1
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
2
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
3
|
Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 2016; 26:85-96. [PMID: 27918210 DOI: 10.1080/13543784.2017.1269171] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) due to industrial, military, and recreational noise exposure is a major, but also potentially preventable cause of acquired hearing loss. For the United States it is estimated that 26 million people (15% of the population) between the ages of 20 and 69 have a high-frequency NIHL at a detriment to the quality of life of the affected individuals and great economic cost to society. Areas covered: This review outlines the pathology and pathophysiology of hearing loss as seen in humans and animal models. Results from molecular studies are presented that have provided the basis for therapeutic strategies successfully applied to animals. Several compounds emerging from these studies (mostly antioxidants) are now being tested in field trials. Expert opinion: Although no clinically applicable intervention has been approved yet, recent trials are encouraging. In order to maximize protective therapies, future work needs to apply stringent criteria for noise exposure and outcome parameters. Attention needs to be paid not only to permanent NIHL due to death of sensory cells but also to temporary effects that may show delayed consequences. Existing results combined with the search for efficacious new therapies should establish a viable treatment within a decade.
Collapse
Affiliation(s)
- Su-Hua Sha
- a Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Jochen Schacht
- b Kresge Hearing Research Institute , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
4
|
Naples JG, Parham K. Cisplatin-Induced Ototoxicity and the Effects of Intratympanic Diltiazem in a Mouse Model. Otolaryngol Head Neck Surg 2015; 154:144-9. [DOI: 10.1177/0194599815606704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 02/04/2023]
Abstract
Objective To evaluate whether the calcium-channel blocker diltiazem has protective effects against cisplatin-induced ototoxicity in a mouse model. Study Design Original basic science in vivo investigation. Setting Academic setting: Otolaryngology–Head and Neck Surgery laboratory at University of Connecticut Health Center. Subjects Thirty-nine female CBA/J mice. Methods Pure tone– or click-evoked auditory brainstem responses (ABRs) were recorded in CBA/J mice to determine auditory thresholds. All mice had baseline ABRs recorded. They were then given a single cisplatin bolus (14 mg/kg), followed by 5 consecutive days of intratympanic diltiazem or saline control. Follow-up thresholds were recorded on days 7, 14, and 21 postcisplatin. Tone-evoked ABRs evaluated the otoprotective effect of 2-mg/kg diltiazem in 9 mice, and dose effect was examined in response to click-evoked ABR with 2- or 4-mg/kg diltiazem in 2 groups of 15 mice. Results Saline-treated ears had significantly elevated tone-evoked auditory thresholds when compared with diltiazem-treated ears ( P = .038) on day 7 postcisplatin only. Click-evoked ABR thresholds were significantly elevated in saline-treated ears versus diltiazem-treated ears for the 2-mg/kg group ( P = .001) and 4-mg/kg group ( P = .011) on days 7, 14, and 21 postcisplatin. Conclusion Intratympanic diltiazem has significant protective effects against cisplatin ototoxicity at 2 and 4 mg/kg. This is the first in vivo study to demonstrate that diltiazem offers a potentially novel therapy for cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- James G. Naples
- University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kourosh Parham
- University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Bao J, Hungerford M, Luxmore R, Ding D, Qiu Z, Lei D, Yang A, Liang R, Ohlemiller KK. Prophylactic and therapeutic functions of drug combinations against noise-induced hearing loss. Hear Res 2013; 304:33-40. [PMID: 23792074 DOI: 10.1016/j.heares.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/01/2023]
Abstract
Noise is the most common occupational and environmental hazard. Noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit, after age-related hearing loss (presbycusis). Although promising approaches have been identified for reducing NIHL, currently there are no effective medications to prevent NIHL. Development of an efficacious treatment has been hampered by the complex array of cellular and molecular pathways involved in NIHL. We turned this difficulty into an advantage by asking whether NIHL could be effectively prevented by targeting multiple signaling pathways with a combination of drugs already approved by U.S. Food and Drug Administration (FDA). We previously found that antiepileptic drugs blocking T-type calcium channels had both prophylactic and therapeutic effects for NIHL. NIHL can also be reduced by an up-regulation of glucocorticoid (GC) signaling pathways. Based on these findings, we tested a combination therapy for NIHL that included ethosuximide and zonisamide (anticonvulsants) and dexamethasone and methylprednisolone (synthetic GCs) in mice under exposure conditions typically associated with dramatic permanent threshold shifts (PTS). We first examined possible prophylactic effects for each drug when administered alone 2 h before noise, and calculated the median effective dose (ED50). We then tested for synergistic effects of two-drug combinations (anticonvulsant + GC), and identified combinations with the strongest synergy against NIHL, based on a previously established combination index (CI) metric. We repeated similar tests to determine their therapeutic effects when administered the same drugs 24 h after the noise exposure. Our study shows the feasibility of developing pharmacological intervention in multiple pathways, and discovering drug combinations with optimal synergistic effects in preventing permanent NIHL.
Collapse
Affiliation(s)
- Jianxin Bao
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, 4560 Clayton Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shen H, Zhang B, Shin JH, Lei D, Du Y, Gao X, Wang Q, Ohlemiller KK, Piccirillo J, Bao J. Prophylactic and therapeutic functions of T-type calcium blockers against noise-induced hearing loss. Hear Res 2006; 226:52-60. [PMID: 17291698 PMCID: PMC1903349 DOI: 10.1016/j.heares.2006.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 12/21/2006] [Accepted: 12/23/2006] [Indexed: 11/16/2022]
Abstract
Cochlear noise injury is the second most frequent cause of sensorineural hearing loss, after aging. Because calcium dysregulation is a widely recognized contributor to noise injury, we examined the potential of calcium channel blockers to reduce noise-induced hearing loss (NIHL) in mice. We focused on two T-type calcium blockers, trimethadione and ethosuximide, which are anti-epileptics approved by the Food and Drug Administration. Young C57BL/6 mice of either gender were divided into three groups: a 'prevention' group receiving the blocker via drinking water before noise exposure; a 'treatment' group receiving the blocker via drinking water after noise exposure; and controls receiving noise alone. Trimethadione significantly reduced NIHL when applied before noise exposure, as determined by auditory brainstem recording. Both ethosuximide and trimethadione were effective in reducing NIHL when applied after noise exposure. Results were influenced by gender, with males generally receiving greater benefit than females. Quantitation of hair cell and neuronal density suggested that preservation of outer hair cells could account for the observed protection. Immunocytochemistry and RT-PCR suggested that this protection involves direct action of T-type blockers on alpha1 subunits comprising one or more Ca(v)3 calcium channel types in the cochlea. Our findings provide a basis for clinical studies testing T-type calcium blockers both to prevent and treat NIHL.
Collapse
Affiliation(s)
- Haiyan Shen
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
- Model Animal Research Center of Nanjing University, 12 Xue-Fu Road, Nanjing P.R. China, 210061
| | - Baoping Zhang
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
| | - June-Ho Shin
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
| | - Debin Lei
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
| | - Yafei Du
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
| | - Xiang Gao
- Model Animal Research Center of Nanjing University, 12 Xue-Fu Road, Nanjing P.R. China, 210061
| | - Qiuju Wang
- Department of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, P.R. China, 100853
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
| | - Jay Piccirillo
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
| | - Jianxin Bao
- Department of Otolaryngology, Center for Aging, Washington University, St. Louis, MO, 63110
- **Corresponding Author: Jianxin Bao, Ph.D. Department of Otolaryngology, Washington University, 4560 Clayton Avenue, St. Louis, MO 63110, 314-747-7199, 314-747-7230 (fax),
| |
Collapse
|
7
|
Heinrich UR, Maurer J, Gosepath K, Mann W. Electron microscopic localization of nitric oxide I synthase in the organ of Corti of the guinea pig. Eur Arch Otorhinolaryngol 1997; 254:396-400. [PMID: 9332897 DOI: 10.1007/bf01642558] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitric oxide synthase (NOS) activity has been detected previously in the mammalian cochlea at a light microscopic level. Here we present results of electron microscopic analysis for post-embedding immunoreactivity of neural-type NOS I in the cochlea of the guinea pig. Strong enzyme immunoreactivity was identified in the cytoplasm of inner and outer hair cells. Gold-labeled NOS I antibodies were mainly located in electron-dense areas of the cytoplasm, whereas electron-lucent regions of the receptor cells were nearly free from any immunoreactivity. In both types of hair cells anti-NOS I antibodies were also visible in the cuticular plates, hair bundles and nuclei. Further ultrastructural analysis revealed that the submembranous cisternae of the outer hair cells were nearly free from any reaction product, demonstrating that the whole cytoplasm of this hair cell was not immunoreactive. Other NOS I immunoreactivity was identified in the cuticular plates of the inner and outer pillar cells and in the cytoskeletal elements located in the apical parts of Deiter cells, forming the lamina reticularis or in cytoskeletal-containing regions in basal Deiter cells. Anti-NOS antibodies were visible in the nuclei of various cell types. Our findings suggest that nitric oxide produced by NO I synthase in the organ of Corti may act as a modulator of hair cell physiology during the processes of signal transduction with frequency selectivity.
Collapse
|