1
|
Ender A, Etzel M, Hammer S, Findeiß S, Stadler P, Mörl M. Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch. Nucleic Acids Res 2021; 49:1784-1800. [PMID: 33469651 PMCID: PMC7897497 DOI: 10.1093/nar/gkaa1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
We describe a synthetic riboswitch element that implements a regulatory principle which directly addresses an essential tRNA maturation step. Constructed using a rational in silico design approach, this riboswitch regulates RNase P-catalyzed tRNA 5′-processing by either sequestering or exposing the single-stranded 5′-leader region of the tRNA precursor in response to a ligand. A single base pair in the 5′-leader defines the regulatory potential of the riboswitch both in vitro and in vivo. Our data provide proof for prior postulates on the importance of the structure of the leader region for tRNA maturation. We demonstrate that computational predictions of ligand-dependent structural rearrangements can address individual maturation steps of stable non-coding RNAs, thus making them amenable as promising target for regulatory devices that can be used as functional building blocks in synthetic biology.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Maja Etzel
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Stefan Hammer
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Science, Inselstr. 22, 04103 Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
3
|
Jackson A, Jani S, Sala CD, Soler-Bistué AJC, Zorreguieta A, Tolmasky ME. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biol Methods Protoc 2016; 1. [PMID: 27857983 PMCID: PMC5108630 DOI: 10.1093/biomethods/bpw001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
External guide sequences (EGSs) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNAs) – modified ribonucleotides that contain a bridge at the 2ʹ,4ʹ-position of the ribose. LNA and the second-generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6ʹ)-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5ʹ- and 3ʹ-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell-penetrating peptide, the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity.
Collapse
Affiliation(s)
- Alexis Jackson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Carol Davies Sala
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Alfonso J C Soler-Bistué
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
4
|
Abstract
The "RNA World" hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA-protein complex plays diverse roles in processing RNA, but its best-understood reaction is pre-tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment.
Collapse
Affiliation(s)
- Michael C. Marvin
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
5
|
Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair. J Mol Biol 2009; 395:1019-37. [PMID: 19917291 DOI: 10.1016/j.jmb.2009.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/23/2022]
Abstract
The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.
Collapse
|
6
|
Soler Bistué AJC, Ha H, Sarno R, Don M, Zorreguieta A, Tolmasky ME. External guide sequences targeting the aac(6')-Ib mRNA induce inhibition of amikacin resistance. Antimicrob Agents Chemother 2007; 51:1918-25. [PMID: 17387154 PMCID: PMC1891410 DOI: 10.1128/aac.01500-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dissemination of AAC(6')-I-type acetyltransferases have rendered amikacin and other aminoglycosides all but useless in some parts of the world. Antisense technologies could be an alternative to extend the life of these antibiotics. External guide sequences are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. Thirteen-nucleotide external guide sequences complementary to locations within five regions accessible for interaction with antisense oligonucleotides in the mRNA that encodes AAC(6')-Ib were analyzed. While small variations in the location targeted by different external guide sequences resulted in big changes in efficiency of binding to native aac(6')-Ib mRNA, most of them induced high levels of RNase P-mediated cleavage in vitro. Recombinant plasmids coding for selected external guide sequences were introduced into Escherichia coli harboring aac(6')-Ib, and the transformant strains were tested to determine their resistance to amikacin. The two external guide sequences that showed the strongest binding efficiency to the mRNA in vitro, EGSC3 and EGSA2, interfered with expression of the resistance phenotype at different degrees. Growth curve experiments showed that E. coli cells harboring a plasmid coding for EGSC3, the external guide sequence with the highest mRNA binding affinity in vitro, did not grow for at least 300 min in the presence of 15 mug of amikacin/ml. EGSA2, which had a lower mRNA-binding affinity in vitro than EGSC3, inhibited the expression of amikacin resistance at a lesser level; growth of E. coli harboring a plasmid coding for EGSA2, in the presence of 15 mug of amikacin/ml was undetectable for 200 min but reached an optical density at 600 nm of 0.5 after 5 h of incubation. Our results indicate that the use of external guide sequences could be a viable strategy to preserve the efficacy of amikacin.
Collapse
Affiliation(s)
- Alfonso J C Soler Bistué
- Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | | | | | | | | | | |
Collapse
|
7
|
Ardell DH, Andersson SGE. TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase. Nucleic Acids Res 2006; 34:893-904. [PMID: 16473847 PMCID: PMC1363771 DOI: 10.1093/nar/gkj449] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We present TFAM, an automated, statistical method to classify the identity of tRNAs. TFAM, currently optimized for bacteria, classifies initiator tRNAs and predicts the charging identity of both typical and atypical tRNAs such as suppressors with high confidence. We show statistical evidence for extensive variation in tRNA identity determinants among bacterial genomes due to variation in overall tDNA base content. With TFAM we have detected the first case of eukaryotic-like tRNA identity rules in bacteria. An α-proteobacterial clade encompassing Rhizobiales, Caulobacter crescentus and Silicibacter pomeroyi, unlike a sister clade containing the Rickettsiales, Zymomonas mobilis and Gluconobacter oxydans, uses the eukaryotic identity element A73 instead of the highly conserved prokaryotic element C73. We confirm divergence of bacterial histidylation rules by demonstrating perfect covariation of α-proteobacterial tRNAHis acceptor stems and residues in the motif IIb tRNA-binding pocket of their histidyl-tRNA synthetases (HisRS). Phylogenomic analysis supports lateral transfer of a eukaryotic-like HisRS into the α-proteobacteria followed by in situ adaptation of the bacterial tDNAHis and identity rule divergence. Our results demonstrate that TFAM is an effective tool for the bioinformatics, comparative genomics and evolutionary study of tRNA identity.
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/enzymology
- Alphaproteobacteria/genetics
- DNA, Bacterial/classification
- Databases, Nucleic Acid
- Evolution, Molecular
- Gene Transfer, Horizontal
- Genetic Variation
- Genome, Bacterial
- Genomics
- Histidine-tRNA Ligase/classification
- Histidine-tRNA Ligase/genetics
- Models, Statistical
- Phylogeny
- RNA, Transfer/classification
- RNA, Transfer/genetics
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/classification
- RNA, Transfer, His/genetics
- RNA, Transfer, Met/classification
Collapse
Affiliation(s)
- David H Ardell
- Department of Molecular Evolution, Evolutionary Biology Center Norbyvägen 18C Uppsala University SE-752 36 Uppsala Sweden.
| | | |
Collapse
|
8
|
Sharin E, Schein A, Mann H, Ben-Asouli Y, Jarrous N. RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis. Nucleic Acids Res 2005; 33:5120-32. [PMID: 16155184 PMCID: PMC1201335 DOI: 10.1093/nar/gki828] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.
Collapse
Affiliation(s)
| | | | | | | | - Nayef Jarrous
- To whom correspondence should be addressed. Tel: +972 2 6758233; Fax: +972 2 6784010;
| |
Collapse
|
9
|
Hall TA, Brown JW. Interactions between RNase P protein subunits in archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:247-54. [PMID: 15810434 PMCID: PMC2685574 DOI: 10.1155/2004/743956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A yeast two-hybrid system was used to identify protein-protein interactions between the ribonuclease P (RNase P) protein subunits Mth11p, Mth687p, Mth688p and Mth1618p from the archaeon Methanothermobacter thermoautotrophicus. Clear interactions between Mth688p and Mth687p, and between Mth1618p and Mth11p, were confirmed by HIS3 and LacZ reporter expression. Weaker interactions of Mth687p and Mth688p with Mth 11p, and Mth11p with itself, are also suggested. These interactions resemble, and confirm, those previously seen among the homologs of these proteins in the more complex yeast RNase P holoenzyme.
Collapse
Affiliation(s)
- Thomas A. Hall
- Ibis Therapeutics, 2292 Faraday Ave., Carlsbad, CA 92008, USA
| | - James W. Brown
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
- Corresponding author ()
| |
Collapse
|
10
|
Komine Y, Kikis E, Schuster G, Stern D. Evidence for in vivo modulation of chloroplast RNA stability by 3'-UTR homopolymeric tails in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2002; 99:4085-90. [PMID: 11891297 PMCID: PMC122652 DOI: 10.1073/pnas.052327599] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Indexed: 11/18/2022] Open
Abstract
Polyadenylation of synthetic RNAs stimulates rapid degradation in vitro by using either Chlamydomonas or spinach chloroplast extracts. Here, we used Chlamydomonas chloroplast transformation to test the effects of mRNA homopolymer tails in vivo, with either the endogenous atpB gene or a version of green fluorescent protein developed for chloroplast expression as reporters. Strains were created in which, after transcription of atpB or gfp, RNase P cleavage occurred upstream of an ectopic tRNA(Glu) moiety, thereby exposing A(28), U(25)A(3), [A+U](26), or A(3) tails. Analysis of these strains showed that, as expected, polyadenylated transcripts failed to accumulate, with RNA being undetectable either by filter hybridization or reverse transcriptase-PCR. In accordance, neither the ATPase beta-subunit nor green fluorescent protein could be detected. However, a U(25)A(3) tail also strongly reduced RNA accumulation relative to a control, whereas the [A+U] tail did not, which is suggestive of a degradation mechanism that does not specifically recognize poly(A), or that multiple mechanisms exist. With an A(3) tail, RNA levels decreased relative to a control with no added tail, but some RNA and protein accumulation was observed. We took advantage of the fact that the strain carrying a modified atpB gene producing an A(28) tail is an obligate heterotroph to obtain photoautotrophic revertants. Each revertant exhibited restored atpB mRNA accumulation and translation, and seemed to act by preventing poly(A) tail exposure. This suggests that the poly(A) tail is only recognized as an instability determinant when exposed at the 3' end of a message.
Collapse
MESH Headings
- 3' Untranslated Regions/chemistry
- 3' Untranslated Regions/genetics
- 3' Untranslated Regions/metabolism
- Animals
- Base Sequence
- Chlamydomonas reinhardtii/cytology
- Chlamydomonas reinhardtii/genetics
- Genes, Protozoan/genetics
- Genes, Reporter/genetics
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Nucleic Acid Conformation
- Poly A/genetics
- Poly A/metabolism
- Polyadenylation
- RNA Stability
- RNA, Chloroplast/chemistry
- RNA, Chloroplast/genetics
- RNA, Chloroplast/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Suppression, Genetic/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Yutaka Komine
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- T A Hall
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- Venkat Gopalan
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
13
|
Heubeck C, Schön A. Cyanelle ribonuclease P: isolation and structure-function studies of an organellar ribonucleoprotein enzyme. Methods Enzymol 2002; 342:118-34. [PMID: 11586887 DOI: 10.1016/s0076-6879(01)42540-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C Heubeck
- Institut für Biochemie, Universität Würzburg, Biozentrum D-97074 Würzburg, Germany
| | | |
Collapse
|
14
|
Eubank TD, Biswas R, Jovanovic M, Litovchick A, Lapidot A, Gopalan V. Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates. FEBS Lett 2002; 511:107-12. [PMID: 11821058 DOI: 10.1016/s0014-5793(01)03322-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of RNAs and RNA-protein (RNP) complexes as drug targets is currently being explored in various investigations. For example, a hexa-arginine derivative of neomycin (NeoR) and a tri-arginine derivative of gentamicin (R3G) were recently shown to disrupt essential RNP interactions between the trans-activator protein (Tat) and the Tat-responsive RNA (trans-activating region) in the human immunodeficiency virus (HIV) and also inhibit HIV replication in cell culture. Based on certain structural similarities, we postulated that NeoR and R3G might also be effective in disrupting RNP interactions and thereby inhibiting bacterial RNase P, an essential RNP complex involved in tRNA maturation. Our results indicate that indeed both NeoR and R3G inhibit RNase P activity from evolutionarily divergent pathogenic bacteria and do so more effectively than they inhibit partially purified human RNase P activity.
Collapse
Affiliation(s)
- Timothy D Eubank
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Ribonuclease P, the ubiquitous endonuclease required for generating mature tRNA 5' ends, is a ribonucleoprotein in most organisms and organelles, with the exception of mitochondria and chloroplasts of multicellular organisms. The cyanelle of the primitive alga Cyanophora paradoxa is the only photosynthetic organelle where the ribonucleoprotein nature of this enzyme has been functionally proven. tmRNA is another highly structured RNA: it can be aminoacylated with alanine, which is then incorporated into a tag peptide encoded on the same RNA molecule. This dual-function RNA has been found in bacteria, and its gene is also present in mitochondria and plastids from primitive organisms. Since nothing is known about the expression of this RNA in organelles, we have performed processing studies and determined the promoter of cyanelle pre-tmRNA. This RNA is transcribed as a precursor molecule in vivo. Synthetic transcripts of cyanelle pre-tmRNA, including or lacking the mature 3' CCA-end, are efficiently and correctly processed in vitro by bacterial RNase P ribo- and holoenzymes and by the homologous cyanelle RNase P. In addition to these experimental data, we propose a novel secondary structure model for this organellar tmRNA, which renders it more similar to its bacterial counterpart.
Collapse
Affiliation(s)
- O Gimple
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
16
|
Cole KB, Dorit RL. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli. J Mol Biol 2001; 307:1181-212. [PMID: 11292334 DOI: 10.1006/jmbi.2001.4519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli RNase P derivatives were evolved in vitro for DNA cleavage activity. Ribonucleoproteins sampled after ten generations of selection show a >400-fold increase in the first-order rate constant (k(cat)) on a DNA substrate, reflecting a significant improvement in the chemical cleavage step. This increase is offset by a reduction in substrate binding, as measured by K(M). We trace the catalytic enhancement to two ubiquitous A-->U sequence changes at positions 136 and 333 in the M1 RNA component, positions that are phylogenetically conserved in the Eubacteria. Furthermore, although the mutations are located in different folding domains of the catalytic RNA, the first in the substrate binding domain, the second near the catalytic core, their effect on catalytic activity is significantly influenced by the presence of the C5 protein. The activity of the evolved ribonucleoproteins on both pre-4.5 S RNA and on an RNA oligo substrate remain at wild-type levels. In contrast, improved DNA cleavage activity is accompanied by a 500-fold decrease in pre-tRNA cleavage efficiency (k(cat)/K(M)). The presence of the C5 component does not buffer this tradeoff in catalytic activities, despite the in vivo role played by the C5 protein in enhancing the substrate versatility of RNase P. The change at position 136, located in the J11/12 single-stranded region, likely alters the geometry of the pre-tRNA-binding cleft and may provide a functional explanation for the observed tradeoff. These results thus shed light both on structure/function relations in E. coli RNase P and on the crucial role of proteins in enhancing the catalytic repertoire of RNA.
Collapse
Affiliation(s)
- K B Cole
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | | |
Collapse
|
17
|
Houser-Scott F, Ziehler WA, Engelke DR. Saccharomyces cerevisiae nuclear ribonuclease P: structure and function. Methods Enzymol 2001; 342:101-17. [PMID: 11586886 DOI: 10.1016/s0076-6879(01)42539-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- F Houser-Scott
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
18
|
Cole KB, Dorit RL. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation. J Mol Biol 1999; 292:931-44. [PMID: 10525416 DOI: 10.1006/jmbi.1999.3098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribonucleoprotein RNase P is a critical component of metabolism in all known organisms. In Escherichia coli, RNase P processes a vast array of substrates, including precursor-tRNAs and precursor 4. 5S RNA. In order to understand how such catalytic versatility is achieved and how novel catalytic activity can be acquired, we evolve the M1 RNA ribozyme (the catalytic component of E. coli RNase P) in vitro for cleavage of a DNA substrate. In so doing, we probe the consequences of enhancing catalytic activity on a novel substrate and investigate the cost this versatile enzyme pays for molecular adaptation. A total of 25 generations of in vitro evolution yield a population showing more than a 1000-fold increase in DNA substrate cleavage efficiency (kcat/KM) relative to wild-type M1 RNA. This enhancement is accompanied by a significant reduction in the ability of evolved ribozymes to process the ptRNA class of substrates but also a contrasting increase in activity on the p4.5S RNA class of substrates. This change in the catalytic versatility of the evolved ribozymes suggests that the acquired activity comes at the cost of substrate versatility, and indicates that E. coli RNase P catalytic flexibility is maintained in vivo by selection for the processing of multiple substrates. M1 RNA derivatives enhance cleavage of the DNA substrate by accelerating the catalytic step (kcat) of DNA cleavage, although overall processing efficiency is offset by reduced substrate binding. The enhanced ability to cleave a DNA substrate cannot be readily traced to any of the predominant mutations found in the evolved population, and must instead be due to multiple sequence changes dispersed throughout the molecule. This conclusion underscores the difficulty of correlating observed mutations with changes in catalytic behavior, even in simple biological catalysts for which three-dimensional models are available.
Collapse
Affiliation(s)
- K B Cole
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06511, USA
| | | |
Collapse
|
19
|
Pascual A, Vioque A. Substrate binding and catalysis by ribonuclease P from cyanobacteria and Escherichia coli are affected differently by the 3' terminal CCA in tRNA precursors. Proc Natl Acad Sci U S A 1999; 96:6672-7. [PMID: 10359770 PMCID: PMC21973 DOI: 10.1073/pnas.96.12.6672] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied the effect of the 3' terminal CCA sequence in precursors of tRNAs on catalysis by the RNase P RNA or the holoenzyme from the cyanobacterium Synechocystis sp. PCC 6803 in a completely homologous system. We have found that the absence of the 3' terminal CCA is not detrimental to activity, which is in sharp contrast to what is known in other bacterial systems. We have found that this is also true in other cyanobacteria. This situation correlates with the anomalous structure of the J15/16 loop in cyanobacteria, which is an important loop in the CCA interaction in Escherichia coli RNase P, and with the fact that cyanobacteria do not code the CCA sequence in the genome but add it posttranscriptionally. Modification of nucleotides 330-332 in the J15/16 loop of Synechocystis RNase P RNA from GGU to CCA has a modest effect on kcat for CCA-containing substrates and has no effect on cleavage-site selection. We have developed a direct physical assay of the interaction between RNase P RNA and its substrate, which was immobilized on a filter, and we have determined that Synechocystis RNase P RNA binds with better affinity the substrate lacking CCA than the substrate containing it. Our results indicate a mode of substrate binding in RNase P from cyanobacteria that is different from binding in other eubacteria and in which the 3' terminal CCA is not involved.
Collapse
Affiliation(s)
- A Pascual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avenida Americo Vespucio s/n, 41092 Seville, Spain
| | | |
Collapse
|
20
|
Cordier A, Schön A. Cyanelle RNase P: RNA structure analysis and holoenzyme properties of an organellar ribonucleoprotein enzyme. J Mol Biol 1999; 289:9-20. [PMID: 10339401 DOI: 10.1006/jmbi.1999.2762] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyanelle of the primitive alga Cyanophora paradoxa is the only photosynthetic organelle where the ribonucleoprotein nature of ribonuclease P has been functionally proven. To increase our knowledge about RNA structure and overall composition of this enzyme, we have now determined relevant physical parameters and performed RNA accessibility experiments. Buoyant density and relative molecular mass of cyanelle RNase P were more similar to the eukaryotic (nuclear or mitochondrial) than to the bacterial enzyme type, despite the close phylogenetic relationship between plastids and cyanobacteria. Enzymatic and chemical probing was used to establish the secondary structure of cyanelle RNase P RNA. The results obtained with the naked transcript support the previously proposed, phylogenetically derived structure. Probing of the RNA in the holoenzyme resulted in reduced sensitivity at a large number of positions, indicating that these regions might be located in the interior of the ribonucleoprotein. Protection of the RNA in cyanelle RNase P was more extensive than reported for the Escherichia coli holoenzyme, but similar to the pattern observed in yeast nuclear RNase P. Taken together, these results indicate that the protein contribution in cyanelle RNase P is much larger than in the bacterial enzymes, and that the overall composition of the holoenzyme resembles that found in eukaryotes.
Collapse
Affiliation(s)
- A Cordier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, 97074, Germany
| | | |
Collapse
|
21
|
Kurz JC, Niranjanakumari S, Fierke CA. Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry 1998; 37:2393-400. [PMID: 9485387 DOI: 10.1021/bi972530m] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease P (RNase P) is an endonuclease that cleaves precursor tRNA to form the 5'-end of mature tRNA and is composed of a catalytic RNA subunit and a small protein subunit. The function of the protein component of Bacillus subtilis RNase P in catalysis of B. subtilis precursor tRNAAsp cleavage has been elucidated using steady-state kinetics, transient kinetics, and ligand affinity measurements to compare the functional properties of RNase P holoenzyme to RNase P RNA in 10 mM MgCl2, 100 mM NH4Cl. The protein component modestly affects several steps including </=10-fold increases in the rate constant for tRNA dissociation, the affinity of tRNA, and the rate constant for phosphodiester bond cleavage. However, the protein principally affects substrate binding, increasing the affinity of RNase P for pre-tRNAAsp by a factor of 10(4) as determined from both the ratio of the pre-tRNAAsp dissociation and association rate constants measured in 10 mM MgCl2 and a binding isotherm measured in 10 mM CaCl2 using gel filtration to separate enzyme-bound and free pre-tRNAAsp. Therefore, the main role of the protein component in RNase P is to facilitate recognition of pre-tRNA by enhancing the interaction between the enzyme and the 5'-precursor segment of the substrate, rather than stabilizing the tertiary structure of the folded RNA as has been observed for protein-facilitated group I intron self-splicing. Furthermore, the protein component maximizes the efficiency of RNase P under physiological conditions and minimizes product inhibition.
Collapse
Affiliation(s)
- J C Kurz
- Department of Biochemistry, Box 3711, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
22
|
Vioque A. The RNase P RNA from cyanobacteria: short tandemly repeated repetitive (STRR) sequences are present within the RNase P RNA gene in heterocyst-forming cyanobacteria. Nucleic Acids Res 1997; 25:3471-7. [PMID: 9254706 PMCID: PMC146911 DOI: 10.1093/nar/25.17.3471] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RNase P RNA gene (rnpB) from 10 cyanobacteria has been characterized. These new RNAs, together with the previously available ones, provide a comprehensive data set of RNase P RNA from diverse cyanobacterial lineages. All heterocystous cyanobacteria, but none of the non-heterocystous strains analyzed, contain short tandemly repeated repetitive (STRR) sequences that increase the length of helix P12. Site-directed mutagenesis experiments indicate that the STRR sequences are not required for catalytic activity in vitro. STRR sequences seem to have recently and independently invaded the RNase P RNA genes in heterocyst-forming cyanobacteria because closely related strains contain unrelated STRR sequences. Most cyanobacteria RNase P RNAs lack the sequence GGU in the loop connecting helices P15 and P16 that has been established to interact with the 3'-end CCA in precursor tRNA substrates in other bacteria. This character is shared with plastid RNase P RNA. Helix P6 is longer than usual in most cyanobacteria as well as in plastid RNase P RNA.
Collapse
Affiliation(s)
- A Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Isla de la Cartuja, Universidad de Sevilla-CSIC, Avenida Americo Vespucio s/n, 41092 Sevilla, Spain.
| |
Collapse
|