model the orientation degree of the film could be evaluated by describing the PERS.
Collapse
|
49
|
Ferreira AM, Bashford D. Model for Proton Transport Coupled to Protein Conformational Change: Application to Proton Pumping in the Bacteriorhodopsin Photocycle. J Am Chem Soc 2006; 128:16778-90. [PMID: 17177428 DOI: 10.1021/ja060742d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modeling method is presented for protein systems in which proton transport is coupled to conformational change, as in proton pumps and in motors driven by the proton-motive force. Previously developed methods for calculating pKa values in proteins using a macroscopic dielectric model are extended beyond the equilibrium case to a master-equation model for the time evolution of the system through states defined by ionization microstate and a discrete set of conformers. The macroscopic dielectric model supplies free energy changes for changes of protonation microstate, while the method for obtaining the energetics of conformational change and the relaxation rates, the other ingredients needed for the master equation, are system dependent. The method is applied to the photoactivated proton pump, bacteriorhodopsin, using conformational free energy differences from experiment and treating relaxation rates through three adjustable parameters. The model is found to pump protons with an efficiency relatively insensitive to parameter choice over a wide range of parameter values, and most of the main features of the known photocycle from very early M to the return to the resting state are reproduced. The boundaries of these parameter ranges are such that short-range proton transfers are faster than longer-range ones, which in turn are faster than conformational changes. No relaxation rates depend on conformation. The results suggest that an "accessibility switch", while not ruled out, is not required and that vectorial proton transport can be achieved through the coupling of the energetics of ionization and conformational states.
Collapse
Affiliation(s)
- Antonio M Ferreira
- Department of Molecular Biotechnology, Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | |
Collapse
|
50
|
Mizuide N, Shibata M, Friedman N, Sheves M, Belenky M, Herzfeld J, Kandori H. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Biochemistry 2006; 45:10674-81. [PMID: 16939219 DOI: 10.1021/bi060958s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin (BR), a light-driven proton pump in Halobacterium salinarum, accommodates two resting forms of the retinylidene chromophore, the all-trans form (AT-BR) and the 13-cis,15-syn form (13C-BR). Both isomers are present in thermal equilibrium in the dark, but only the all-trans form has proton-pump activity. In this study, we applied low-temperature Fourier-transform infrared (FTIR) spectroscopy to 13C-BR at 77 K and compared the local structure around the chromophore before and after photoisomerization with that in AT-BR. Strong hydrogen-out-of-plane (HOOP) vibrations were observed at 964 and 958 cm(-)(1) for the K state of 13C-BR (13C-BR(K)) versus a vibration at 957 cm(-)(1) for the K state of AT-BR (AT-BR(K)). In AT-BR(K), but not in 13C-BR(K), the HOOP modes exhibit isotope shifts upon deuteration of the retinylidene at C15 and at the Schiff base nitrogen. Whereas the HOOP modes of AT-BR(K) were significantly affected by the mutation of Thr89, this was not the case for the HOOP modes of 13C-BR(K). These observations imply that, while the chromophore distortion is localized near the Schiff base in AT-BR(K), it is located elsewhere in 13C-BR(K). By use of [zeta-(15)N]lysine-labeled BR, we identified the N-D stretching vibrations of the 13C-BR Schiff base (in D(2)O) at 2173 and 2056 cm(-)(1), close in frequency to those of AT-BR. These frequencies indicate strong hydrogen bonding of the Schiff base in 13C-BR, presumably with a water molecule as in AT-BR. In contrast, the N-D stretching vibration appears at 2332 and 2276 cm(-)(1) in 13C-BR(K) versus values of 2495 and 2468 cm(-)(1) for AT-BR(K), suggesting that the rupture of the Schiff base hydrogen bond that occurs in AT-BR(K) does not occur in 13C-BR(K). Rotational motion of the Schiff base upon retinal isomerization is probably smaller in magnitude for 13C-BR than for AT-BR. These differences in the primary step are possibly related to the absence of light-driven proton pumping by 13C-BR.
Collapse
Affiliation(s)
- Noriko Mizuide
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|