1
|
Orhan IE, Rauf A, Saleem M, Khalil AA. Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/ Phosphodiesterases (PDEs). Curr Top Med Chem 2022; 22:209-228. [PMID: 34503407 DOI: 10.2174/1568026621666210909164118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phosphodiesterases (PDEs) are a wide group of enzymes with multiple therapeutic actions, including vasorelaxation, cardiotonic, antidepressant, anti-inflammatory, antithrombotic, anti-spasmolytic, memory-enhancing, and anti-asthmatic. PDEs with eleven subtypes from PDE-1 to PDE-11 typically catalyze the cleavage of the phosphodiester bond and, hence, degrades either cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP). OBJECTIVE Several selective or non-selective inhibitors of the PDE subtypes are used clinically, i.e. sildenafil, rolipram, cysteine, etc. Recently, interest in plant-based pharmacologically bioactive compounds having potent PDEs inhibitory potential has increased. Purposely, extensive research has been carried out on natural products to explore new inhibitors of various PDEs. Therefore, this review summarizes the published data on natural PDEs inhibitors and their potential therapeutic applications. METHODS For this purpose, natural compounds with PDE inhibitory potential have been surveyed through several databases, including PubMed, Web of Sciences (WoS), Scopus, and Google Scholar. RESULTS According to a detailed literature survey, the most promising class of herbal compounds with PDE-inhibiting property has been found to belong to phenolics, including flavonoids (luteolin, kaempferol, icariin, etc.). Many other encouraging inhibitors from plants have also been identified, such as coumarins (23, 24) (licoarylcoumarin and glycocoumarin,), saponins (agapanthussaponins), lignans (31, 33) [(±)-schizandrin and kobusin], terpenes (28, 29, 31) (perianradulcin A, quinovic acid, and ursolic acid), anthraquinones (18, 19) (emodin and chrysophanol), and alkaloids (Sanjoinine-D) (36). CONCLUSION In this review, studies have revealed the PDE-inhibitory potential of natural plant extracts and their bioactive constituents in treating various diseases; however, further clinical studies comprising synergistic use of different therapies (synthetic & natural) to acquire multi-targeted results might also be a promising option.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 25120, KPK, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Ghazi University, Dera Ghazi Khan-32200, Punjab, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Abstract
Patients with advanced heart failure suffer from severe and persistent symptoms, often not responding disease-modifying drugs, a marked limitation of functional capacity and poor quality of life that can ameliorate with inotropic drugs therapy. In small studies, pulsed infusions of classical inotropes (ie, dobutamine and milrinone) are associated with improvement in hemodynamic parameters and quality of life in patients with advanced heart failure. However, because of the adverse effects of these drugs, serious safety issues have been raised. Levosimendan is a calcium-sensitizing inodilators with a triple mechanism of action, whose infusion results in hemodynamic, neurohormonal, and inflammatory cytokine improvements in patients with chronic advanced HF. In addition, levosimendan has important pleiotropic effects, including protection of myocardial, renal, and liver cells from ischemia-reperfusion injury, and anti-inflammatory and antioxidant effects; these properties possibly make levosimendan an "organ protective" inodilator. In clinical trials and real-world evidence, infusion of levosimendan at fixed intervals is safe and effective in patients with advanced HF, alleviating clinical symptoms, reducing hospitalizations, and improving the quality of life. Therefore, the use of repeated doses of levosimendan could represent the therapy of choice as a bridge to transplant/left ventricular assist device implantation or as palliative therapy in patients with advanced heart failure.
Collapse
|
3
|
Thapa K, Singh TG, Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 2021; 282:119843. [PMID: 34298037 DOI: 10.1016/j.lfs.2021.119843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) occurs in renal artery stenosis, partial nephrectomy and most commonly during kidney transplantation. It brings serious consequences such as DGF (Delayed Graft Function) or organ dysfunction leading to renal failure and ultimate death. There is no effective therapy to handle the consequences of Renal Ischemia/Reperfusion (I/R) injury. Cyclic nucleotides, cAMP and cGMP are the important second messengers that stimulate intracellular signal transduction for cell survival in response to growth factors and peptide hormones in normal tissues and in kidneys plays significant role that involves vascular tone regulation, inflammation and proliferation of parenchymal cells. Renal ischemia and subsequent reperfusion injury stimulate signal transduction pathways involved in oxidative stress, inflammation, alteration in renal blood flow leading to necrosis and apoptosis of renal cell. MATERIALS AND METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out. To understand the functioning of Phosphodiesterases (PDEs) and its pharmacological modulation in Renal Ischemia-Reperfusion Injury. KEY FINDINGS Current therapeutic options may not be enough to treat renal I/R injury in group of patients and therefore, the current review has discussed the general characteristics and physiology of PDEs and preclinical-studies defining the relationship between PDEs expression in renal injury due to I/R and its outcome on renal function. SIGNIFICANCE The role of PDE inhibitors in renal I/R injury and the clinical status of drugs for various renal diseases have been summarized in this review.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India; School of Pharmacy, Himachal Pradesh, India
| | | | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| |
Collapse
|
4
|
Lugnier C, Meyer A, Charloux A, Andrès E, Gény B, Talha S. The Endocrine Function of the Heart: Physiology and Involvements of Natriuretic Peptides and Cyclic Nucleotide Phosphodiesterases in Heart Failure. J Clin Med 2019; 8:jcm8101746. [PMID: 31640161 PMCID: PMC6832599 DOI: 10.3390/jcm8101746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Besides pumping, the heart participates in hydro-sodium homeostasis and systemic blood pressure regulation through its endocrine function mainly represented by the large family of natriuretic peptides (NPs), including essentially atrial natriuretic (ANP) and brain natriuretic peptides (BNP). Under normal conditions, these peptides are synthesized in response to atrial cardiomyocyte stretch, increase natriuresis, diuresis, and vascular permeability through binding of the second intracellular messenger’s guanosine 3′,5′-cyclic monophosphate (cGMP) to specific receptors. During heart failure (HF), the beneficial effects of the enhanced cardiac hormones secretion are reduced, in connection with renal resistance to NP. In addition, there is a BNP paradox characterized by a physiological inefficiency of the BNP forms assayed by current methods. In this context, it appears interesting to improve the efficiency of the cardiac natriuretic system by inhibiting cyclic nucleotide phosphodiesterases, responsible for the degradation of cGMP. Recent data support such a therapeutic approach which can improve the quality of life and the prognosis of patients with HF.
Collapse
Affiliation(s)
- Claire Lugnier
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
| | - Alain Meyer
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Anne Charloux
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Emmanuel Andrès
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Internal Medicine and Metabolic Diseases, Medical Clinic B, Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Bernard Gény
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| | - Samy Talha
- Institute of Physiology, FMTS-EA 3072, Faculty of Medicine, University of Strasbourg, 11 Humann Street, 67000 Strasbourg, France.
- Department of Physiology and Functional Explorations, New Civil Hospital, University Hospitals of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France.
| |
Collapse
|
5
|
Jain S, Vaidya A, Jain AK, Agrawal RK, Kashaw SK. Computational analysis of benzyl vinylogous derivatives as potent PDE3B inhibitors. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2012.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Therapeutic synergy and complementarity for ischemia/reperfusion injury: β1-adrenergic blockade and phosphodiesterase-3 inhibition. Int J Cardiol 2016; 214:374-80. [DOI: 10.1016/j.ijcard.2016.03.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022]
|
7
|
Whitaker RM, Wills LP, Stallons LJ, Schnellmann RG. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J Pharmacol Exp Ther 2013; 347:626-34. [PMID: 24042162 PMCID: PMC3836317 DOI: 10.1124/jpet.113.208017] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/16/2013] [Indexed: 01/25/2023] Open
Abstract
Recent studies demonstrate that mitochondrial dysfunction is a mediator of acute kidney injury (AKI). Consequently, restoration of mitochondrial function after AKI may be key to the recovery of renal function. Mitochondrial function can be restored through the generation of new, functional mitochondria in a process called mitochondrial biogenesis (MB). Despite its potential therapeutic significance, very few pharmacological agents have been identified to induce MB. To examine the efficacy of phosphodiesterase (PDE) inhibitors (PDE3: cAMP and cGMP activity; and PDE4: cAMP activity) in stimulating MB, primary cultures of renal proximal tubular cells (RPTCs) were treated with a panel of inhibitors for 24 hours. PDE3, but not PDE4, inhibitors increased the FCCP-uncoupled oxygen consumption rate (OCR), a marker of MB. Exposure of RPTCs to the PDE3 inhibitors, cilostamide and trequinsin, for 24 hours increased peroxisome proliferator-activated receptor γ coactivator-1α, and multiple mitochondrial electron transport chain genes. Cilostamide and trequinsin also increased mRNA expression of mitochondrial genes and mitochondrial DNA copy number in mice renal cortex. Consistent with these experiments, 8-Br-cGMP increased FCCP-uncoupled OCR and mitochondrial gene expression, whereas 8-Br-cAMP had no effect. The cGMP-specific PDE5 inhibitor sildenafil also induced MB in RPTCs and in vivo in mouse renal cortex. Treatment of mice with sildenafil after folic acid-induced AKI promoted restoration of MB and renal recovery. These data provide strong evidence that specific PDE inhibitors that increase cGMP are inducers of MB in vitro and in vivo, and suggest their potential efficacy in AKI and other diseases characterized by mitochondrial dysfunction and suppressed MB.
Collapse
Affiliation(s)
- Ryan M Whitaker
- Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | | | | | | |
Collapse
|
8
|
Miyazaki Y, Ikeda Y, Shiraishi K, Fujimoto SN, Aoyama H, Yoshimura K, Inui M, Hoshijima M, Kasahara H, Aoki H, Matsuzaki M. Heart failure-inducible gene therapy targeting protein phosphatase 1 prevents progressive left ventricular remodeling. PLoS One 2012; 7:e35875. [PMID: 22558250 PMCID: PMC3338799 DOI: 10.1371/journal.pone.0035875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/23/2012] [Indexed: 01/16/2023] Open
Abstract
Background The targeting of Ca2+ cycling has emerged as a potential therapy for the treatment of severe heart failure. These approaches include gene therapy directed at overexpressing sarcoplasmic reticulum (SR) Ca2+ ATPase, or ablation of phospholamban (PLN) and associated protein phosphatase 1 (PP1) protein complexes. We previously reported that PP1β, one of the PP1 catalytic subunits, predominantly suppresses Ca2+ uptake in the SR among the three PP1 isoforms, thereby contributing to Ca2+ downregulation in failing hearts. In the present study, we investigated whether heart-failure-inducible PP1β-inhibition by adeno-associated viral-9 (AAV9) vector mediated gene therapy is beneficial for preventing disease progression in genetic cardiomyopathic mice. Methods We created an adeno-associated virus 9 (AAV9) vector encoding PP1β short-hairpin RNA (shRNA) or negative control (NC) shRNA. A heart failure inducible gene expression system was employed using the B-type natriuretic protein (BNP) promoter conjugated to emerald-green fluorescence protein (EmGFP) and the shRNA sequence. AAV9 vectors (AAV9-BNP-EmGFP-PP1βshRNA and AAV9-BNP-EmGFP-NCshRNA) were injected into the tail vein (2×1011 GC/mouse) of muscle LIM protein deficient mice (MLPKO), followed by serial analysis of echocardiography, hemodynamic measurement, biochemical and histological analysis at 3 months. Results In the MLPKO mice, BNP promoter activity was shown to be increased by detecting both EmGFP expression and the induced reduction of PP1β by 25% in the myocardium. Inducible PP1βshRNA delivery preferentially ameliorated left ventricular diastolic function and mitigated adverse ventricular remodeling. PLN phosphorylation was significantly augmented in the AAV9-BNP-EmGFP-PP1βshRNA injected hearts compared with the AAV9-BNP-EmGFP-NCshRNA group. Furthermore, BNP production was reduced, and cardiac interstitial fibrosis was abrogated at 3 months. Conclusion Heart failure-inducible molecular targeting of PP1β has potential as a novel therapeutic strategy for heart failure.
Collapse
Affiliation(s)
- Yosuke Miyazaki
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuhiro Ikeda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
- * E-mail:
| | - Kozo Shiraishi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shizuka N. Fujimoto
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hidekazu Aoyama
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koichi Yoshimura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masahiko Hoshijima
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| | - Masunori Matsuzaki
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
9
|
GONZALEZ-MUÑOZ C, HERNÁNDEZ J. Phosphodiesterases Inhibition Enhances the Effect of Glucagon on Cardiac Automaticity in the Isolated Right Ventricle of the Rat. Physiol Res 2011; 60:189-92. [DOI: 10.33549/physiolres.932023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We evaluated the effect of glucagon on cardiac automaticity as well as the possible role of cyclic nucleotide phosphodiesterases (PDE) in regulating this effect. Concentration response curves for glucagon in the absence and in the presence of the non-selective PDE inhibitor IBMX were performed in the isolated right ventricle of the rat. We found that glucagon produces only a minor increase of ventricular automaticity (11.0±4.1, n=5) when compared to the full agonist of β-adrenoceptor isoproterenol (182.2±25.3, n=7). However, IBMX enhances the maximal efficacy of glucagon on cardiac automaticity (11.0±4.1, in the absence and 45.3±3.2 in the presence of IBMX, n=5, P<0.05). These results indicate that PDE blunts proarrhythmic effects of glucagon in rat myocardium.
Collapse
Affiliation(s)
| | - J. HERNÁNDEZ
- Department of Pharmacology, Medical School, University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Savai R, Pullamsetti SS, Banat GA, Weissmann N, Ghofrani HA, Grimminger F, Schermuly RT. Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs 2010; 19:117-31. [PMID: 20001559 DOI: 10.1517/13543780903485642] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD For many cancers, there has been a shift from management with traditional, nonspecific cytotoxic chemotherapies to treatment with molecule-specific targeted therapies that are used either alone or in combination with traditional chemotherapy and radiation therapy. Accumulating data suggest that multi-targeted agents may produce greater benefits than those observed with single-targeted therapies, may have acceptable tolerability profiles, and may be active against a broader range of tumour types. Thus, regulation of cyclic nucleotide signalling is properly regarded as a composite of multiple component pathways involved in diverse aspects of tumour cell function. The impairment of cAMP and/or cGMP generation by overexpression of PDE isoforms that has been described in various cancer pathologies, and the effects of PDE inhibitors in tumour models in vitro and in vivo, may offer promising insight into future cancer treatments because of the numerous advantages of PDE inhibitors. AREAS COVERED IN THIS REVIEW In this review, we focus on the expression and regulation of cyclic nucleotide phosphodiesterases (PDEs) in tumour progression and provide evidence that PDE inhibitors may be effective agents for treating cancer; the review covers literature from the past several years. WHAT THE READER WILL GAIN PDEs have been studied in a variety of tumours; data have suggested that the levels of PDE activity are elevated and, therefore, the ratio of cGMP to cAMP is affected. In addition, PDE inhibitors may be potential targets for tumour cell growth inhibition and induction of apoptosis. This review explores the prospects of targeting PDEs with therapeutic agents for cancer, as well as the shortcomings of this approach such as dose-limiting side effects, toxicity/efficacy ratio and selectivity towards tumour tissue. In addition, it includes opinions and suggestion for developing PDE inhibition for cancer treatment from initial concept to potential therapeutic application and final relevance in clinical use. TAKE HOME MESSAGE Impaired cAMP and/or cGMP generation upon overexpression of PDE isoforms has been described in various cancer pathologies. Inhibition of selective PDE isoforms, which raises the levels of intracellular cAMP and/or cGMP, induces apoptosis and cell cycle arrest in a broad spectrum of tumour cells and regulates the tumour microenvironment. Therefore, the development and clinical application of inhibitors specific for individual PDE isoenzymes may selectively restore normal intracellular signalling, providing antitumour therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Rajkumar Savai
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodelling, Bad Nauheim, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Zheng J, Ma J, Zhang P, Hu L, Fan X, Tang Q. Milrinone inhibits hypoxia or hydrogen dioxide-induced persistent sodium current in ventricular myocytes. Eur J Pharmacol 2009; 616:206-12. [PMID: 19549513 DOI: 10.1016/j.ejphar.2009.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 05/28/2009] [Accepted: 06/09/2009] [Indexed: 12/19/2022]
Abstract
Much evidence indicates that increased persistent sodium current (I(Na.P)) is associated with cellular calcium overload and I(Na.P) is considered to be a potential target for therapeutic intervention in ischaemia and heart failure. By inhibiting type III phosphodiesterase, milrinone increases intracellular cyclic adenosine monophosphate (cAMP), with a positive inotropic effect. However, the effect of milrinone on increased I(Na.P) under pathological conditions remains unknown. Accordingly, we investigated the effect of milrinone on increased I(Na.P) induced by hypoxia or hydrogen dioxide in guinea pig ventricular myocytes. While milrinone (0.01 mM or 0.1mM) or cAMP (0.1 mM) decreased I(Na.P) respectively in control condition, application of 1 microM H-89, a selective cAMP-dependant protein kinase inhibitor, prevented the effect of 0.1mM milrinone in control condition. Milrinone (0.1 mM) reduced the increased I(Na.P) induced by hypoxia. Furthermore, 0.01 mM or 0.1mM milrinone reduced the enhanced I(Na.P) induced by 0.3 mM hydrogen peroxide. In addition, 0.01 mM or 0.1 mM milrinone shortened action potential duration at 90% repolarization (APD(90)). Bath application of 0.3 mM hydrogen dioxide markedly prolonged APD(90), while 2 microM tetrodotoxin (TTX) reversed the prolonged APD(90). In the other two groups, 0.01 mM or 0.1 mM milrinone shortened the prolonged APD(90) induced by 0.3 mM hydrogen peroxide, ultimately 2 microM TTX causing a further decurtation of APD(90). These findings demonstrate that milrinone inhibited I(Na.P) under normal condition, hypoxia or hydrogen dioxide-induced I(Na.P), and the APD(90) prolonged by hydrogen dioxide-induced I(Na.P) in ventricular myocytes, which is associated with the mechanism of milrinone increasing intracellular cAMP.
Collapse
Affiliation(s)
- Jie Zheng
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
12
|
Kawashima H, Satoh H, Saotome M, Urushida T, Katoh H, Hayashi H. Protein phosphatase inhibitor-1 augments a protein kinase A-dependent increase in the Ca2+ loading of the sarcoplasmic reticulum without changing its Ca2+ release. Circ J 2009; 73:1133-40. [PMID: 19377265 DOI: 10.1253/circj.cj-08-0871] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND An increase in cytosolic protein phosphatases (PPs) de-phosphorylates phospholamban, decreasing the Ca(2+) uptake of the sarcoplasmic reticulum (SR). The effects of PP inhibitors on cellular Ca(2+) handling were investigated. METHODS AND RESULTS Twitch Ca(2+) transients (CaTs) and cell shortening were measured in intact rat cardiac myocytes, and caffeine-induced Ca(2+) transients (CaffCaTs) and Ca(2+) sparks were studied in saponin-permeabilized cells. Calyculin A augmented isoproterenol-induced increases in CaTs and cell shortening without altering the diastolic [Ca(2+)](i) and twitch [Ca(2+)](i) decay. The protein kinase A catalytic subunit (PKA(cat)) increased the peak of CaffCaTs between 5 and 50 U/ml, and the addition of inhibitor-1 (I-1) augmented the increase. PKA(cat) increased Ca(2+) spark frequency and the addition of I-1 increased it further. PKA(cat) at 50 U/ml amplified the peak and prolonged the duration of Ca(2+) sparks, whereas the addition of I-1 did not alter them. An abrupt inhibition of SR Ca(2+) uptake following exposure to PKA(cat) caused a gradual decrease in Ca(2+) spark frequency, but the addition of I-1 did not accelerate the decline of Ca(2+) spark frequency or CaffCaTs. CONCLUSIONS Inhibition of PPs augmented the inotropic effect of isoproterenol. Specific inhibition of PP1 could stimulate the Ca(2+) uptake of the SR with less significant effects on the Ca(2+) release.
Collapse
Affiliation(s)
- Hirotaka Kawashima
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Stoclet JC, Keravis T, Komas N, Lugnier C. Section Review: Cardiovascular & Renal: Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiovascular diseases. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.11.1081] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Demoliou-Mason CD. Overview: Cardiovascular & Renal; Cyclic nucleotide phosphodiesterase inhibitors. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.5.417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
|
16
|
Yamada M, Ikeda Y, Yano M, Yoshimura K, Nishino S, Aoyama H, Wang L, Aoki H, Matsuzaki M. Inhibition of protein phosphatase 1 by inhibitor-2 gene delivery ameliorates heart failure progression in genetic cardiomyopathy. FASEB J 2006; 20:1197-9. [PMID: 16627625 DOI: 10.1096/fj.05-5299fje] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The type 1 protein phosphatase (PP1) has been reported to be overactivated in the failing heart, leading to a depression in cardiac function. We investigated whether in vivo PP1 inhibition by myocardial gene transfer of inhibitor-2 (INH-2), an endogenous PP1 inhibitor, alleviates heart failure (HF) progression in the cardiomyopathic (CM) hamster, a well-established HF model. Adenoviral INH-2 gene delivery improved % fractional shortening of the left ventricle (LV) accompanied by reduced chamber size at 1 wk. In vivo myocardial INH-2 gene delivery induced an increase in cytosolic PP1 catalytic subunit alpha (PP1Calpha) without inducing the corresponding increase in cytosolic PP1 activity. On the other hand, INH-2 delivery induced a decrease in microsomal PP1Calpha, resulting in a preferential decrease in microsomal PP1 activity, thereby increasing in phospholamban phosphorylation at Ser16. INH-2 gene transfer alleviated brain natriuretic peptide expression, presumably reflecting improved cardiac function. Moreover, adeno-associated virus-mediated INH-2 gene delivery significantly extended the survival time for 3 mo. These results indicate that increased PP1 activity is an exacerbating factor during progression of genetic cardiomyopathy and modulation of PP1 activity by INH-2 provides a potential new treatment for HF without activating protein kinase A signaling in cardiomyocytes.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 665] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
18
|
Snyder PB. The adipocyte cGMP-inhibited cyclic nucleotide phosphodiesterase (PDE3B) as a target for lipolytic and thermogenic agents for the treatment of obesity. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.4.587] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Bundkirchen A, Brixius K, Bölck B, Schwinger RHG. Bucindolol exerts agonistic activity on the propranolol-insensitive state of beta1-adrenoceptors in human myocardium. J Pharmacol Exp Ther 2002; 300:794-801. [PMID: 11861783 DOI: 10.1124/jpet.300.3.794] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In congestive heart failure patients, treatment with beta-adrenoceptor antagonists improves symptoms and decreases mortality. However, intrinsic sympathomimetic activity of beta-adrenoceptor antagonists might be disadvantageous in chronic heart failure. The nonselective beta1- and beta2-adrenoceptor antagonist bucindolol has failed to decrease mortality in clinical trials. A putative beta4-adrenoceptor, which mediates positive inotropic effects by activation of the adenylate cyclase has been described. Recently, this putative beta4-adrenoceptor has been identified to be a propranolol-insensitive state of the beta1-adrenoceptor. The present study aimed to characterize whether bucindolol exhibits agonistic activity on this atypical beta1-adrenoceptor state as one possible reason for clinical inefficiency. For comparison (S)-4-(3'-t-butylamino-1'-hydroxypropoxy)-benzimidozole-2 (CGP 12177), metoprolol, and nebivolol were investigated. Bucindolol did not reveal intrinsic sympathomimetic activity in electrically driven (1 Hz, 37 degrees C), forskolin-stimulated, left ventricular papillary muscle strips (donor hearts, nonfailing; n = 5) and in right auricular trabeculae (bypass operation; n = 4). Functional studies on the propranolol-insensitive state of beta1-adrenoceptors were performed in isolated muscle preparations after beta1- and beta2-adrenoceptor antagonism (propranolol, 1 microM), inhibition of beta3-mediated inotropic effects (N-nitro-L-arginine, 100 microM) and forskolin treatment (0.3 microM). Positive inotropic response to stimulation of atypical state beta1-adrenoceptors could be demonstrated in right auricular as well as left ventricular human myocardium (CGP 12177 treatment, 10 microM). Under these conditions, also bucindolol, but not metoprolol and nebivolol, significantly increased contractility (all 10 microM). In conclusion, bucindolol but not metoprolol or nebivolol mediate positive inotropic effects in human myocardium due to activation of atypical state beta1-adrenoceptors. Thus, the agonistic activity of bucindolol may influence outcome in heart failure patients.
Collapse
Affiliation(s)
- Andreas Bundkirchen
- Labor für Herzmuskelphysiologie und Molekulare Kardiologie, Klinik III für Innere Medizin der Universität zu Köln, Köln, Germany
| | | | | | | |
Collapse
|
20
|
Ichioka S, Nakatsuka T, Ohura N, Sato Y, Harii K. Clinical use of amrinone (a selective phosphodiesterase III inhibitor) in reconstructive surgery. Plast Reconstr Surg 2001; 108:1931-7. [PMID: 11743379 DOI: 10.1097/00006534-200112000-00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amrinone is a selective phosphodiesterase III inhibitor that increases cyclic adenosine monophosphate by preventing its breakdown. It is effective in the treatment of congestive heart failure because of its ability to increase myocardial contractility and vascular smooth muscle relaxation. This study was designed to clarify the potential efficacy of amrinone in plastic surgery by clinically assessing its ability to enhance flap blood flow after reconstructive surgery and relieve intraoperative vasospasm. Its effects were compared with those of prostaglandin E1 and lidocaine, which are widely approved agents for improving the hemodynamics of flaps. In the first clinical study, the effects on flap blood flow after flap transfers were investigated. Twenty-six patients underwent reconstructive surgery with vascularized free or pedicled flaps. Blood flow was measured before and 60 minutes after intravenous infusion of lactated Ringer solution (control), amrinone (10 microg/kg/min), or prostaglandin E1 (10 ng/kg/min) using a laser Doppler flowmeter. In the second study, the effects on relief of vasospasm during operation were evaluated. The blood flow of 28 island flaps was measured by laser Doppler flowmetry immediately after flap elevation and 10 minutes after topical application of saline (control), amrinone (5 mg/ml), or lidocaine (10%) to the pedicle in an attempt to resolve the vasospasm. In both clinical studies, the effects of amrinone were statistically no less than those of prostaglandin E1 and lidocaine. The results show that amrinone positively influences the microcirculatory blood flow of transferred flaps and relieves intraoperative vasospasm in clinical cases. The present study suggests that amrinone could be useful for postoperative and intraoperative care in reconstructive surgery.
Collapse
Affiliation(s)
- S Ichioka
- Department of Plastic and Reconstructive Surgery, Saitama Medical School, Iruma-gun, Japan.
| | | | | | | | | |
Collapse
|
21
|
Ichioka S, Nakatsuka T, Sato Y, Shibata M, Kamiya A, Harii K. Amrinone, a selective phosphodiesterase III inhibitor, improves microcirculation and flap survival: a comparative study with prostaglandin E1. J Surg Res 1998; 75:42-8. [PMID: 9614855 DOI: 10.1006/jsre.1998.5266] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amrinone, a selective phosphodiesterase (PDE) III inhibitor, is a newly developed agent that possesses a combination of positive inotropic and vasodilating properties as a result of preventing the degradation of cAMP and it has recently been licensed for treatment of heart failure alone. Amrinone is expected to be useful for the treatment not only of heart failure but also of peripheral circulatory disorders, including vascular disease, and for ischemic flaps, because it improves microcirculatory hemodynamics. To investigate potential therapeutic applications of amrinone, we evaluated its ability to improve microcirculatory hemodynamics and flap survival. MATERIALS AND METHODS The rat skinfold chamber technique was employed to quantify microcirculation directly in vivo. The improved survival area of random flaps in rats treated with amrinone was examined to assess therapeutic efficacy of this drug. Its effects were compared with those of prostaglandin E1 (PGE1), which has been widely approved as an agent for improving hemodynamics. RESULTS Microcirculatory blood flow and flap survival area were significantly increased in both amrinone- and PGE1-treated animals, compared to the saline-treated controls. The ameliorating effects of amrinone were comparable to those of PGE1. CONCLUSIONS The results of this study suggest amrinone to be a potentially useful drug not only for treating heart failure but also for improving microcirculation in patients with vascular diseases and for postoperative care after reconstructive surgery.
Collapse
Affiliation(s)
- S Ichioka
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
1. Current therapy of heart failure relies on diuretics, positive inotropic compounds and vasodilators. The short-term haemodynamic benefits, especially of the cAMP generators, may be compromised by long-term limitations leading to an increased mortality. In contrast, some vasodilators, especially angiotensin converting enzyme inhibitors, improve survival even in severe heart failure. 2. Modulation of Na(+)- or K(+)-channels and calcium sensitization are positive inotropic mechanisms whose promise in treatment of heart failure needs to be fully explored. 3. The introduction of vasodilator therapy has been a significant advance. Newer compounds act to inhibit the endogenous vasoconstrictors angiotensin II and endothelin, or to potentiate the endogenous vasodilators atrial natriuretic factor and nitric oxide. The full potential of these compounds is yet to be realised.
Collapse
Affiliation(s)
- L Brown
- Department of Physiology and Pharmacology, University of Queensland, Australia
| |
Collapse
|