1
|
Baumann A, Denninger AR, Domin M, Demé B, Kirschner DA. Metabolically-incorporated deuterium in myelin localized by neutron diffraction and identified by mass spectrometry. Curr Res Struct Biol 2022; 4:231-245. [PMID: 35941866 PMCID: PMC9356250 DOI: 10.1016/j.crstbi.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Myelin is a natural and dynamic multilamellar membrane structure that continues to be of significant biological and neurological interest, especially with respect to its biosynthesis and assembly during its normal formation, maintenance, and pathological breakdown. To explore the usefulness of neutron diffraction in the structural analysis of myelin, we investigated the use of in vivo labeling by metabolically incorporating non-toxic levels of deuterium (2H; D) via drinking water into a pregnant dam (D-dam) and her developing embryos. All of the mice were sacrificed when the pups (D-pups) were 55 days old. Myelinated sciatic nerves were dissected, fixed in glutaraldehyde and examined by neutron diffraction. Parallel samples that were unfixed (trigeminal nerves) were frozen for mass spectrometry (MS). The diffraction patterns of the nerves from deuterium-fed mice (D-mice) vs. the controls (H-mice) had major differences in the intensities of the Bragg peaks but no appreciable differences in myelin periodicity. Neutron scattering density profiles showed an appreciable increase in density at the center of the lipid-rich membrane bilayer. This increase was greater in D-pups than in D-dam, and its localization was consistent with deuteration of lipid hydrocarbon, which predominates over transmembrane protein in myelin. MS analysis of the lipids isolated from the trigeminal nerves demonstrated that in the pups the percentage of lipids that had one or more deuterium atoms was uniformly high across lipid species (97.6% ± 2.0%), whereas in the mother the lipids were substantially less deuterated (60.6% ± 26.4%) with levels varying among lipid species and subspecies. The mass distribution pattern of deuterium-containing isotopologues indicated the fraction (in %) of each lipid (sub-)species having one or more deuteriums incorporated: in the D-pups, the pattern was always bell-shaped, and the average number of D atoms ranged from a low of ∼4 in fatty acid to a high of ∼9 in cerebroside. By contrast, in D-dam most lipids had more complex, overlapping distributions that were weighted toward a lower average number of deuteriums, which ranged from a low of ∼3–4 in fatty acid and in one species of sulfatide to a high of 6–7 in cerebroside and sphingomyelin. The consistently high level of deuteration in D-pups can be attributed to their de novo lipogenesis during gestation and rapid, postnatal myelination. The widely varying levels of deuteration in D-dam, by contrast, likely depends on the relative metabolic stability of the particular lipid species during myelin maintenance. Our current findings demonstrate that stably-incorporated D label can be detected and localized using neutron diffraction in a complex tissue such as myelin; and moreover, that MS can be used to screen a broad range of deuterated lipid species to monitor differential rates of lipid turnover. In addition to helping to develop a comprehensive understanding of the de novo synthesis and turnover of specific lipids in normal and abnormal myelin, our results also suggest application to studies on myelin proteins (which constitute only 20–30% by dry mass of the myelin, vs. 70–80% for lipid), as well as more broadly to the molecular constituents of other biological tissues. Deuterium metabolically assimilated into gestating mouse pups via drinking water. Neutron diffraction localized deuterium to middle of myelin membrane bilayers. Mass spectrometry identified 26 deuterated lipid species as myelinic. Myelin of pups substantially more deuterated than that of their dam. Deuterium differentially distributed among lipid species and subspecies. De novo lipid biogenesis vs. steady-state maintenance readily distinguished. Novel paradigm suggests application to animal models of human myelinopathies.
Collapse
|
2
|
Thurairatnam S, Lim S, Barker RH, Choi-Sledeski YM, Hirth BH, Jiang J, Macor JE, Makino E, Maniar S, Musick K, Pribish JR, Munson M. Brain Penetrable Inhibitors of Ceramide Galactosyltransferase for the Treatment of Lysosomal Storage Disorders. ACS Med Chem Lett 2020; 11:2010-2016. [PMID: 33062186 DOI: 10.1021/acsmedchemlett.0c00120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a rare, genetic lysosomal storage disorder caused by the deficiency of arylsulfatase A enzyme, which results in the accumulation of sulfatide in the lysosomes of the tissues of central and peripheral nervous systems, leading to progressive demyelination and neurodegeneration. Currently there is no cure for this disease, and the only approved therapy, hematopoietic stem cell transplant, has limitations. We proposed substrate reduction therapy (SRT) as a novel approach to treat this disease, by inhibiting ceramide galactosyltransferase enzyme (UGT8). This resulted in the identification of a thienopyridine scaffold as a starting point to initiate medicinal chemistry. Further optimization of hit compound 1 resulted in the identification of brain penetrable, orally bioavailable compound 19, which showed efficacy in the in vivo pharmacodynamic models, indicating the potential to treat MLD with UGT8 inhibitors.
Collapse
Affiliation(s)
| | - Sungtaek Lim
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - Robert H. Barker
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, Massachusetts 01701, United States
| | | | - Bradford H. Hirth
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - John Jiang
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - John E. Macor
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - Elina Makino
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - Sachin Maniar
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - Kwon Musick
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - James R. Pribish
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - Mark Munson
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| |
Collapse
|
4
|
Brown JA, Sherrod SD, Goodwin CR, Brewer B, Yang L, Garbett KA, Li D, McLean JA, Wikswo JP, Mirnics K. Metabolic consequences of interleukin-6 challenge in developing neurons and astroglia. J Neuroinflammation 2014; 11:183. [PMID: 25374324 PMCID: PMC4233071 DOI: 10.1186/s12974-014-0183-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/11/2014] [Indexed: 02/02/2023] Open
Abstract
Background Maternal immune activation and subsequent interleukin-6 (IL-6) induction disrupt normal brain development and predispose the offspring to developing autism and schizophrenia. While several proteins have been identified as having some link to these developmental disorders, their prevalence is still small and their causative role, if any, is not well understood. However, understanding the metabolic consequences of environmental predisposing factors could shed light on disorders such as autism and schizophrenia. Methods To gain a better understanding of the metabolic consequences of IL-6 exposure on developing central nervous system (CNS) cells, we separately exposed developing neuron and astroglia cultures to IL-6 for 2 hours while collecting effluent from our gravity-fed microfluidic chambers. By coupling microfluidic technologies to ultra-performance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS), we were able to characterize the metabolic response of these CNS cells to a narrow window of IL-6 exposure. Results Our results revealed that 1) the use of this technology, due to its superb media volume:cell volume ratio, is ideally suited for analysis of cell-type-specific exometabolome signatures; 2) developing neurons have low secretory activity at baseline, while astroglia show strong metabolic activity; 3) both neurons and astroglia respond to IL-6 exposure in a cell type-specific fashion; 4) the astroglial response to IL-6 stimulation is predominantly characterized by increased levels of metabolites, while neurons mostly depress their metabolic activity; and 5) disturbances in glycerophospholipid metabolism and tryptophan/kynurenine metabolite secretion are two putative mechanisms by which IL-6 affects the developing nervous system. Conclusions Our findings are potentially critical for understanding the mechanism by which IL-6 disrupts brain function, and they provide information about the molecular cascade that links maternal immune activation to developmental brain disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0183-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Department of Psychiatry, 465 21st Avenue South, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute for Integrative Biosystems Research and Education, 6809 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Stacy D Sherrod
- Vanderbilt Institute for Integrative Biosystems Research and Education, 6809 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Physics and Astronomy, 6301 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Cody R Goodwin
- Vanderbilt Institute for Integrative Biosystems Research and Education, 6809 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Chemistry, 5421 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Bryson Brewer
- Department of Mechanical Engineering, 333 Olin Hall, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Lijie Yang
- Department of Mechanical Engineering, 333 Olin Hall, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Krassimira A Garbett
- Department of Psychiatry, 465 21st Avenue South, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Deyu Li
- Vanderbilt Institute for Integrative Biosystems Research and Education, 6809 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Mechanical Engineering, 333 Olin Hall, Vanderbilt University, Nashville, TN, 37235, USA.
| | - John A McLean
- Vanderbilt Institute for Integrative Biosystems Research and Education, 6809 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Chemistry, 5421 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA.
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, 6809 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Physics and Astronomy, 6301 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Biomedical Engineering, 5824 Stevenson Center, Vanderbilt University, Nashville, 37235, TN, USA. .,Department of Molecular Physiology and Biophysics, 702 Light Hall, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Károly Mirnics
- Department of Psychiatry, 465 21st Avenue South, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute for Integrative Biosystems Research and Education, 6809 Stevenson Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Vanderbilt Kennedy Center for Research on Human Development, 110 Magnolia Circle, Vanderbilt University, Nashville, TN, 37203, USA. .,Department of Psychiatry, University of Szeged, 6725, Szeged, Hungary.
| |
Collapse
|
5
|
Velumian AA, Samoilova M, Fehlings MG. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow. Neuroimage 2010; 56:27-34. [PMID: 21073961 DOI: 10.1016/j.neuroimage.2010.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 08/10/2010] [Accepted: 11/04/2010] [Indexed: 01/16/2023] Open
Abstract
The compactness of myelin allows for efficient insulation defining rapid propagation of action potentials, but also raises questions about how cytoplasmic access to its membranes is achieved, which is critical for physiological activity. Understanding the organization of cytoplasmic ('water') spaces of myelin is also important for diffusion MRI studies of CNS white matter. Using longitudinal slices of mature rat spinal cord, we monitored the diffusion of the water-soluble fluorescent dye Lucifer Yellow injected into individual oligodendrocytes or internodal myelin. We show that living myelin sheaths on CNS axons are fenestrated by a network of diffusionally interconnected cytoplasmic 'pockets' (1.9 ± 0.2 pockets per 10μm sheath length, n=58) that included Schmidt-Lanterman clefts (SLCs) and numerous smaller compartments. 3-D reconstructions of these cytoplasmic networks show that the outer cytoplasmic layer of CNS myelin is cylindrically 'encuffing', which differs from EM studies using fixed tissue. SLCs were found in different 'open states' and remained stable within a 1-2hour observation period. Unlike the peripheral nervous system, where similarly small (<500Da) molecules diffuse along the whole myelin segment within a few minutes, in mature CNS this takes more than one hour. The slower cytoplasmic diffusion in CNS myelin possibly contributes to its known vulnerability to injury and limited capacity for repair. Our findings point to an elaborate cytoplasmic access to compact CNS myelin. These results could be of relevance to MRI studies of CNS white matter and to CNS repair/regeneration strategies.
Collapse
Affiliation(s)
- Alexander A Velumian
- Division of Genetics and Development, Toronto Western Research Institute, Canada.
| | | | | |
Collapse
|
8
|
Abstract
Turnover rates of myelin membrane components in mouse brains were determined by a method using stable isotope-labeling and mass spectrometry. The half-replacement times based on incorporation rates of newly synthesized molecules for young adult mice were 359 days for cholesterol, 20 days for phosphatidylcholine, 25 days for phosphatidylethanolamine, 94 days for cerebroside and 102 days for ganglioside GM1. The turnover rates of half-lives of myelin components were calculated from the decay curves of initially labeled molecules, and they were about the same as the half-replacement times. Individual components were thus revealed to be metabolized at different rates, and their turnover rates were differently affected by aging. As was observed with phospholipids, myelin pools appeared to be compartmentalized into rapidly and slowly exchanging pools. The turnover rates of cerebroside and GM1 decreased between the young and adult periods and slightly increased in senescence. The latter phenomenon may indicate an enhanced myelin turnover in senescence. The present study reveals the dynamic aspects of myelin membrane turnover during the life span of mouse.
Collapse
Affiliation(s)
- Susumu Ando
- Neuronal Function Research Group, Division of Neuroscience and Brain Function, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|