1
|
Feldmann J, Martin P, Bender B, Laugwitz L, Zizmare L, Trautwein C, Krägeloh-Mann I, Klose U, Groeschel S. MR-spectroscopy in metachromatic leukodystrophy: A model free approach and clinical correlation. Neuroimage Clin 2023; 37:103296. [PMID: 36563646 PMCID: PMC9800432 DOI: 10.1016/j.nicl.2022.103296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to demyelination and subsequently to a progressive decline in cognitive and motor function. It affects mainly white matter where changes during the course of the disease can be visualized on T2-weighted MRI as hyperintense areas. Associated changes in brain metabolism can be quantified by MR spectroscopy (MRS) and may give complementary information as biomarkers for disease characterisation and progression. Our study aimed to further investigate the correlation of MRS with clinical parameters for motor and cognitive function by using a model free MRS analysis approach that would be precise and straightforward to implement. MATERIALS AND METHODS 53 MRS datasets derived from 29 patients (10 late-infantile, 19 juvenile) and 12 controls were acquired using a semi-LASER CSI sequence covering a slice through the centrum semiovale above the corpus callosum. We defined four regions of interest in the white matter (frontal white matter [FWM] and the cortico-spinal tract [CST] area, each left and right) and one in cortical grey matter. Spectra were analysed using a model and fitting free approach by calculating the definite integral of 10 intervals which were distributed along the whole spectrum. These 10 intervals were orientated towards the main peaks of the metabolites N-acetylaspartate (NAA), creatine, myo-inositol, choline, glutamine/glutamate and aspartate to approximately attribute changes in the intervals to corresponding metabolites. Their ratios to the main creatine peak integral were correlated with clinical parameters assessing motor and cognitive abilities. Furthermore, in a post-hoc analysis, NAA levels of a subset of 21 MR datasets were correlated to NAA levels in urine measured by 1H (proton) nuclear magnetic resonance (NMR) spectroscopy. The applied interval integration method was validated in the control cohort against the standard approach, using spectral profile templates of known metabolites (LCModel). Both methods showed good agreement, with coefficients of variance being slightly lower for our approach compared to the related LCModel results. Moreover, the new approach was able to extract information out of the frequency range around the main peaks of aspartate and glutamine where LCModel showed only few usable values for the respective metabolites. RESULTS MLD spectra clearly differed from controls. The most pronounced differences were found in white matter (much less in grey matter), with larger values corresponding to main peaks of myo-inositol, choline and aspartate, and smaller values associated with NAA and glutamine. Late-infantile patients had more severe changes compared to later-onset patients, especially in intervals corresponding to NAA, aspartate, myo-inositol, choline and glutamine. There was a high correlation of several intervals in the corticospinal tract region with motor function (with the most relevant interval corresponding to NAA peak with a correlation coefficient of -0.75; p < 0.001), while cognitive function, by means of IQ, was found to be most correlating in frontal white matter corresponding to the NAA peak (r = 0.84, p < 0.001). The post-hoc analysis showed that the main NAA peak interval correlated negatively with the NAA in urine (r = -0.584, p < 0.001). CONCLUSION The applied model and fitting free interval integration approach to analyse MRS data of a semi-LASER sequence at 3T suits well to detect and quantify pathological changes in MLD patients through the different courses of the disease and correlates well with clinical symptoms while showing smaller dimensions of variation compared to the more sophisticated single metabolite analysis using LCModel. NAA seems the most clinically meaningful biomarker to use in this context. Its correlation with urine measurements further underlines its potential as a clinically and biologically useful parameter of disease progression in MLD.
Collapse
Affiliation(s)
- Joana Feldmann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Lucia Laugwitz
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, University of Tübingen, 72076 Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Vints WAJ, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol 2022; 66:100993. [PMID: 35283168 DOI: 10.1016/j.yfrne.2022.100993] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Tervuursevest 101, 3001 Heverlee, Belgium.
| | - Hakuei Fujiyama
- Department of Psychology, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South St., WA 6150 Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South St., WA 6150 Perth, Australia.
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, P.O. Box 88, 6430 AB Hoensbroek, the Netherlands.
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Sporto str. 6, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21, LT-03101 Vilnius, Lithuania.
| |
Collapse
|
3
|
Whitehead MT, Lai LM, Blüml S. Clinical 1H MRS in childhood neurometabolic diseases — part 2: MRS signatures. Neuroradiology 2022; 64:1111-1126. [DOI: 10.1007/s00234-022-02918-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
|
4
|
Prescot A, Huber R, Kanekar S, Kondo D, Prisciandaro J, Ongur D, Renshaw PF. Effect of moderate altitude on human cerebral metabolite levels: A preliminary, multi-site, proton magnetic resonance spectroscopy investigation. Psychiatry Res Neuroimaging 2021; 314:111314. [PMID: 34098247 DOI: 10.1016/j.pscychresns.2021.111314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Epidemiological studies show that altitude-of-residence is an independent risk factor for worsening rates of mood disorders, substance abuse, and suicide. Proton (1H) magnetic resonance spectroscopy (MRS) studies in rodent models of moderate-to-high altitude exposure have documented significant alterations in total creatine, glutamate, and myo-inositol, neurometabolites involved in bioenergetic homeostasis and neuronal/glial cell function. This preliminary study utilized 3 Tesla 1H MRS to study anterior cingulate cortex (ACC) and parietal-occipital cortex (POC) neurochemistry in healthy subjects residing in Utah (n = 19), Massachusetts (n = 10), and South Carolina (n = 10), to test the hypothesis that individuals residing at moderate altitude (Utah; 1,372 m) would show neurometabolite alterations vs. subjects living at sea level. Expressed as ratios to total N-acetyl aspartate (NAA), Utah participants showed lower ACC (p = 0.03) and POC (p < 0.01) total creatine, a trend towards lower ACC glutamate (p = 0.06), and lower POC myo-inositol (p = 0.02). Study limitations include small sample sizes and uncorrected multiple comparisons. To our knowledge, this is the first MRS investigation to identify potential neurochemical differences in individuals residing at moderate altitudes vs. sea level, warranting future 1H MRS studies in larger cohorts and across a range of altitudes-of-residence.
Collapse
Affiliation(s)
- Andrew Prescot
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States.
| | - Rebekah Huber
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Shami Kanekar
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States; Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC), George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - Douglas Kondo
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States; Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC), George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - James Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| | - Dost Ongur
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Cambridge, MA, United States
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, United States; Rocky Mountain Mental Illness Research, Education and Clinical Center (MIRECC), George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Í Dali C, Sevin C, Krägeloh-Mann I, Giugliani R, Sakai N, Wu J, Wasilewski M. Safety of intrathecal delivery of recombinant human arylsulfatase A in children with metachromatic leukodystrophy: Results from a phase 1/2 clinical trial. Mol Genet Metab 2020; 131:235-244. [PMID: 32792226 DOI: 10.1016/j.ymgme.2020.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD) is an autosomal recessive disorder caused by deficient arylsulfatase A (ASA) activity and characterized by neurological involvement that results in severe disability and premature death. We examined the safety and tolerability of intrathecally delivered recombinant human ASA (rhASA; SHP611, now TAK-611) in children with MLD (NCT01510028). Secondary endpoints included change in cerebrospinal fluid (CSF) sulfatide and lysosulfatide levels, and motor function (assessed by Gross Motor Function Measure-88 total score). METHODS Twenty-four children with MLD who experienced symptom onset aged ≤ 30 months were enrolled. Patients received rhASA every other week (EOW) for 38 weeks at 10, 30, or 100 mg (cohorts 1-3; n = 6 per cohort), or 100 mg manufactured using a revised process (cohort 4; n = 6). RESULTS No rhASA-related serious adverse events (SAEs) were observed; 25% of patients experienced an SAE related to the intrathecal device or drug delivery method. Mean CSF sulfatide and lysosulfatide levels fell to within normal ranges in both 100 mg cohorts following treatment. Although there was a general decline in motor function over time, there was a tendency towards a less pronounced decline in patients receiving 100 mg. CONCLUSION Intrathecal rhASA was generally well tolerated at doses up to 100 mg EOW. These preliminary data support further development of rhASA as a therapy for patients with MLD.
Collapse
Affiliation(s)
- Christine Í Dali
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | | | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, University Children's Hospital Tübingen, Tübingen, Germany.
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Department of Genetics, UFRGS, and INAGEMP, Porto Alegre, Brazil.
| | | | - James Wu
- Shire, a member of the Takeda group of companies, Lexington, MA, USA.
| | | |
Collapse
|
6
|
Gul M, Azari Jafari A, Shah M, Mirmoeeni S, Haider SU, Moinuddin S, Chaudhry A. Molecular Biomarkers in Multiple Sclerosis and Its Related Disorders: A Critical Review. Int J Mol Sci 2020; 21:E6020. [PMID: 32825639 PMCID: PMC7547375 DOI: 10.3390/ijms21176020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS) which can lead to severe disability. Several diseases can mimic the clinical manifestations of MS. This can often lead to a prolonged period that involves numerous tests and investigations before a definitive diagnosis is reached. As well as the possibility of misdiagnosis. Molecular biomarkers can play a unique role in this regard. Molecular biomarkers offer a unique view into the CNS disorders. They help us understand the pathophysiology of disease as well as guiding our diagnostic, therapeutic, and prognostic approaches in CNS disorders. This review highlights the most prominent molecular biomarkers found in the literature with respect to MS and its related disorders. Based on numerous recent clinical and experimental studies, we demonstrate that several molecular biomarkers could very well aid us in differentiating MS from its related disorders. The implications of this work will hopefully serve clinicians and researchers alike, who regularly deal with MS and its related disorders.
Collapse
Affiliation(s)
- Maryam Gul
- Precision Rheumatology INC, 2050 South Euclid Street, Anaheim, CA 92802, USA
| | - Amirhossein Azari Jafari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773947, Iran; (A.A.J.); (S.M.)
| | - Muffaqam Shah
- Deccan College of Medical Sciences, P.O. Kanchanbagh, DMRL ‘X’ Road, Santhosh Nagar, Hyderabad 500058, Telangana State, India;
| | - Seyyedmohammadsadeq Mirmoeeni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773947, Iran; (A.A.J.); (S.M.)
| | - Safee Ullah Haider
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical College, Shaikh Zayed Medical Complex, Lahore 54000, Pakistan;
| | - Sadia Moinuddin
- Department of Internal Medicine, San Antonio Regional Medical Center, 999 San Bernardino Rd, Upland, CA 91786, USA;
| | - Ammar Chaudhry
- Department of Radiology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
7
|
van Rappard DF, Klauser A, Steenweg ME, Boelens JJ, Bugiani M, van der Knaap MS, Wolf NI, Pouwels PJW. Quantitative MR spectroscopic imaging in metachromatic leukodystrophy: value for prognosis and treatment. J Neurol Neurosurg Psychiatry 2018; 89:105-111. [PMID: 28889092 DOI: 10.1136/jnnp-2017-316364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To determine whether proton magnetic resonance spectroscopic imaging is useful in predicting clinical course of patients with metachromatic leukodystrophy (MLD), an inherited white matter disorder treatable with haematopoietic cell transplantation (HCT). METHODS 21 patients with juvenile or adult MLD (12 HCT-treated) were compared with 16 controls in the same age range. Clinical outcome was determined as good, moderate or poor. Metabolites were quantified in white matter, and significance of metabolite concentrations at baseline for outcome prediction was assessed using logistic regression analysis. Evolution of metabolic changes was assessed for patients with follow-up examinations. RESULTS In this retrospective study, 16 patients with baseline scans were included, 5 with good, 3 with moderate and 8 with poor outcome, and 16 controls. We observed significant group differences for all metabolite concentrations in white matter (p<0.001). Compared with controls, patients had decreased N-acetylaspartate and glutamate, and increased myo-inositol and lactate, most pronounced in patients with poor outcome (post hoc, all p<0.05). Logistic regression showed complete separation of data. Creatine could distinguish poor from moderate and good outcome, the sum of glutamate and glutamine could distinguish good from moderate and poor outcome, and N-acetylaspartate could distinguish all outcome groups. For 13 patients (8 with baseline scans), one or more follow-up examinations were evaluated, revealing stabilisation or even partial normalisation of metabolites in patients with moderate and good outcome, clearly visible in the ratio of choline/N-acetylaspartate. CONCLUSION In MLD, quantitative spectroscopic imaging at baseline is predictive for outcome and aids in determining eligibility for HCT.
Collapse
Affiliation(s)
- Diane F van Rappard
- Department of Pediatric Neurology, Center for Childhood White Matter Disorders, VU University Medical Center, Amsterdam, The Netherlands.,Amsterdam Neuroscience, VU University Medical Center Amsterdam, Academic Medical Center, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Marjan E Steenweg
- Department of Pediatric Neurology, Center for Childhood White Matter Disorders, VU University Medical Center, Amsterdam, The Netherlands.,Amsterdam Neuroscience, VU University Medical Center Amsterdam, Academic Medical Center, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Jan Boelens
- Department of Pediatrics, Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Pediatric Neurology, Center for Childhood White Matter Disorders, VU University Medical Center, Amsterdam, The Netherlands.,Amsterdam Neuroscience, VU University Medical Center Amsterdam, Academic Medical Center, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.,Department of Pathology, Center for Childhood White Matter Disorders, VU University Medical Center, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Pediatric Neurology, Center for Childhood White Matter Disorders, VU University Medical Center, Amsterdam, The Netherlands.,Amsterdam Neuroscience, VU University Medical Center Amsterdam, Academic Medical Center, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Pediatric Neurology, Center for Childhood White Matter Disorders, VU University Medical Center, Amsterdam, The Netherlands.,Amsterdam Neuroscience, VU University Medical Center Amsterdam, Academic Medical Center, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, VU University Medical Center Amsterdam, Academic Medical Center, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Mortilla M, Federico A, De Stefano N. Uso della risonanza magnetica spettroscopica del protone nello studio delle malattie della sostanza bianca cerebrale. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/197140090001300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
La risonanza magnetica spettroscopica (MRS) è una tecnica non invasiva per la misura della concentrazione relativa di alcuni composti cerebrali. L'uso di questa tecnica nello studio delle malattie della materia bianca cerebrale ha apportato miglioramenti nella classificazione diagnostica e nelle misure relative all'andamento delle malattie. Un uso più estensivo delle tecniche di risonanza multimodale, comprendenti tomografia RM, spettroscopia ed altre modalità non convenzionali, dovrebbe quindi essere incoraggiato. Ciò permetterà una miglior comprensione della complessa dinamica dei cambiamenti patologici nelle malattie della sostanza bianca ed una più accurata valutazione della progressione e della risposta alla terapia della malattia stessa.
Collapse
Affiliation(s)
- M. Mortilla
- Istituto di Scienze Neurologiche e Centro NMR, Università degli Studi; Siena
| | - A. Federico
- Istituto di Scienze Neurologiche e Centro NMR, Università degli Studi; Siena
| | - N. De Stefano
- Istituto di Scienze Neurologiche e Centro NMR, Università degli Studi; Siena
| |
Collapse
|
9
|
Rosewich H, Dechent P, Krause C, Ohlenbusch A, Brockmann K, Gärtner J. Diagnostic and prognostic value of in vivo proton MR spectroscopy for Zellweger syndrome spectrum patients. J Inherit Metab Dis 2016; 39:869-876. [PMID: 27488561 DOI: 10.1007/s10545-016-9965-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Defects in the biogenesis of peroxisomes cause a clinically and genetically heterogeneous group of neurometabolic disorders, the Zellweger syndrome spectrum (ZSS). Diagnosis predominantly is based on characteristic clinical symptoms, a typical biochemical profile, as well as on identification of the molecular defect in any of the 12 known human PEX genes. The diagnostic workup can be hindered if the typical clinical symptoms are missing and predicting the clinical course of a given patient is almost unfeasible. As a safe and noninvasive method to analyze specific chemical compounds in localized brain regions, in vivo proton magnetic resonance spectroscopy (MRS) can provide an indication in this diagnostic process and may help predict the clinical course. However, to date, there are very few reports on this topic. In this study, we performed localized in vivo proton MRS without confounding contributions from T1- and T2-relaxation effects at 2 Tesla in a comparably large group of seven ZSS patients. Patients' absolute metabolite concentrations in cortical gray matter, white matter, and basal ganglia were assessed and compared with age-matched control values. Our results confirm and extend knowledge about in vivo MRS findings in ZSS patients. Besides affirmation of nonspecific reduction of N-acetylaspartate + N-acetylaspartylglutamate (tNAA) in combination with lipid accumulation as a diagnostic hint for this disease group, the amount of tNAA loss seems to reflect disease burden and may prove to be of prognostic value regarding the clinical course of an already diagnosed patient.
Collapse
Affiliation(s)
- H Rosewich
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37085, Göttingen, Germany.
| | - P Dechent
- Department of Cognitive Neurology, MR-Research in Neurology and Psychiatry, Georg-August-University of Göttingen, Göttingen, Germany
| | - C Krause
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37085, Göttingen, Germany
| | - A Ohlenbusch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37085, Göttingen, Germany
| | - K Brockmann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37085, Göttingen, Germany
- Department of Pediatrics and Adolescent Medicine, Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - J Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Strasse 40, 37085, Göttingen, Germany
| |
Collapse
|
10
|
Chiappelli J, Hong LE, Wijtenburg SA, Du X, Gaston F, Kochunov P, Rowland LM. Alterations in frontal white matter neurochemistry and microstructure in schizophrenia: implications for neuroinflammation. Transl Psychiatry 2015; 5:e548. [PMID: 25871973 PMCID: PMC4462606 DOI: 10.1038/tp.2015.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 01/01/2023] Open
Abstract
We investigated in vivo neurochemical markers reflective of neuronal health and glial activation to determine if these could yield clues regarding the reduced fractional anisotropy (FA) of white matter and accelerated decline of FA with age in schizophrenia. Participants with schizophrenia and healthy controls completed diffusion tensor imaging to assess FA and proton magnetic resonance spectroscopy to assess neurochemical metabolites in the same frontal region. Frontal FA was significantly lower in the schizophrenia and declined more rapidly with age compared with the healthy control group. In both groups, N-acetylaspartate (NAA), a putative marker of neuronal integrity, and glutamate declined with age, and this decline was stronger in patients. Myo-inositol, a marker of glial cells, was negatively related to FA in both groups. The relationship between FA and age remained significant in schizophrenia even when controlling for all metabolites. The relationships of FA, NAA and myo-inositol to age appear to be independent of one another. The relationship between FA and myo-inositol was independently present in both patients and controls, even after controlling for age, indicating a potential general effect of neuroinflammation on white matter microstructure. Further studies are warranted to determine the underlying mechanism driving the accelerated FA decline with age in schizophrenia.
Collapse
Affiliation(s)
- J Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L E Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA. E-mail: or
| | - S A Wijtenburg
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - X Du
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - F Gaston
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Weber AM, Soreni N, Stanley JA, Greco A, Mendlowitz S, Szatmari P, Schachar R, Mannasis K, Pires P, Swinson R, Noseworthy MD. Proton magnetic resonance spectroscopy of prefrontal white matter in psychotropic naïve children and adolescents with obsessive-compulsive disorder. Psychiatry Res 2014; 222:67-74. [PMID: 24602517 DOI: 10.1016/j.pscychresns.2014.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/13/2013] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Obsessive-compulsive disorder (OCD) has a typical onset during childhood or adolescence. Although recent in-vivo proton magnetic resonance spectroscopy ((1)H-MRS) studies report gray matter metabolite abnormalities in children and adolescents with OCD, there are no existing (1)H-MRS studies that measure white matter (WM) metabolite levels in this population. In the present study, we measured metabolite levels in the left and right prefrontal WM (LPFWM and RPFWM, respectively) of psychotropic-naïve children and adolescents with OCD (LPFWM: N=15, mean age 13.3±2.4 years; right RPFWM: N=14, mean age 13.0±2.3 years) and healthy controls (LPFWM: N=17, mean age 11.8±2.7 years; RPFWM: N=18, mean age 12.2±2.8 years). Spectra were acquired using a 3T single voxel PRESS sequence (1.5×2.0×2.0cm(3)). When age and sex effects were controlled, OCD patients had higher levels of RPFWM choline and N-acetyl-aspartate (NAA). In addition, RPFWM levels of NAA, creatine and myo-inositol were positively and significantly correlated with severity of OCD symptoms. In summary, this is the first published study of WM metabolite levels in children and adolescents with OCD. Our preliminary findings lend further support to the previous findings of WM abnormalities in OCD.
Collapse
Affiliation(s)
| | - Noam Soreni
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada; Anxiety Treatment and Research Center, St. Joseph׳s Healthcare, Hamilton, ON, Canada.
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Alessia Greco
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada
| | - Sandra Mendlowitz
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Szatmari
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada
| | - Russell Schachar
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katharina Mannasis
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paulo Pires
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada
| | - Richard Swinson
- Department of Psychiatry and Behavioural Neuroscience, Hamilton, ON, Canada; Offord Centre for Child Studies, McMaster University, McMaster Children׳s Hospital, Hamilton, ON, Canada; Anxiety Treatment and Research Center, St. Joseph׳s Healthcare, Hamilton, ON, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Electrical & Computer Engineering, McMaster University, Hamilton, ON, Canada; Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada; Diagnostic Imaging, St. Joseph׳s Healthcare, Hamilton, ON, Canada; Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Rieger D, Auerbach S, Robinson P, Gropman A. Neuroimaging of lipid storage disorders. ACTA ACUST UNITED AC 2014; 17:269-82. [PMID: 23798015 DOI: 10.1002/ddrr.1120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 01/09/2023]
Abstract
Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly sensitive to lipid storage as the contents of the central nervous system must occupy uniform volume, and any increases in fluids or deposits will lead to pressure changes and interference with normal neurological function. In addition to primary lipid storage diseases, lysosomal storage diseases include the mucolipidoses (in which excessive amounts of lipids and carbohydrates are stored in the cells and tissues) and the mucopolysaccharidoses (in which abnormal glycosylated proteins cannot be broken down because of enzyme deficiency). Neurological dysfunction can be a manifestation of these conditions due to substrate deposition as well. This review will explore the modalities of neuroimaging that may have particular relevance to the study of the lipid storage disorder and their impact on elucidating aspects of brain function. First, the techniques will be reviewed. Next, the neuropathology of a few selected lipid storage disorders will be reviewed and the use of neuroimaging to define disease characteristics discussed in further detail. Examples of studies using these techniques will be discussed in the text.
Collapse
Affiliation(s)
- Deborah Rieger
- Department of Pediatrics, Children's National Medical Center and the George Washington University of the Health Sciences, Washington, District of Columbia, USA
| | | | | | | |
Collapse
|
13
|
Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJW, Ratai EM, Ross BD, Scheenen TWJ, Schuster C, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014; 270:658-79. [PMID: 24568703 PMCID: PMC4263653 DOI: 10.1148/radiol.13130531] [Citation(s) in RCA: 466] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.
Collapse
Affiliation(s)
- Gülin Öz
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jeffry R. Alger
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter B. Barker
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Robert Bartha
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alberto Bizzi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Chris Boesch
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Patrick J. Bolan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kevin M. Brindle
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Cristina Cudalbu
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alp Dinçer
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ulrike Dydak
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Uzay E. Emir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jens Frahm
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ramón Gilberto González
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stephan Gruber
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rolf Gruetter
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rakesh K. Gupta
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Arend Heerschap
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Anke Henning
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Hoby P. Hetherington
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Franklyn A. Howe
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra S. Hüppi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ralph E. Hurd
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kejal Kantarci
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dennis W. J. Klomp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Roland Kreis
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Marijn J. Kruiskamp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Martin O. Leach
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alexander P. Lin
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter R. Luijten
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Małgorzata Marjańska
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew A. Maudsley
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dieter J. Meyerhoff
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Carolyn E. Mountford
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Sarah J. Nelson
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - M. Necmettin Pamir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jullie W. Pan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew C. Peet
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Harish Poptani
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stefan Posse
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra J. W. Pouwels
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Eva-Maria Ratai
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian D. Ross
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Tom W. J. Scheenen
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Christian Schuster
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ian C. P. Smith
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian J. Soher
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ivan Tkáč
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Daniel B. Vigneron
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | | |
Collapse
|
14
|
Hayhow BD, Hassan I, Looi JCL, Gaillard F, Velakoulis D, Walterfang M. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction. Tremor Other Hyperkinet Mov (N Y) 2013; 3:tre-03-175-4242-1. [PMID: 24032090 PMCID: PMC3760049 DOI: 10.7916/d8sn07pk] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. METHODS We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. CONCLUSIONS Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.
Collapse
Affiliation(s)
- Bradleigh D. Hayhow
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Islam Hassan
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Jeffrey C. L. Looi
- Academic Unit of Psychiatry & Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia
| | | | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| |
Collapse
|
15
|
Assadi M, Wang DJ, Velazquez-Rodriquez Y, Leone P. Multi-Voxel 1H-MRS in Metachromatic Leukodystrophy. J Cent Nerv Syst Dis 2013; 5:25-30. [PMID: 23926443 PMCID: PMC3728201 DOI: 10.4137/jcnsd.s11861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is characterized by the accumulation of sulfatide sphingolipids in the brain and peripheral nerves. We report metabolite alterations recorded using multi-voxel proton spectroscopy of the brain in four children with MLD. The data revealed elevated myoinositol/creatine and lactate/creatine ratios as well as decreased N-acetyl aspartate/creatine ratios. We propose that elevation in myoinositol and lactate are caused by astrocytic gliosis and may be used as biomarkers for disease progression in MLD.
Collapse
Affiliation(s)
- Mitra Assadi
- Departments of Neurology and Pediatrics, Robert Wood Johnson Medical School
| | | | | | | |
Collapse
|
16
|
Region- and age-dependent alterations of glial-neuronal metabolic interactions correlate with CNS pathology in a mouse model of globoid cell leukodystrophy. J Cereb Blood Flow Metab 2013; 33:1127-37. [PMID: 23611871 PMCID: PMC3705444 DOI: 10.1038/jcbfm.2013.64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 03/27/2013] [Indexed: 01/20/2023]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal storage disorder caused by genetic defects in the expression and activity of galactosylceramidase, a key enzyme in the catabolism of myelin-enriched sphingolipids. While there are several histologic, biochemical, and functional studies on GLD, correlations between morphologic and biochemical alterations in central nervous system (CNS) tissues during disease progression are lacking. Here, we combined immunohistochemistry and metabolic analysis using (1)H and (13)C magnetic resonance (MR) spectra of spinal cord, cerebellum, and forebrain to investigate glial-neuronal metabolic interactions and dysfunction in a GLD murine model that recapitulates the human pathology. In order to assess the temporal- and region-dependent disease progression and the potential metabolic correlates, we investigated CNS tissues at mildly symptomatic and fully symptomatic stages of the disease. When compared with age-matched controls, GLD mice showed glucose hypometabolism, alterations in neurotransmitter content, N-acetylaspartate, N-acetylaspartylglutamate, and osmolytes levels. Notably, age- and region-dependent patterns of metabolic disturbances were in close agreement with the progression of astrogliosis, microglia activation, apoptosis, and neurodegeneration. We suggest that MR spectroscopy could be used in vivo to monitor disease progression, as well as ex vivo and in vivo to provide criteria for the outcome of experimental therapies.
Collapse
|
17
|
Krägeloh-Mann I, Groeschel S, Kehrer C, Opherk K, Nägele T, Handgretinger R, Müller I. Juvenile metachromatic leukodystrophy 10 years post transplant compared with a non-transplanted cohort. Bone Marrow Transplant 2013; 48:369-75. [PMID: 22941383 DOI: 10.1038/bmt.2012.155] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/08/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a rare inborn error of metabolism leading to severe neurological symptoms and early death. Hematopoietic SCT (HSCT) is considered a treatment option, but results are inconsistent and comparison with natural history is practically missing. We compare a girl with juvenile MLD 10 years after allogeneic HSCT not only with her untreated sister, but also with a large cohort of untreated patients. The girl received HSCT at the age of 5 years when first motor signs appeared. Over 10 years she was stable with respect to her clinical course and gained cognitive abilities. Magnetic resonance imaging (MRI) showed clear regression of white matter changes and magnetic resonance spectroscopy (MRS) demonstrated a reversal of the initial choline increase and N-acetyl-aspartate (NAA) decrease. Only axonal demyelinating neuropathy showed some progression. Her gross motor function and MRI-scores were clearly better compared with her sister and the cohort of untreated patients. Difference to her sister became apparent only 4 years after HSCT. We conclude that HSCT, early in the course of disease, can lead to stabilization of juvenile MLD with a course clearly different from the natural history. HSCT may prevent disease progression, if performed sufficient time before loss of walking, which typically initiates rapid deterioration.
Collapse
Affiliation(s)
- I Krägeloh-Mann
- Department for Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Assadi M, Wang DJ, Anderson K, Carran M, Bilaniuk L, Leone P. Vitamin k antagonist warfarin for palliative treatment of metachromatic leukodystrophy, a compassionate study of four subjects. J Cent Nerv Syst Dis 2012; 4:73-9. [PMID: 23650469 PMCID: PMC3619661 DOI: 10.4137/jcnsd.s9355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MLD is characterized by accumulation of sulfatides in the brain. Vitamin K regulates two enzymes in sphingolipid biosynthesis and warfarin is known to lower brain sulfatides in rats and mice. We hypothesized that warfarin may mitigate the MLD phenotype by reducing the formation of sulfatides. This compassionate study recruited four advanced patients with clinical, biochemical and genetic confirmation of MLD. The patients were treated with warfarin according to the approved protocol for a total of 45 days. The battery of tests included proton MR spectroscopy (H-MRS) of brain and urinary sulfatide levels recorded at defined intervals. The patients tolerated the medication and there were no bleeding complications. The urinary sulfatide levels did not decline during the study period. The H-MRS showed decreased N-acetyl aspartate and elevated myoinositol levels in the basal ganglia which remained unchanged after treatment. Our study did not demonstrate any beneficial effects of warfarin in four advanced cases of MLD. The drug intervention however, was safe and deserves further evaluation through a larger study of longer duration. The metabolite abnormalities reported on H-MRS may be useful in longitudinal follow up of patients with MLD during drug trials.
Collapse
|
19
|
Martin A, Sevin C, Lazarus C, Bellesme C, Aubourg P, Adamsbaum C. Toward a better understanding of brain lesions during metachromatic leukodystrophy evolution. AJNR Am J Neuroradiol 2012; 33:1731-9. [PMID: 22538069 DOI: 10.3174/ajnr.a3038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE The prospect of new therapies in MLD stresses the need to refine the indications for treatment. The aim of this study was, therefore, to perform a detailed analysis of MRI brain lesions at diagnosis and follow-up, to better understand the natural history of MLD. MATERIAL AND METHODS This retrospective case-control study (2005-2010) looked at 13 patients with MLD (2-5 years of age) with 28 MRIs (mean follow-up, 2 years), compared with 39 age- and sex-matched controls. All MRIs were evaluated qualitatively and semiquantitatively. The Student t test, Wilcoxon signed rank test, and Pearson correlation were used for statistical analysis (P < .05). RESULTS In addition to diffuse symmetric supratentorial WM T2 hyperintensities with a tigroid pattern (70%) and T2 hyperintensities in the CC (100%) and internal capsules (46%), we found significant GM abnormalities such as thalamic T2 hypointensity (92%), thalamic (23%, P < .05, EJ) and caudate nuclei (23%, P < .05, EJ) atrophy, and cerebellar atrophy without WM involvement (15%). The pattern of splenium involvement progression was misleading, with initially diffuse high signal intensity, which later became curvilinear before finally progressing to atrophy (23%, P < .05; EJ). This should not be mistaken for a disease regression. Spectroscopy confirmed a decrease in the NAA/Cr ratio, an increase in the Cho/Cr ratio and in myo-inositol, and a lactate resonance. CONCLUSIONS Thalamic changes may be a common finding in MLD, raising the prospect of primary GM lesions. This may prove important when evaluating the efficacy of new treatments.
Collapse
Affiliation(s)
- A Martin
- AP-HP, Bicêtre Hospital, Pediatric Radiology Department, Le Kremlin Bicêtre, France
| | | | | | | | | | | |
Collapse
|
20
|
Ding XQ, Bley A, Ohlenbusch A, Kohlschütter A, Fiehler J, Zhu W, Lanfermann H. Imaging evidence of early brain tissue degeneration in patients with vanishing white matter disease: a multimodal MR study. J Magn Reson Imaging 2011; 35:926-32. [PMID: 22128017 DOI: 10.1002/jmri.23517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 10/26/2011] [Indexed: 11/09/2022] Open
Abstract
To find imaging signs of active degenerative processes in vanishing white matter disease (VWM), six VWM patients and six matched controls underwent MR examinations. The data were analyzed with modified Scheltens scales for morphological findings and determined quantitatively for apparent diffusion coefficient (ADC). Single-voxel MR spectra were acquired at the parietal white matter and analyzed with LCModel. Typical VWM brain lesions were found in all patients accompanied by proton diffusion abnormalities: Increased ADC appeared in brain regions with severe myelin destruction in all patients, and reduced ADC in two of six younger patients in remaining white matter adjacent to the lesions or at the borders around the lesions, who had a short history of the disease (≤ 1 year). The MR spectroscopy revealed reductions of NAA, Cho, and Cr, which correlate to the grade of white matter abnormalities. An increase of myo-inositol as marker of reactive gliosis was missing. Thus, restricted proton diffusion was evident in younger VWM patients with short history of disease, which in combination with lack of reactive gliosis may reflect early white matter degeneration in VWM. The multimodal MR methods are useful for characterizing such tissue degeneration in brain in vivo.
Collapse
Affiliation(s)
- Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wood PL, Smith T, Pelzer L, Goodenowe DB. Targeted metabolomic analyses of cellular models of pelizaeus-merzbacher disease reveal plasmalogen and myo-inositol solute carrier dysfunction. Lipids Health Dis 2011; 10:102. [PMID: 21682894 PMCID: PMC3141545 DOI: 10.1186/1476-511x-10-102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022] Open
Abstract
Background Leukodystrophies are devastating diseases characterized by dys- and hypo-myelination. While there are a number of histological and imaging studies of these disorders, there are limited biochemical data available. We undertook targeted lipidomic analyses of Pelizaeus-Merzbacher disease (PMD) fibroblasts, PMD lymphocytes, and 158JP oligodendrocytes, a murine model of PMD, to define the lipid changes in these cell models. Further targeted metabolomics analyses were conducted to obtain a preliminary evaluation of the metabolic consequences of lipid changes and gene mutations in these cell models. Results In both PMD fibroblasts and lymphocytes, and 158JP oligodendrocytes, ethanolamine plasmalogens were significantly decreased. Labeling studies with 158JP oligodendrocytes further demonstrated a decreased rate of lipid remodeling at sn-2. Targeted metabolomics analyses of these cells revealed dramatic increases in cellular levels of myo-inositol. Further uptake studies demonstrated increased rates of myo-inositol uptake by PMD lymphocytes. Conclusions Our data demonstrating PlsEtn decrements, support previous studies indicating leukodystrophy cells possess significant peroxisomal deficits. Our data for the first time also demonstrate that decrements in peroxisomal function coupled with the PLP1 gene defects of PMD, result in changes in the function of membrane myo-inositol solute carriers resulting in dramatic increases in cellular myo-inositol levels.
Collapse
Affiliation(s)
- Paul L Wood
- Phenomenome Discoveries Inc, 204-407 Downey Road, Saskatoon, SK S7N4L8, Canada.
| | | | | | | |
Collapse
|
22
|
Abstract
Magnetic resonance spectroscopy (MRS) and the related technique of magnetic resonance spectroscopic imaging (MRSI) are widely used in both clinical and preclinical research for the non-invasive evaluation of brain metabolism. They are also used in medical practice, although their ultimate clinical value continues to be a source of discussion. This chapter reviews the general information content of brain spectra and commonly used protocols for both MRS and MRSI and also touches on data analysis methods and quantitation. The main focus is on proton MRS for application in humans, but many of the methods are also applicable to other nuclei and studies of animal models as well.
Collapse
Affiliation(s)
- He Zhu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
23
|
Eichler F, Grodd W, Grant E, Sessa M, Biffi A, Bley A, Kohlschuetter A, Loes DJ, Kraegeloh-Mann I. Metachromatic leukodystrophy: a scoring system for brain MR imaging observations. AJNR Am J Neuroradiol 2009; 30:1893-7. [PMID: 19797797 DOI: 10.3174/ajnr.a1739] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Metachromatic leukodystrophy (MLD) is a devastating demyelinating disease for which novel therapies are being tested. We hypothesized that MR imaging of brain lesion involvement in MLD could be quantified along a scale. MATERIALS AND METHODS Thirty-four brain MR images in 28 patients with proved biochemical and genetic defects for MLD were reviewed: 10 patients with late infantile, 16 patients with juvenile, and 2 patients with adult MLD. All MR images were reviewed by experienced neuroradiologists and neurologists (2 readers in Germany, 2 readers in the United States) for global disease burden, as seen on the T2 and fluid-attenuated inversion recovery images. A visual scoring method was based on a point system (range, 0-34) derived from the location of white matter involvement and the presence of global atrophy, analogous to the scoring system developed for adrenoleukodystrophy. The readers were blinded to the neurologic findings. RESULTS Thirty-three of 34 MR images showed confluent T2 hyperintensities of white matter. The inter-rater reliability coefficient was 0.988. Scores between readers were within 2 points of each other. Serial MR imaging studies in 6 patients showed significant progressive disease in 3 patients (initial score average, 4; mean follow-up, 24.3) and no change or 1 point progression in 3 patients (initial score average, 12; mean follow-up, 12.66). Projection fibers and the cerebellum tended to be involved only in advanced stages of disease. CONCLUSIONS The MLD MR severity scoring method can be used to provide a measure of brain MR imaging involvement in MLD patients.
Collapse
Affiliation(s)
- F Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van der Voorn JP, Pouwels PJW, Salomons GS, Barkhof F, van der Knaap MS. Unraveling pathology in juvenile Alexander disease: serial quantitative MR imaging and spectroscopy of white matter. Neuroradiology 2009; 51:669-75. [PMID: 19484233 PMCID: PMC2744817 DOI: 10.1007/s00234-009-0540-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
Introduction Alexander disease is a rare disorder of the central nervous system with characteristic symmetric white matter abnormalities with frontal predominance on magnetic resonance (MR) images. Histopathology shows a lack of myelin in the affected white matter, variably interpreted as hypomyelination or demyelination. To increase our insight into the nature of the pathology leading to the MR imaging findings in Alexander disease, we applied serial MR imaging, spectroscopy, magnetization transfer (MT) imaging (MTI), and diffusion tensor imaging (DTI) in six patients with juvenile Alexander disease. Methods The MR imaging protocol comprised T1- and T2-weighted spin echo images and fluid-attenuated inversion recovery images. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), and MT ratio (MTR) maps were generated, and MR spectroscopy concentrations were quantified for several metabolites. Results MR imaging showed similar cerebral white matter abnormalities in all patients, with only minor increase on prolonged follow-up, despite sometimes serious clinical progression. MR spectroscopy showed highly elevated levels of myo-inositol, lactate, and choline-containing compounds and decreased total N-acetyl-aspartate and N-acetyl-aspartyl-glutamate levels in the abnormal white matter. High values of ADC were observed, and both FA and MTR were attenuated. Conclusion The sequential MR imaging findings in Alexander disease provide strong evidence against active demyelination as sole explanation for the underlying pathology. An alternative explanation for our spectroscopic, DTI, and MTI findings—which would suggest demyelination—could be hyperplasia and hypertrophy of astrocytes, as seen in low grade gliomas.
Collapse
Affiliation(s)
- J Patrick van der Voorn
- Department of Child Neurology, VU University Medical Center, De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Hendriksz CJ. Inborn errors of metabolism for the diagnostic radiologist. Pediatr Radiol 2009; 39:211-20. [PMID: 19082997 DOI: 10.1007/s00247-008-1072-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/28/2008] [Accepted: 10/06/2008] [Indexed: 11/24/2022]
Abstract
Inherited metabolic disorders are becoming more important with the increasing availability of diagnostic methods and therapies for these conditions. The radiologist has become an important link in making the diagnosis or collaborating with the specialist centre to diagnose these disorders and monitor effects of therapy. The modes of presentation, disease-specific groups, classic radiological features and investigations are explored in this article to try and give the general radiologist some crucial background knowledge. The following presentations are covered: acute intoxication, hypoglycaemia, developmental delay and storage features. Specific groups of disorders covered are the abnormalities of intermediary metabolism, disorders of fatty acid oxidation and ketogenesis, mitochondrial disorders, lysosomal storage disorders, and, briefly, other groups such as peroxisomal disorders, disorders of glycosylation, and creatine synthesis disorders. New advances and the demands for monitoring are also briefly explored.
Collapse
Affiliation(s)
- Chris J Hendriksz
- Department of Clinical Inherited Metabolic Disorders, Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK.
| |
Collapse
|
26
|
Abstract
Leukoencephalopathies and metabolic diseases comprise a great number of heterogeneous disorders. Diagnosis of these disorders may be challenging at times, requiring sophisticated laboratory investigations. Magnetic resonance imaging (MRI) is useful in supporting diagnosis even though it bears problems of specificity. Quantitative MRI techniques, providing information on cerebral metabolites and tissue microstructure within and outside visible lesions, have proven to be important for understanding the pathogenic mechanisms leading to tissue damage and monitoring disease evolution and response to treatment. This has prompted a more extensive use of these techniques in the clinical setting as a complement to the traditional MRI.
Collapse
Affiliation(s)
- Antonio Giorgio
- Neurology & Neurometabolic Unit Dept. Neurological and Behavioural Sciences, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | | |
Collapse
|
27
|
Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 2008; 64:12-21. [PMID: 19070693 DOI: 10.1016/j.crad.2008.07.002] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 07/01/2008] [Accepted: 07/08/2008] [Indexed: 01/22/2023]
Abstract
Magnetic resonance imaging (MRI) provides anatomic images and morphometric characterization of disease, whereas magnetic resonance spectroscopy (MRS) provides metabolite/biochemical information about tissues non-invasively in vivo. MRS has been used clinically for more than two decades. The major applications of this advanced MRI tool are in the investigation of neurological and neurosurgical disorders. MRS has also been used in the evaluation of the prostate gland and muscle tissue, but these applications will not be addressed in this review. The aim of this review is to attempt to introduce the technique, review the metabolites and literature, as well as briefly describe our clinical experience.
Collapse
Affiliation(s)
- D P Soares
- Section of Radiology, Department of Surgery, Radiology, Anaesthetics, and Intensive Care, University Hospital of the West Indies, Mona, Kingston, Jamaica.
| | | |
Collapse
|
28
|
Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U. Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR IN BIOMEDICINE 2008; 21:233-41. [PMID: 17562554 DOI: 10.1002/nbm.1186] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In a prospective study, two-dimensional (1)H-MRS with TE of 30 ms was performed before surgery in 56 patients with glial brain tumors. Concentrations of myo-inositol (MI), trimethylamine (TMA) and creatine/phosphocreatine (tCr) were evaluated for the whole tumor and scaled to the normal-appearing contralateral brain tissue. To assign changes in MI to specific tissue pathology, the normalized peak and mean concentrations of MI were correlated with TMA and tCr concentrations. TMA is accepted as a marker of proliferating tumor tissue, and tCr might be a marker of reactive astrogliosis. The mean and peak concentrations of MI and tCr correlated positively (r = 0.7), but not the concentrations of MI and TMA. The absolute concentration of MI was significantly increased in all tumor tissues (5.55 +/- 2.92 mM; mean +/- SD) compared with the normal-appearing white matter (4.33 +/- 1.22 mM, p = 0.005), with the highest concentrations for gliomatoses (n = 10) and grade II oligoastrocytomas (n = 3). Significant differences (P = 0.004) between low- and high-grade astrocytomas were found for TMA (1.67 +/- 0.32 mM and 2.65 +/- 0.86 mM, respectively), but not for MI (5.92 +/- 1.98 mM and 5.49 +/- 3.27 mM, respectively). As increased MI and tCr concentrations were found in gliomatosis and other cerebral diseases associated with marked astrogliosis, this process may also be responsible for the observed changes in MI in other glial tumors.
Collapse
Affiliation(s)
- Elke Hattingen
- Institute of Neuroradiology, Johann Wolfgang Goethe University of Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Letournel F, Dubas F. Leukodystrophies: clinical and therapeutic aspects. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:725-735. [PMID: 18631791 DOI: 10.1016/s0072-9752(07)01265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Franck Letournel
- Cell Biology Laboratory, Department of Neurology, CHU, UPRES EA3143, Angers, France
| | | |
Collapse
|
30
|
Brunetti-Pierri N, Bhattacharjee MB, Wang ZJ, Zili Chu, Wenger DA, Potocki L, Hunter J, Scaglia F. Brain proton magnetic resonance spectroscopy and neuromuscular pathology in a patient with GM1 gangliosidosis. J Child Neurol 2008; 23:73-8. [PMID: 18184943 DOI: 10.1177/0883073807307088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors report the clinical, neuroradiologic, and neuromuscular pathological findings in a patient with GM1 gangliosidosis. The proton magnetic resonance spectroscopy, previously reported in a single patient with GM1 gangliosidosis, detected a mild reduction of N-acetylaspartate, consistent with relative paucity of axons and neurons and increased levels of myoinositol suggestive of gliotic white matter changes along with the accumulation of an additional compound that could represent either guanidinoacetate or Gal beta 1-6Gal beta 1-4)GlcNAc, an oligosaccharide previously isolated from the urine of GM1 gangliosidosis patients. Although these findings will have to be further confirmed in more patients with GM1 gangliosidosis, they suggest that proton magnetic resonance spectroscopy may provide useful end points to assess the efficacy of novel treatments that could soon become clinically available. Histologically, no significant alterations were found in axons, but there was evidence of redundant and inappropriately folded myelin, which is a feature attributed to disturbed axon-glial interactions.
Collapse
Affiliation(s)
- Nicola Brunetti-Pierri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Over the past two decades, proton magnetic resonance spectroscopy (proton MRS) of the brain has made the transition from research tool to a clinically useful modality. In this review, we first describe the localization methods currently used in MRS studies of the brain and discuss the technical and practical factors that determine the applicability of the methods to particular clinical studies. We also describe each of the resonances detected by localized solvent-suppressed proton MRS of the brain and discuss the metabolic and biochemical information that can be derived from an analysis of their concentrations. We discuss spectral quantitation and summarize the reproducibility of both single-voxel and multivoxel methods at 1.5 and 3-4 T. We have selected three clinical neurologic applications in which there has been a consensus as to the diagnostic value of MRS and summarize the information relevant to clinical applications. Finally, we speculate about some of the potential technical developments, either in progress or in the future, that may lead to improvements in the performance of proton MRS.
Collapse
Affiliation(s)
- Yael Rosen
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts
| | - Robert E. Lenkinski
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, Massachusetts
| |
Collapse
|
32
|
Cecil KM, Kos RS. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders. Top Magn Reson Imaging 2007; 17:275-93. [PMID: 17415001 DOI: 10.1097/rmr.0b013e318033787e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides the reader with an overview of the magnetic resonance spectroscopy technique and the clinical, pathological, imaging, and metabolic features for select white matter disorders of interest. With this composite summary, the reader should find it easier to implement and interpret spectroscopy in the clinical setting for the diagnosis and monitoring of patients with white matter disorders.
Collapse
Affiliation(s)
- Kim M Cecil
- Department of Radiology and Pediatrics, Cincinnati Children's Hospital Medical Center and the College of Medicine of the University of Cincinnati, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
33
|
Sedel F. Leucodistrofie dell’adulto. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
van der Voorn JP, Pouwels PJW, Hart AAM, Serrarens J, Willemsen MAAP, Kremer HPH, Barkhof F, van der Knaap MS. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology 2006; 241:510-7. [PMID: 17057071 DOI: 10.1148/radiol.2412051345] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively investigate whether quantitative magnetic resonance (MR) parameters, including magnetization transfer ratio (MTR), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and MR spectroscopic metabolite concentrations, allow for discrimination between different types of pathologic conditions that underlie signal intensity abnormalities in white matter. MATERIALS AND METHODS Institutional review board approval and informed consent were obtained. Forty-one patients (19 male, 22 female; mean age, 15.4 years) and 41 control subjects (25 male, 16 female; mean age, 11.3 years) were included. Twelve patients had a hypomyelinating disorder; 14, a demyelinating disorder; five, a disorder characterized by myelin vacuolation; and 10, a disorder characterized by cystic degeneration. Regions of interest were selected within the parietal white matter and were transferred to the corresponding sections of the generated ADC, FA, and MTR maps to extract quantitative measurements. Linear discriminant analysis and univariate analysis of covariance were used for statistical evaluation. RESULTS Linear discriminant analysis showed that 95% of patients were correctly classified by using total creatine, choline-containing compounds, myo-inositol, MTR, and ADC. In the hypomyelination group, all MR parameters were close to normal, with the exception of elevated total creatine (P = .03) and myo-inositol (P < .001) levels and decreased MTR values (P < .001). In the demyelination group, the levels of choline-containing compounds (P = .02) and myo-inositol (P < .001) were highly elevated. In the myelin vacuolation and cystic degeneration groups, high ADC values (P < .001) and variable decreases in all MR spectroscopic metabolites were seen. MTR was significantly reduced (P < .001) in the cystic degeneration group. CONCLUSION Quantitative MR techniques can be used to discriminate between different types of white matter disorders and to classify white matter lesions of unknown origin with respect to underlying pathologic conditions.
Collapse
Affiliation(s)
- J Patrick van der Voorn
- Department of Child Neurology, Vrije Universiteit Medical Center, De Boelelaan 1117, 1007 MB Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kingsley PB, Shah TC, Woldenberg R. Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2006; 19:435-62. [PMID: 16763970 DOI: 10.1002/nbm.1039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The purpose of this paper is to facilitate the comparison of magnetic resonance (MR) spectra acquired from unknown brain lesions with published spectra in order to help identify unknown lesions in clinical settings. The paper includes lists of references for published MR spectra of various brain diseases, including pyogenic abscesses, encephalitis (herpes simplex, Rasmussen's and subacute sclerosing panencephalitis), neurocysticercosis, tuberculoma, cysts (arachnoid, epidermoid and hydatid), acute disseminated encephalomyelitis (ADEM), adrenoleukodystrophy (ALD), Alexander disease, Canavan's disease, Krabbe disease (globoid cell leukodystrophy), Leigh's disease, megalencephalic leukoencephalopathy with cysts, metachromatic leukodystrophy (MLD), Pelizaeus-Merzbacher disease, Zellweger syndrome, HIV-associated lesions [cryptococcus, lymphoma, toxoplasmosis and progressive multifocal leukoencephalopathy (PML)], hydrocephalus and tuberous sclerosis. Each list includes information on the echo time(s) (TE) of the published spectra, whether a control spectrum is shown, whether the corresponding image and voxel position are shown and the patient ages if known. The references are listed in the approximate order of usefulness, based on spectral quality, number of spectra, range of echo times and whether the voxel positions are shown. Spectra of Zellweger syndrome, cryptococcal infection, toxoplasmosis and lymphoma are included, along with a spectrum showing propanediol (propylene glycol).
Collapse
Affiliation(s)
- Peter B Kingsley
- Department of Radiology, North Shore University Hospital, 300 Community Drive, Manhasset, NY 11030, USA.
| | | | | |
Collapse
|
36
|
Abstract
The application of MR spectroscopy (MRS) in pediatric brain disorders yields valued information on pathologic processes, such as ischemia, demyelination, gliosis, and neurodegeneration. Because these processes manifest in inborn errors of metabolism, the purposes of this article are to (1) describe the spectral changes that are associated with the relatively common metabolic disorders, with summaries of known spectroscopic features of these disorders; (2) offer suggestions for recognition and distinction of disorders; and (3) provide general guidelines for MRS implementation. Although many conditions have a similar presentation, MRS offers valuable information for the individual patient in diagnosis and therapy when integrated fully into the clinical setting.
Collapse
Affiliation(s)
- Kim M Cecil
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
37
|
Abstract
Magnetic resonance spectroscopy (MRS) complements magnetic resonance imaging (MRI) as a non-invasive means for the characterization of tissue. While MRI uses the signal from hydrogen protons to form anatomic images, proton MRS uses this information to determine the concentration of brain metabolites such as N-acetyl aspartate (NAA), choline (Cho), creatine (Cr) and lactate in the tissue examined. The most widely used clinical application of MRS has been in the evaluation of central nervous system disorders.MRS has its limitations and is not always specific but, with good technique and in combination with clinical information and conventional MRI, can be very helpful in diagnosing certain entities. For example, a specific pattern of metabolites can be seen in disorders such as Canavan's disease, creatine deficiency, and untreated bacterial brain abscess. MRS may also be helpful in the differentiation of high grade from low grade brain tumors, and perhaps in separating recurrent brain neoplasm from radiation injury.
Collapse
Affiliation(s)
- Sachin K Gujar
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI 48109, USA, and Department of Imaging, Jaslok Hospital and Medical Research Center, 15, Dr. G. Deshmukh road, Mumbai 400026, India
| | | | | | | |
Collapse
|
38
|
Vrenken H, Barkhof F, Uitdehaag BMJ, Castelijns JA, Polman CH, Pouwels PJW. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 2005; 53:256-66. [PMID: 15678547 DOI: 10.1002/mrm.20366] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Quantitative single-voxel, short echo-time (TE) MR spectroscopy (MRS) was used to determine metabolite concentrations in the cerebral normal-appearing white matter (NAWM) of 76 patients with multiple sclerosis (MS), and the WM of 25 controls. In NAWM of all MS disease types (primary progressive, relapsing-remitting, and secondary progressive), the concentration ratio of total N-acetyl-aspartate (tNAA)/total creatine (tCr) was decreased compared to controls. Remarkably, this was entirely due to an increase of tCr in MS patients, whereas there was no difference in tNAA. Separate quantification of the two tNAA components yielded no significant difference in NAA (N-acetyl-aspartate), while the concentration of NAAG (N-acetyl-aspartyl-glutamate) was slightly-but significantly-elevated in MS patients. Myo-inositol (Ins) was strongly increased in MS patients, and choline-containing compounds (Cho) were mildly increased. There were no metabolite differences between disease types, and no correlations with disability scores. The results are supported by measures of spectral quality, which were identical for patients and controls. In conclusion, MS NAWM containing very little perilesional tissue is characterized by increased glial cell numbers (increase of Ins and tCr) without evidence of axonal dysfunction (normal NAA). Further studies should elucidate the mechanism underlying increased NAAG in MS NAWM.
Collapse
Affiliation(s)
- H Vrenken
- Department of Radiology, MR Center for MS Research, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
There are numerous neurodegenerative and neurometabolic disorders of childhood. Individually, however, they are quite rare. Some may be seen only once in a lifetime at a given medical center, even one devoted to the specialized care of children. This article presents the classic neuroimaging features of some of the more commonly seen entities and of some of the more recently described metabolic disorders.
Collapse
Affiliation(s)
- Susan Blaser
- Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|
40
|
Abstract
Metachromatic leukodystrophy is characterized by dysmyelination caused by a deficiency of arylsulfatase-A. In a 17-month-old boy with metachromatic leukodystrophy, an echo-planar diffusion MR sequence revealed a restricted diffusion pattern in the deep white matter, manifested by high-signal on b=1000 s/mm2 images, and low ADC values (0.56 x 10(-3) mm2/s). Proton MR spectroscopy revealed a marked decrease in choline, a metabolite related to myelin turnover. These observations consisting of a restricted diffusion pattern on diffusion MR imaging, and decreased choline peaks on proton spectroscopy, likely represented dysmyelination in metachromatic leukodystrophy.
Collapse
Affiliation(s)
- R N Sener
- Department of Radiology, Ege University Hospital, Bornova, Izmir, Turkey.
| |
Collapse
|
41
|
Gulati S, Shah T, Menon S, Jayasundar R, Kalra V. Magnetic resonance spectroscopy in pediatric neurology. Indian J Pediatr 2003; 70:317-25. [PMID: 12793309 DOI: 10.1007/bf02723588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the last three decades a range of non-invasive biophysical techniques have been developed, of which Magnetic Resonance (MR) has proved to be the most versatile. Its non-invasive and safe nature has made it the most important diagnostic and research tool in clinical medicine. MR Spectroscopy (MRS) is the only technique in clinical medicine that provides non-invasive access to living chemistry in situ. This article focuses mainly on proton MRS in brain and also phosphorus MRS in calf muscle, with particular reference to the pediatric population, the normal spectrum and its use in various disease conditions in the practice of pediatric neurology. Few representative case studies among different disease groups have also been detailed.
Collapse
Affiliation(s)
- Sheffali Gulati
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
42
|
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 2003; 226:315-36. [PMID: 12563122 DOI: 10.1148/radiol.2262011600] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in the elderly. Current consensus statements have emphasized the need for early recognition and the fact that a diagnosis of AD can be made with high accuracy by using clinical, neuropsychologic, and imaging assessments. Magnetic resonance (MR) or computed tomographic (CT) imaging is recommended for the routine evaluation of AD. Coronal MR images can be useful to document or quantify atrophy of the hippocampus and entorhinal cortex, both of which occur early in the disease process. Both volumetric and subtraction MR techniques can be used to quantify and monitor dementia progression and rates of regional atrophy. MR measures are also increasingly being used to monitor treatment effects in clinical trials of cognitive enhancers and antidementia agents. Positron emission tomography (PET) and single photon emission CT offer value in the differential diagnosis of AD from other cortical and subcortical dementias and may also offer prognostic value. In addition, PET studies have demonstrated that subtle abnormalities may be apparent in the prodromal stages of AD and in subjects who carry susceptibility genes. PET ligands are in late-stage development for demonstration of amyloid plaques, and human studies have already begun. Functional MR-based memory challenge tests are in development as well.
Collapse
Affiliation(s)
- Jeffrey R Petrella
- Department of Radiology, Duke University Medical Center, Duke Hospital North, Rm 1513, Erwin Rd, Durham, NC 27710, USA.
| | | | | |
Collapse
|
43
|
Brockmann K, Pouwels PJW, Dechent P, Flanigan KM, Frahm J, Hanefeld F. Cerebral proton magnetic resonance spectroscopy of a patient with giant axonal neuropathy. Brain Dev 2003; 25:45-50. [PMID: 12536033 DOI: 10.1016/s0387-7604(02)00154-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Magnetic resonance imaging of a girl with giant axonal neuropathy revealed a progressive white matter disease. In close agreement with histopathological features reported previously, localized proton magnetic resonance spectroscopy at 9 and 12 years of age indicated a specific damage or loss of axons (reduced N-acetylaspartate and N-acetylaspartylglutamate) accompanied by acute demyelination (elevated choline-containing compounds, myo-inositol, and lactate) in white matter as well as a generalized proliferation of glial cells (elevated choline-containing compounds and myo-inositol) in both gray and white matter.
Collapse
Affiliation(s)
- Knut Brockmann
- Department of Pediatrics and Neuropediatrics, Georg-August-Universität, Children's Hospital, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Zarifi MK, Tzika AA, Astrakas LG, Poussaint TY, Anthony DC, Darras BT. Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe's disease. J Child Neurol 2001; 16:522-6. [PMID: 11453451 DOI: 10.1177/088307380101600713] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two twins with late infantile globoid cell leukodystrophy of Krabbe's disease were studied with conventional magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy. Brain MRI demonstrated brain atrophy with extensive bilateral symmetric abnormal T2 signal in the posterior periventricular white matter, parietal lobes, corona radiata, centrum semiovale, and splenium of the corpus callosum. Magnetic resonance imaging-guided proton magnetic resonance spectroscopy revealed prominent peaks from choline-containing compounds, total creatine, and inositols. The N-acetylaspartate peak was markedly reduced, and the choline-to-N-acetylaspartate ratio was abnormally high; in one of the twins, lactic acid was also detected. The constellation of magnetic resonance spectroscopy findings is indicative of extensive demyelination, gliosis, and loss of axons in the involved white matter; the latter two events occur in the later stages of globoid cell leukodystrophy. In conjunction with brain MRI, these magnetic resonance spectroscopy findings may alert clinicians to the possibility of leukodystrophy in children with progressive encephalopathy.
Collapse
Affiliation(s)
- M K Zarifi
- Department of Radiology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bangert BA. Magnetic resonance techniques in the evaluation of the fetal and neonatal brain. Semin Pediatr Neurol 2001; 8:74-88. [PMID: 11464960 DOI: 10.1053/spen.2001.24838] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance imaging (MRI) has contributed dramatically to our understanding of the newborn with neurologic problems. Recently developed magnetic resonance techniques, such as fetal MRI and MR spectroscopy, offer additional insight into normal and pathologic processes affecting the fetal and neonatal CNS. This article examines developmental abnormalities as reflected in neuroimaging studies and discusses some of the newer MR modalities and their capabilities.
Collapse
Affiliation(s)
- B A Bangert
- Department of Radiology, University Hospitals of Cleveland, OH 44106, USA
| |
Collapse
|
46
|
Chen JG, Charles HC, Barboriak DP, Doraiswamy PM. Magnetic resonance spectroscopy in Alzheimer's disease: focus on N-acetylaspartate. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2001; 176:20-6. [PMID: 11261801 DOI: 10.1034/j.1600-0404.2000.00303.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper reviews published post-mortem brain and in-vivo proton magnetic resonance spectroscopy (1H-MRS) studies in Alzheimer's disease (AD) and focuses on the emerging role of N-acetylaspartate (NAA) as a prognostic marker of neuronal function. Post-mortem brain studies have reported significantly lower NAA levels in AD brains than in control brains, and some have correlated the low levels with neuropathological findings (i.e. amyloid plaques and neurofibrillary tangles). Similarly, almost all published in-vivo studies have reported lower NAA levels in AD patients compared to elderly controls. While some studies have found changes in metabolite levels that were considered useful for the diagnosis of AD, most have found that 1H-MRS provided little or no advantages over other, more common diagnostic tools. Instead, recent studies in AD and other neuropsychiatric disorders suggest that NAA may be more useful as a prognostic marker for monitoring neurodegeneration, stabilization, or improvement, and for evaluating therapeutic response to novel drugs.
Collapse
Affiliation(s)
- J G Chen
- Department of Psychiatry, Duke University of Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
47
|
Moolenaar SH, van der Knaap MS, Engelke UF, Pouwels PJ, Janssen-Zijlstra FS, Verhoeven NM, Jakobs C, Wevers RA. In vivo and in vitro NMR spectroscopy reveal a putative novel inborn error involving polyol metabolism. NMR IN BIOMEDICINE 2001; 14:167-176. [PMID: 11357181 DOI: 10.1002/nbm.690] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In vivo NMR spectroscopy was performed on the brain of a patient with a leukoencephalopathy, revealing unknown resonances between 3.5 and 4.0 ppm. In addition, urine and CSF of the patient were measured using high-resolution NMR spectroscopy. Also in these in vitro spectra, unknown resonances were observed in the 3.5-4.0 ppm region. Homonuclear (1)H two-dimensional J-resolved spectroscopy (JRES) and (1)H-(1)H correlation spectroscopy (COSY) were performed on the patient's urine for more accurate assignment of resonances. The NMR spectroscopic studies showed that the unknown resonances could be assigned to arabinitol and ribitol. This was confirmed using gas chromatography. The arabinitol was identified as D-arabinitol. The patient is likely to suffer from an as yet unknown inborn error of metabolism affecting D-arabinitol and ribitol metabolism. The primary molecular defect has not been found yet. Urine spectra of patients suffering from diabetes mellitus or galactosemia were recorded for comparison. Resonances outside the 3.2-4.0 ppm region, which are the most easy to recognize in body fluid spectra, allow easy recognition of various sugars and polyols. The paper shows that NMR spectroscopy in body fluids may help identifying unknown resonances observed in in vivo NMR spectra.
Collapse
Affiliation(s)
- S H Moolenaar
- Laboratory of Pediatrics and Neurology, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
De Stefano N, Dotti MT, Mortilla M, Federico A. Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain 2001; 124:121-31. [PMID: 11133792 DOI: 10.1093/brain/124.1.121] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is a rare disorder due to an inherited defect in the metabolic pathway of cholesterol. Early diagnosis of the disease is particularly important as patients benefit from therapy with chenodeoxycholic acid. Although the disease is clinically characterized by the concomitant presence of tendon xanthomas, juvenile cataracts and progressive neurological impairment, clinical features may vary greatly. Neuroradiological studies have suggested that the bilateral abnormality of the dentate nuclei could be typical of this disease. However, this finding has been seen inconsistently on conventional MRI. The dynamic of the CNS pathology in CTX is complex, and whether demyelination or axonopathy has primary importance in the pathogenesis of CTX pathology is not known. To clarify both neuroradiological and pathological issues, we performed combined brain MRI and spectroscopy examinations on 12 CTX patients. On conventional MRIs, bilateral hyperintensities of the dentate nuclei were clearly seen in nine out of 12 patients on T(2) -weighted MRIs, but were evident in all patients using a FLAIR sequence. On proton magnetic resonance (MR) spectroscopy, significant decreases in N: -acetylaspartate resonance intensities (P: <0.0001) and increases in lactate MR signals (P<0.05) were found in the group of CTX patients in large volumes of interest localized above the lateral brain ventricles and in the cerebellar hemispheres. Cerebral values of N -acetylaspartate resonance intensities showed a close correlation with patients' disability (Spearman rank correlation = -0.78, P<0.005). These results suggest that MR abnormalities in the dentate nuclei may be evident consistently in patients with CTX. Proton MR spectroscopy data demonstrated widespread axonal damage (as shown by the decrease in N -acetylaspartate) and diffuse brain mitochondrial dysfunction (as shown by the increase in brain parenchymal lactate) in patients with CTX. The close correlation seen between values of the putative axonal marker N-acetylaspartate and patients' disability scores suggests that proton MR spectroscopy can provide a useful measure of disease outcome in CTX.
Collapse
Affiliation(s)
- N De Stefano
- Institute of Neurological Sciences, Neurometabolic Unit, NMR Centre and Centre for the Diagnosis, Prevention and Therapy of Neuro-handicap, University of Siena, Italy
| | | | | | | |
Collapse
|
49
|
Autti T, Muttilainen M, Raininko R, Heiskala H, Puranen J, Häkkinen AM, Tienari P, Santavuori P, Suominen P, Somer M. Extensive cerebral white matter abnormality without clinical symptoms: A new hereditary condition? Ann Neurol 2001. [DOI: 10.1002/1531-8249(199906)45:6<801::aid-ana17>3.0.co;2-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Trope I, Lopez-Villegas D, Lenkinski RE. Magnetic resonance imaging and spectroscopy of regional brain structure in a 10-year-old boy with elevated blood lead levels. Pediatrics 1998; 101:E7. [PMID: 9606249 DOI: 10.1542/peds.101.6.e7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The effects of elevated blood lead levels on the development of children have been examined only in the context of behavioral and neuropsychological evaluations. No studies have examined the effects of lead on brain metabolism in vivo or on structural and/or functional correlates of brain function in children. In the human brain, magnetic resonance spectroscopy (MRS) provides a noninvasive, risk-free method to monitor the biochemistry of acute and chronic stages of disease. The purpose of this study was to examine in vivo the use of MRS for the evaluation of the neurotoxic effects of lead on the nervous system, by detection of brain metabolism, especially N-acetylaspartate, a metabolite shown to decrease in processes that involve neuronal loss. METHODOLOGY Two male cousins who live in the same household and share the same socioeconomic background and home environment were studied. The subject, a 10-year-old boy, had elevated blood lead levels. His cousin, a 9-year-old boy, was not exposed to lead. Both underwent a comprehensive neuropsychological evaluation and both were evaluated using the magnetic resonance imaging (MRI) and MRS at the University of Pennsylvania Medical Center. High-resolution MRI and MRS were performed using a 3-in surface coil. Localized proton spectra were obtained from contiguous 6 x 6 x 10-mm voxels using one-dimensional phase encoding, with a 2000-millisecond repetition time and a 31-millisecond echo time. RESULTS Neuropsychological evaluation demonstrated areas of impairment in the lead-exposed child, including difficulties in academic skills of reading, writing, and arithmetic, as well as deficient linguistic skills and attentional mechanism. By contrast, studies of the cousin, who was not exposed to lead, showed overall neuropsychological functioning within normal limits. Although both children had a normal MRI examination of the brain, studies of the lead-exposed boy showed a significant alteration in brain metabolites, with a reduction in the N-acetylaspartate:creatine ratio for both gray and white matter on the MRS examination, compared with his cousin. CONCLUSIONS The present study is a first attempt to determine in vivo metabolic differences in the brain of a child exposed to lead compared with a healthy control subject. This is a unique case because these children were matched on a number of variables usually regarded as confounders in behavioral lead studies, and therefore can be regarded as matched controls. The present study demonstrates that MRS is a feasible, noninvasive technique for in vivo examination of the brains of children exposed to lead. We were able to obtain high-quality spectra from voxels as small as 0.36 cm at 1.5T. The spatial resolution used in the present study is sufficient to obtain spectra from voxels almost exclusively composed of gray matter. The one-dimensional phase-encoding approach used presents the advantage of obtaining several spectra simultaneously in a relatively short time. The present study has allowed us to examine the spectroscopic patterns of frontal gray and white matter after lead exposure relative to the normal pattern seen in healthy children and adults. The MRS study of the healthy, nonlead-exposed cousin demonstrated spectra entirely consistent with the spectral pattern reported in previous studies of healthy individuals. By contrast, the spectra obtained from the lead-exposed child deviated from the expected pattern in all metabolite ratios analyzed. Because N-acetylaspartate has been shown as a measure of neuronal viability, the level of N-acetylaspartate may enable us to evaluate the degree of neuronal loss in children exposed to lead. The MRI examination indicated no structural abnormalities or cortical thinning, and no abnormal findings in either case. By contrast, MRS indicated a significant change from normal values for the lead-exposed child. This supports the idea that lead neurodevelopmental toxicity may be related to inter
Collapse
Affiliation(s)
- I Trope
- Pennsylvania Hospital, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|