1
|
Intracellular Aminopeptidase Activity Determination from the Fungus Sporisorium reilianum: Purification and Biochemical Characterization of psrAPEi Enzyme. Curr Microbiol 2022; 79:90. [PMID: 35129692 DOI: 10.1007/s00284-022-02787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
The aims of this study were to, first, determine the intracellular aminopeptidase activity (APEi) and second, purify and biochemically characterize one intracellular aminopeptidase enzyme from the phytopathogen fungus Sporisorium reilianum (psrAPEi), the causal agent of head smut in corn. The fungus produced APEi activity in all media cultures evaluated. The psrAPEi was purified by a procedure that involved ammonium sulfate fractionation and four chromatographic steps using an FPLC system (Fast Protein Liquid Chromatography). Results showed an estimated molecular mass of 52.2 kDa. Enzymatic activity was optimal at pH 7.0 and 35 °C and was inhibited by EDTA-Na2, 1,10-phenanthroline, bestatin, and PMSF. This aminopeptidase showed a preference for leucine, arginine, and lysine at the N-position. The Km and Vmax values were 3.72 μM and 188.0 μmol/min, respectively, for L-lysyl-4-nitroanilide. This is the first study to report on intracellular aminopeptidase activity in S. reilianum and the purification and characterization of an intracellular metallo-serine-aminopeptidase (psrAPEi).
Collapse
|
2
|
Isidor B, Ebstein F, Hurst A, Vincent M, Bader I, Rudy NL, Cogne B, Mayr J, Brehm A, Bupp C, Warren K, Bacino CA, Gerard A, Ranells JD, Metcalfe KA, van Bever Y, Jiang YH, Mendelssohn BA, Cope H, Rosenfeld JA, Blackburn PR, Goodenberger ML, Kearney HM, Kennedy J, Scurr I, Szczaluba K, Ploski R, de Saint Martin A, Alembik Y, Piton A, Bruel AL, Thauvin-Robinet C, Strong A, Diderich KEM, Bourgeois D, Dahan K, Vignard V, Bonneau D, Colin E, Barth M, Camby C, Baujat G, Briceño I, Gómez A, Deb W, Conrad S, Besnard T, Bézieau S, Krüger E, Küry S, Stankiewicz P. Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype. Genet Med 2021; 24:179-191. [PMID: 34906456 DOI: 10.1016/j.gim.2021.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/23/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.
Collapse
Affiliation(s)
- Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France.
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Anna Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Marie Vincent
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Ingrid Bader
- Department of Clinical Genetics, University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Natasha L Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Johannes Mayr
- Department of Clinical Genetics, University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Anja Brehm
- Octapharma Biopharmaceuticals GmbH, Berlin, Germany
| | - Caleb Bupp
- Spectrum Health Helen DeVos Children's Hospital, Grand Rapids, MI
| | | | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Judith D Ranells
- Department of Pediatrics, University of South Florida, Tampa, FL
| | - Kay A Metcalfe
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and Institute of Human Development, University of Manchester, Manchester, United Kingdom
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yong-Hui Jiang
- Department of Genetics, Yale School of Medicine, New Haven, CT; Department of Neurobiology, Duke University School of Medicine, Durham, NC; Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Bryce A Mendelssohn
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, CA
| | - Heidi Cope
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Patrick R Blackburn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - McKinsey L Goodenberger
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Hutton M Kearney
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Joanna Kennedy
- Clinical Genetics, University Hospitals Bristol, Bristol, United Kingdom; University of Bristol, Bristol, United Kingdom
| | - Ingrid Scurr
- Clinical Genetics, University Hospitals Bristol, Bristol, United Kingdom; University of Bristol, Bristol, United Kingdom
| | - Krzysztof Szczaluba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Anne de Saint Martin
- Pediatric Neurology Unit, Department of Pediatrics, University Hospital Strasbourg, Strasbourg, France
| | - Yves Alembik
- Department of Clinical Genetic, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Unité de Génétique Moléculaire Strasbourg University Hospital, 1 place de l'Hôpital, Strasbourg Cedex, France
| | - Ange-Line Bruel
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France; Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France; Centre de Génétique et Centre de Référence Déficience Intellectuelle de causes rares, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon-Bourgogne, Dijon, France
| | - Christel Thauvin-Robinet
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon-Bourgogne, Dijon, France; INSERM UMR1231 GAD, Dijon, France
| | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Karin Dahan
- Laboratoire National de Santé, Dudelange, Luxembourg
| | - Virginie Vignard
- Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | | | - Estelle Colin
- Service de Génétique médicale, CHU d'Angers, Angers, France
| | - Magalie Barth
- Pediatric Surgery Department, Hôpital Mère-Enfant, F44093 Nantes, France
| | - Caroline Camby
- Pediatric Surgery Department, Hôpital Mère-Enfant, F44093 Nantes, France
| | - Geneviève Baujat
- Department of Medical Genetics, Necker Enfants Malades Hospital, AP-HP, Paris, France; INSERM U1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Ignacio Briceño
- Grupo Genética Humana, Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Alberto Gómez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Wallid Deb
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, Nantes, France; Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - PaweƗ Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Eastman A. Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays. Oncotarget 2018; 8:8854-8866. [PMID: 27750219 PMCID: PMC5352448 DOI: 10.18632/oncotarget.12673] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022] Open
Abstract
The high failure rate of anticancer drug discovery and development has consumed billions of dollars annually. While many explanations have been provided, I believe that misinformation arising from inappropriate cell-based screens has been completely over-looked. Most cell culture experiments are irrelevant to how drugs are subsequently administered to patients. Usually, drug development focuses on growth inhibition rather than cell killing. Drugs are selected based on continuous incubation of cells, then frequently administered to the patient as a bolus. Target identification and validation is often performed by gene suppression that inevitably mimics continuous target inhibition. Drug concentrations in vitro frequently far exceed in vivo concentrations. Studies of drug synergy are performed at sub-optimal concentrations. And the focus on a limited number of cell lines can misrepresent the potential efficacy in a patient population. The intent of this review is to encourage more appropriate experimental design and data interpretation, and to improve drug development in the area of cell-based assays. Application of these principles should greatly enhance the successful translation of novel drugs to the patient.
Collapse
Affiliation(s)
- Alan Eastman
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
4
|
Tsvetkov P, Mendillo ML, Zhao J, Carette JE, Merrill PH, Cikes D, Varadarajan M, van Diemen FR, Penninger JM, Goldberg AL, Brummelkamp TR, Santagata S, Lindquist S. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome. eLife 2015; 4. [PMID: 26327695 PMCID: PMC4551903 DOI: 10.7554/elife.08467] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.
Collapse
Affiliation(s)
- Peter Tsvetkov
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Marc L Mendillo
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Jinghui Zhao
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Parker H Merrill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Ferdy R van Diemen
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Thijn R Brummelkamp
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
5
|
Zakhartsev M, Yang X, Reuss M, Pörtner HO. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield. J Therm Biol 2015; 52:117-29. [PMID: 26267506 DOI: 10.1016/j.jtherbio.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/16/2022]
Abstract
Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin of metabolic efficiency. We hypothesize that a temperature increase above Topt (e.g. >31°C) triggers both an increment in mglc and suppression of μmax, which together contribute to an upshift of Yatp/glc from the lower limit and thus compensate for the loss of the safety margin. This trade-off allows adding 10 more degrees to Topt and extends the thermal window up to 40°C, sustaining survival and reproduction in supraoptimal temperatures. Deeper understanding of the limits of thermal tolerance can be practically exploited in biotechnological applications.
Collapse
Affiliation(s)
- Maksim Zakhartsev
- Alfred Wegener Institute for Marine and Polar Research (AWI), Bremerhaven, Germany; Institute of Biochemical Engineering (IBVT), University of Stuttgart, Stuttgart, Germany; Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany.
| | - Xuelian Yang
- Institute of Biochemical Engineering (IBVT), University of Stuttgart, Stuttgart, Germany; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Matthias Reuss
- Institute of Biochemical Engineering (IBVT), University of Stuttgart, Stuttgart, Germany
| | - Hans Otto Pörtner
- Alfred Wegener Institute for Marine and Polar Research (AWI), Bremerhaven, Germany
| |
Collapse
|
6
|
The proteolytic systems and heterologous proteins degradation in the methylotrophic yeastPichia pastoris. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
7
|
Zaikin A, Kurths J. Optimal length transportation hypothesis to model proteasome product size distribution. J Biol Phys 2006; 32:231-43. [PMID: 19669465 DOI: 10.1007/s10867-006-9014-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 02/10/2006] [Indexed: 11/30/2022] Open
Abstract
This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport.
Collapse
Affiliation(s)
- Alexey Zaikin
- Institute of Physics, University of Potsdam, D-14415 Potsdam, Germany.
| | | |
Collapse
|
8
|
Mercado-Flores Y, Noriega-Reyes Y, RamÃrez-Zavala B, Hernández-RodrÃguez CÃ, Villa-Tanaca L. Purification and characterization of aminopeptidase (pumAPE) fromUstilago maydis. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09540.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Qin W, Zhang T, Han J, Tang L, Li X, Feng G, Liu W, He L. A novel insertion mutation in spastin gene is the cause of spastic paraplegia in a Chinese family. J Neurol Sci 2003; 210:35-9. [PMID: 12736085 DOI: 10.1016/s0022-510x(03)00011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A total of eight loci for autosomal dominant hereditary spastic paraplegia (ADHSP) has been mapped to chromosome 14q, 2p, 15q, 8q, 10q, 12q, 19q, 2q, respectively, among which the SPG4 gene on chromosome 2p21-22 encoding spastin, an ATPase of the AAA family, accounts for 40-50% of all ADHSP families and is expressed in both adult and fetal tissues. In this work, we reveal a novel insertion mutation in exon 11 of the SPG4 gene found in a big Chinese family composed of 47 members, including 20 affected ones, using linkage analysis. The mutation was well demonstrated to be the cause of loss of production of the functional protein by pre-termination of translation in AAA cassette region. To our knowledge, this is the first report of spastin mutation in China.
Collapse
Affiliation(s)
- Wei Qin
- Shanghai Research Center of Life Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1-70. [PMID: 12078479 DOI: 10.1016/s0065-2776(02)80012-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past decade there has been considerable progress in understanding how MHC class I-presented peptides are generated. The emerging theme is that the immune system has not evolved its own specialized proteolytic mechanisms but instead utilizes the phylogenetically ancient catabolic pathways that continually turnover proteins in all cells. Three distinct proteolytic steps have now been defined in MHC class I antigen presentation. The first step is the degradation of proteins by the ubiquitin-proteasome pathway into oligopeptides that either are of the correct size for presentation or are extended on their amino-termini. In the second step, aminopeptidases trim N-extended precursors into peptides of the correct length to be presented on class I molecules. The third step involves the destruction of peptides by endo- and exopeptidases, which limits antigen presentation, but is important for preventing the accumulation of peptides and recycling them back to amino acids for protein synthesis or production of energy. The immune system has evolved several components that modify the activity of these ancient pathways in ways that enhance the generation of class I-presented peptides. These include catalytically active subunits of the proteasome, the PA28 proteasome activator, and leucine aminopeptidase, all of which are upregulated by interferon-gamma. In addition to these pathways that operate in all cells, dendritic cells and macrophages can also generate class I-presented peptides from proteins internalized from the extracellular fluids by degrading them in endocytic compartments or transferring them to the cyotosol for degradation by proteasomes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
11
|
Kessler BM, Glas R, Ploegh HL. MHC class I antigen processing regulated by cytosolic proteolysis-short cuts that alter peptide generation. Mol Immunol 2002; 39:171-9. [PMID: 12200049 DOI: 10.1016/s0161-5890(02)00100-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytotoxic T lymphocyte (CTL)-mediated immune responses rely on the efficiency of MHC class I ligand generation and presentation by antigen presenting cells (APCs). Whereas the abnormal expression of MHC molecules and transporters associated with antigen processing (TAPs) are commonly discussed as factors that modulate antigen presentation, much less is known about possible regulatory mechanisms at the level of proteolysis responsible for the generation of antigenic peptides. The ubiquitin-proteasome system is recognized as the major component responsible for this process in the cytosol and its activity can be regulated by cytokines, such as IFN-gamma. However, new evidence suggests the involvement of other proteases that can contribute to cytosolic proteolysis and therefore, to the quality and quantity of antigen production. Here, we review recent findings on an increasing number of proteolytic enzymes linked to antigen presentation, and we discuss how regulation of cytosolic protease activities might have implications for immune escape mechanisms that could be used by tumor cells and pathogens.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Department of Pathology, Harvard Medical School, Room 137, Building D2, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
12
|
Peters B, Janek K, Kuckelkorn U, Holzhütter HG. Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation. J Mol Biol 2002; 318:847-62. [PMID: 12054828 DOI: 10.1016/s0022-2836(02)00167-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteasomes are multicatalytic cellular protease complexes that degrade intracellular proteins into smaller peptides. Proteasomal in vitro digests have revealed that the various peptide bonds of a given substrate are cleaved in a highly selective manner. Regarding the key role of proteasomes as the main supplier of antigenic peptides for MHC class I-mediated antigen presentation, it is important to know to what extent these preferences for specific peptide bonds may vary among proteasomes of different cellular origin and of different subunit composition. Here, we quantify such cleavage rates by means of a kinetic proteasome model that relates the time-dependent changes of the amount of any generated peptide to the rates with which this peptide can be either generated from longer precursor peptides or degraded into smaller successor peptides. Numerical values for these rates are estimated by minimizing the distance between simulated and measured time-courses. The proposed method is applied to kinetic data obtained by combining HPLC fractionation and mass spectrometry (MS) to trace the degradation of two model peptides (pp89-25mer and LLO-27mer) by either the constitutive (T2) or immunoproteasome (T2.27). To convert the intensity of the MS signals into the respective peptide amounts, we use two methods leading to similar results: experimental calibration curves and theoretically determined linear scaling functions based on a novel approach using mass conservation rules. Comparison of the cleavage probabilities and procession rates obtained for the two types of proteasomes reveals that the striking differences between the time-dependent peptide profiles can be accounted for mainly by a generally higher turnover rate of the immunoproteasome. For the pp89-25mer, there is no significant change of the cleavage probabilities for any of the ten observed cleavage sites. For the LLO-27mer, there appears to be a significant change in the cleavage probabilities for four of the nine observed cleavage sites when switching from the constitutive to the immunoproteasome.
Collapse
Affiliation(s)
- Björn Peters
- Medizinische Fakultät, Charité, Institut für Biochemie, Humboldt Universität Berlin, Monbijoustr. 2, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Kopecek P, Altmannová K, Weigl E. Stress proteins: nomenclature, division and functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2001; 145:39-47. [PMID: 12426770 DOI: 10.5507/bp.2001.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell death, apoptosis, is activated, thereby providing a finely tuned balance between survival and death. In addition to extracellular stimuli, several nonstressfull conditions induce Hsps during normal cellular growth and development. The enhanced heat shock gene expression in response to various stimuli is regulated by heat shock transcription factors.
Collapse
Affiliation(s)
- P Kopecek
- Department of Biology, Medical Faculty, Palacký University, 775 15 Olomouc, Czech Republic
| | | | | |
Collapse
|
14
|
Abstract
During the last 30 years, investigation of the transcriptional and translational mechanisms of gene regulation has been a major focus of molecular cancer biology. More recently, it has become evident that cancer-related mutations and cancer-related therapies also can affect post-translational processing of cellular proteins and that control exerted at this level can be critical in defining both the cancer phenotype and the response to therapeutic intervention. One post-translational mechanism that is receiving considerable attention is degradation of intracellular proteins through the multicatalytic 26S proteasome. This follows growing recognition of the fact that protein degradation is a well-regulated and selective process that can differentially control intracellular protein expression levels. The proteasome is responsible for the degradation of all short-lived proteins and 70-90% of all long-lived proteins, thereby regulating signal transduction through pathways involving factors such as AP1 and NFKB, and processes such as cell cycle progression and arrest, DNA transcription, DNA repair/misrepair, angiogenesis, apoptosis/survival, growth and development, and inflammation and immunity, as well as muscle wasting (e.g. in cachexia and sepsis). In this review, we discuss the potential involvement of the proteasome in both cancer biology and cancer treatment.
Collapse
Affiliation(s)
- F Pajonk
- Department of Radiation Therapy, Radiological University Clinic, Hugstetter Str. 55, 79106 Freiburg i. Brsg., Germany.
| | | |
Collapse
|
15
|
Lu X, Michaud C, Orlowski M. Heat shock protein-90 and the catalytic activities of the 20 S proteasome (multicatalytic proteinase complex). Arch Biochem Biophys 2001; 387:163-71. [PMID: 11368178 DOI: 10.1006/abbi.2001.2270] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of heat shock protein 90 (Hsp-90) and several other proteins on the catalytic activities of the 20 S proteasome (MPC) was examined. The chymotrypsin-like (ChT-L) and peptidylglutamyl-peptide hydrolyzing (PGPH) activities of the pituitary MPC were inhibited by Hsp-90 with IC50 values of 8 and 28 nM, respectively. Bovine serum albumin and two other proteins tested inhibited the same activities with much higher IC50 values. The trypsin-like and branched-chain amino-acid-preferring activities were not affected by any of the proteins. None of the activities of the bovine spleen MPC, an enzyme form in which the X, Y, and Z subunits are virtually completely replaced by the LMP2, LMP7, and LMP10 subunits, was affected by either Hsp-90 or the other proteins tested. Hsp-90 inhibited the degradation of the oxidized B-chain of insulin by the pituitary MPC but not by its spleen counterpart. The PA28 activator (11 S regulator; REG) of the proteasome abolished the inhibitory effect of Hsp-90 and other proteins on the ChT-L and PGPH activities of the pituitary MPC. It is suggested that Hsp-90 induces conformational changes that affect the ChT-L and PGPH activities expressed by the X and Y subunits, respectively, but does not affect the activities expressed by LMP subunits.
Collapse
Affiliation(s)
- X Lu
- Department of Pharmacology, Mount Sinai School of Medicine of the City, University of New York, New York 10029, USA
| | | | | |
Collapse
|
16
|
Dihazi H, Kessler R, Eschrich K. One-step purification of recombinant yeast 6-phosphofructo-2-kinase after the identification of contaminants by MALDI-TOF MS. Protein Expr Purif 2001; 21:201-9. [PMID: 11162407 DOI: 10.1006/prep.2000.1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
His-tagged yeast 6-phosphofructo-2-kinase was overexpressed in the yeast strain DFY658 under the control of the Gal1 promoter. Here we describe a simple and fast purification protocol for the recombinant enzyme under native conditions using a HiTrap affinity column loaded with CuSO(4). The use of MALDI-TOF MS after in-gel-digestion enabled us to identify a critical contamination of the end product as yeast alcohol dehydrogenase1 (Adh1p). After identification this contaminant could be efficiently removed by carrying out the washing steps at 25 degrees C instead of at 4 degrees C. To reduce the cellular proteolytic activities a low phosphate concentration in the growth medium was applied. This simple modification of the yeast cell growth conditions increased significantly the yield of the recombinant protein.
Collapse
Affiliation(s)
- H Dihazi
- Medical Faculty, Institute of Biochemistry, University of Leipzig, Liebigstrasse 16, D-04103 Leipzig, Germany
| | | | | |
Collapse
|
17
|
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Solid phase synthesis of peptide vinyl sulfone and peptide epoxyketone proteasome inhibitors. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)00968-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Abstract
Protein degradation plays an important role in the control and regulation of many crucial biological functions, ranging from cell cycle progression to presentation of viral antigens for scrutiny by cells of the immune system. At the heart of many of these catabolic events is the multicatalytic proteinase complex known as the proteasome. This large barrel-shaped protein complex executes a remarkable set of functions ranging from the complete destruction of abnormal and misfolded proteins to the specific proteolytic activation of crucial signaling molecules. Inhibitors of this proteolytic complex have thus been extremely useful for perturbing its function and deciphering its role in these diverse biological processes. Inhibitors of the proteasome consist mainly of peptides that are modified at the predicted site of hydrolysis with a reactive functional group capable of modifying the attacking nucleophile, either reversibly or irreversibly. Many of these inhibitors can be used in living cells and have proved to be invaluable tools for the study of proteasome function.
Collapse
Affiliation(s)
- M Bogyo
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
20
|
Fernández Murray P, Biscoglio MJ, Passeron S. Purification and characterization of Candida albicans 20S proteasome: identification of four proteasomal subunits. Arch Biochem Biophys 2000; 375:211-9. [PMID: 10700377 DOI: 10.1006/abbi.1999.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 20S proteasome from yeast cells of Candida albicans was purified by successive chromatographic steps to apparent homogeneity, as judged by nondenaturing and denaturing polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 640 kDa by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave at least 10 bands in the range 20-32 kDa. Two-dimensional electrophoresis revealed the presence of at least 14 polypeptides. By electron microscopy after negative staining, the proteasome preparation appeared as typical symmetrical barrel-shaped particles. The enzyme cleaved the peptidyl-arylamide bonds in the model synthetic substrates Cbz-G-G-L-p-nitroanilide, Cbz-G-G-R-beta-naphthylamide, and Cbz-L-L-E-beta-naphthylamide (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide-hydrolyzing activities). The differential sensitivity of these activities to aldehyde peptides and sodium dodecyl sulfate supported the multicatalytic nature of this enzyme. Three proteasomal subunits were identified as alpha6/Pre5, alpha3/Y13, and alpha5/Pup2 by internal sequencing of tryptic fragments. Their sequences perfectly matched the corresponding deduced amino acid sequences of the C. albicans genes. A fourth subunit was identified as alpha7/Prs1 by immunorecognition with a monoclonal antibody specific for C8, the human proteasome subunit homologue. Treatment of the intact isolated 20S proteasome with acid phosphatase and Western blot analysis of the separated components indicated that the alpha7/Prs1 subunit is obtained as a multiply phosphorylated protein.
Collapse
Affiliation(s)
- P Fernández Murray
- Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, CIBYF-CONICET, Avda. San Martín 4453, Buenos Aires, 1417, Argentina.
| | | | | |
Collapse
|
21
|
Abstract
Many cellular processes require a balance between protein synthesis and protein degradation. The vacuole/lysosome is the main site of protein and organellar turnover within the cell due to its ability to sequester numerous hydrolases within a membrane-enclosed compartment. Several mechanisms are used to deliver substrates, as well as resident hydrolases, to this organelle. The delivery processes involve dynamic rearrangements of membrane. In addition, continual adjustments are made to respond to changes in environmental conditions. In this review, we focus on recent progress made in analyzing these delivery processes at a molecular level. The identification of protein components involved in the recognition, sequestration, and transport events has begun to provide information about this important area of eukaryotic cell physiology.
Collapse
Affiliation(s)
- D J Klionsky
- Section of Microbiology, University of California, Davis 95616, USA.
| | | |
Collapse
|
22
|
Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine CS, Cruaud C, Dürr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder JM, Prud'homme JF, Brice A, Fontaine B, Heilig B, Weissenbach J. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 1999; 23:296-303. [PMID: 10610178 DOI: 10.1038/15472] [Citation(s) in RCA: 444] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Among the four loci causing AD-HSP identified so far, the SPG4 locus at chromosome 2p2-1p22 has been shown to account for 40-50% of all AD-HSP families. Using a positional cloning strategy based on obtaining sequence of the entire SPG4 interval, we identified a candidate gene encoding a new member of the AAA protein family, which we named spastin. Sequence analysis of this gene in seven SPG4-linked pedigrees revealed several DNA modifications, including missense, nonsense and splice-site mutations. Both SPG4 and its mouse orthologue were shown to be expressed early and ubiquitously in fetal and adult tissues. The sequence homologies and putative subcellular localization of spastin suggest that this ATPase is involved in the assembly or function of nuclear protein complexes.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- DNA Mutational Analysis
- Exons/genetics
- Expressed Sequence Tags
- Humans
- Introns/genetics
- Mice
- Mitochondria, Muscle/metabolism
- Molecular Sequence Data
- Mutation
- Oxidative Phosphorylation
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Spastic Paraplegia, Hereditary/enzymology
- Spastic Paraplegia, Hereditary/genetics
- Spastic Paraplegia, Hereditary/metabolism
- Spastic Paraplegia, Hereditary/pathology
- Spastin
Collapse
|
23
|
Jarrousse AS, Gautier K, Apcher S, Badaoui S, Boissonnet G, Dadet MH, Henry L, Bureau JP, Schmid HP, Petit F. Relationships between proteasomes and viral gene products. Mol Biol Rep 1999; 26:113-7. [PMID: 10363656 DOI: 10.1023/a:1006982023524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interrelationships between proteasomes and viral gene products are very complex. 20S proteasomes associate with a number of viral mRNAs which are cleaved by proteasome's associated endonuclease activity. In addition proteasome's endopeptidase activities are involved in the presentation of viral antigens. Viral proteins of different origin associate with the 20S and 26S complexes and interfere with their enzymatic activities. A major part of this review deals with the interactions between 20S proteasomes and the gene products of the human immunodeficiency virus (HIV) which has been studied in detail by our group.
Collapse
Affiliation(s)
- A S Jarrousse
- Laboratoire OVGV UA INRA 987, equipe Protéasome & Auto-Surveillance Cellulaire, Université Blaise Pascal Clermont-Fd, Aubière, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Masuyama H, MacDonald PN. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19981201)71:3<429::aid-jcb11>3.0.co;2-p] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Jaquenoud M, Gulli MP, Peter K, Peter M. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J 1998; 17:5360-73. [PMID: 9736614 PMCID: PMC1170862 DOI: 10.1093/emboj/17.18.5360] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cdc42p, a Rho-related GTP-binding protein, regulates cytoskeletal polarization and rearrangements in eukaryotic cells. In yeast, Gic1p and Gic2p are effectors of Cdc42p involved in actin polarization at bud emergence. Gic2p is expressed in a cell cycle-dependent manner and rapidly disappears shortly after bud emergence concomitant with the activation of the G1 cyclin-dependent kinase Cdc28p-Clnp. Here we have shown that the rapid disappearance of Gic2p results from ubiquitin-dependent proteolysis. Biochemical and genetic evidence demonstrates that degradation of Gic2p required the Skp1-cullin-F-box protein complex (SCF) components Cdc34p, Cdc53p, Skp1p and Grr1p, but not Cdc4p. Phosphorylation of several C-terminal sites of Gic2p served as part of the recognition signal for ubiquitination. In addition, binding of Gic2p to Cdc42p was a prerequisite for degradation, suggesting that specifically the active form of Gic2p is targeted for destruction. Finally, our data indicate that degradation of Gic2p may be part of a mechanism which restricts cytoskeletal polarization in the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- M Jaquenoud
- Swiss Institute for Experimental Cancer Research (ISREC), Ch. des Boveresses 155, 1066 Epalinges/VD, Switzerland
| | | | | | | |
Collapse
|
26
|
Chun KT, Mathias N, Goebl MG. Ubiquitin-dependent proteolysis and cell cycle control in yeast. PROGRESS IN CELL CYCLE RESEARCH 1998; 2:115-27. [PMID: 9552389 DOI: 10.1007/978-1-4615-5873-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic and biochemical data indicate that ubiquitin-mediated proteolysis is involved in the regulated turnover of proteins required for controlling cell cycle progression. In general, mutations in some genes that encode proteins involved in the ubiquitin pathway cause cell cycle defects and affect the turnover of cell cycle regulatory proteins. Furthermore, some cell cycle regulatory proteins are short-lived, ubiquitinated, and degraded by the ubiquitin pathway. This review will examine how the ubiquitin pathway plays a role in regulating progression from the G1 to the S phase of the cell cycle, as well as the G2 to M phase transition.
Collapse
Affiliation(s)
- K T Chun
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | |
Collapse
|
27
|
Glas R, Bogyo M, McMaster JS, Gaczynska M, Ploegh HL. A proteolytic system that compensates for loss of proteasome function. Nature 1998; 392:618-22. [PMID: 9560160 DOI: 10.1038/33443] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteolysis is essential for the execution of many cellular functions. These include removal of incorrectly folded or damaged proteins, the activation of transcription factors, the ordered degradation of proteins involved in cell cycle control, and the generation of peptides destined for presentation by class I molecules of the major histocompatibility complex. A multisubunit protease complex, the proteasome, accomplishes these tasks. Here we show that in mammalian cells inactivation of the proteasome by covalent inhibitors allows the outgrowth of inhibitor-resistant cells. The growth of such adapted cells is apparently maintained by the induction of other proteolytic systems that compensate for the loss of proteasomal activity.
Collapse
Affiliation(s)
- R Glas
- Center for Cancer Research, Department for Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | | | | | |
Collapse
|
28
|
Momburg F, Hämmerling GJ. Generation and TAP-mediated transport of peptides for major histocompatibility complex class I molecules. Adv Immunol 1998; 68:191-256. [PMID: 9505090 DOI: 10.1016/s0065-2776(08)60560-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
29
|
Affiliation(s)
- W Baumeister
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
30
|
From Proteasome to Lysosome: Studies on Yeast Demonstrate the Principles Of Protein Degradation in the Eukaryote Cell. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2558(08)60457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Abstract
The complexity of the proteasome gene family in higher plants was investigated by identification and sequencing cDNA clones from the Arabidopsis thaliana database showing homologies to 20S proteasome subunits. We identified plant counterparts for each of the 14 proteasomal subunit subfamilies. Moreover, several of them were highly related isoforms. Mapping data indicate a random distribution of the proteasome genes over the Arabidopsis genome.
Collapse
Affiliation(s)
- Y Parmentier
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Wilkinson CR, Wallace M, Seeger M, Dubiel W, Gordon C. Mts4, a non-ATPase subunit of the 26 S protease in fission yeast is essential for mitosis and interacts directly with the ATPase subunit Mts2. J Biol Chem 1997; 272:25768-77. [PMID: 9325304 DOI: 10.1074/jbc.272.41.25768] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have isolated a fission yeast gene, mts4(+), by complementation of a temperature-sensitive mutation and show that it encodes subunit 2 (S2) of the 19 S regulatory complex of the 26 S protease. mts4(+) is an essential gene, and we show that loss of this subunit causes cells to arrest in metaphase, illustrating the importance of S2 for mitosis. The Mts4 protein is 48% identical to S2 of the human 26 S protease, and the lethal phenotype of the null mts4 allele can be rescued by the human cDNA encoding S2. We provide genetic and physical evidence to suggest that the Mts4 protein interacts with the product of the mts2(+) gene, an ATPase which has previously been shown to be subunit 4 of the 26 S protease.
Collapse
Affiliation(s)
- C R Wilkinson
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Petit F, Jarrousse AS, Dahlmann B, Sobek A, Hendil KB, Buri J, Briand Y, Schmid HP. Involvement of proteasomal subunits zeta and iota in RNA degradation. Biochem J 1997; 326 ( Pt 1):93-8. [PMID: 9337855 PMCID: PMC1218641 DOI: 10.1042/bj3260093] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism.
Collapse
Affiliation(s)
- F Petit
- Université Blaise Pascal, Clermont-Ferrand II, Aubière, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Seol JH, Yoo SJ, Shin DH, Shim YK, Kang MS, Goldberg AL, Chung CH. The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1143-50. [PMID: 9288941 DOI: 10.1111/j.1432-1033.1997.01143.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HslVU in Escherichia coli a new two-component ATP-dependent protease composed of two heat-shock proteins, the HslU ATPase and the HslV peptidase which is related to proteasome beta-type subunits. Here we show that the reconstituted HslVU enzyme degrades not only certain hydrophobic peptides but also various polypeptides, including insulin B-chain, casein, and carboxymethylated lactalbumin. Maximal proteolytic activity was obtained with a 1:2 molar ratio of HslV (a 250-kDa complex) to HslU (a 450-kDa complex). By itself, HslV could slowly hydrolyze these polypeptides, but its activity was stimulated 20-fold by HslU in the presence of ATP. The ATPase activity of HslU was stimulated up to 50% by the protein substrates, but not by nonhydrolyzed proteins, and this stimulation further increased 2-3-fold in the presence of HslV. Concentrations of insulin B-chain that maximally stimulated the ATPase allowed maximal rates of the B-chain hydrolysis. Furthermore, addition of increasing amounts of ADP or N-ethylmaleimide reduced ATP and protein or peptide hydrolysis in parallel. Thus, HslVU is a protein-activated ATPase as well as an ATP-dependent proteinase, and these processes appear linked. Surprisingly, the protein and peptide substrates do not compete with each other for hydrolysis. Lactacystin strongly inhibits protein degradation, but has little effect on peptide hydrolysis, while the peptide aldehydes are potent inhibitors of hydrolysis of small peptides, but have little effect on proteins. Thus, the functional requirements for ATP-dependent hydrolysis of peptides and proteins appear different.
Collapse
Affiliation(s)
- J H Seol
- Department of Molecular Biology and Research Center for Cell Differentiation, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Horak J, Wolf DH. Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol 1997; 179:1541-9. [PMID: 9045811 PMCID: PMC178864 DOI: 10.1128/jb.179.5.1541-1549.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
When Saccharomyces cerevisiae cells growing on galactose are transferred onto glucose medium containing cycloheximide, an inhibitor of protein synthesis, a rapid reduction of Gal2p-mediated galactose uptake is observed. We show that glucose-induced inactivation of Gal2p is due to its degradation. Stabilization of Gal2p in pra1 mutant cells devoid of vacuolar proteinase activity is observed. Subcellular fractionation and indirect immunofluorescence showed that the Gal2 transporter accumulates in the vacuole of the mutant cells, directly demonstrating that its degradation requires vacuolar proteolysis. In contrast, Gal2p degradation is proteasome independent since its half-life is unaffected in pre1-1 pre2-2, cim3-1, and cim5-1 mutants defective in several subunits of the protease complex. In addition, vacuolar delivery of Gal2p was shown to be blocked in conditional end3 and end4 mutants at the nonpermissive temperature, indicating that delivery of Gal2p to the vacuole occurs via the endocytic pathway. Taken together, the results presented here demonstrate that glucose-induced proteolysis of Gal2p is dependent on endocytosis and vacuolar proteolysis and is independent of the functional proteasome. Moreover, we show that Gal2p is ubiquitinated under conditions of glucose-induced inactivation.
Collapse
Affiliation(s)
- J Horak
- Institute of Physiology, Department of Membrane Transport, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
36
|
Affiliation(s)
- K Tanaka
- Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
37
|
Hampton RY, Gardner RG, Rine J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 1996; 7:2029-44. [PMID: 8970163 PMCID: PMC276048 DOI: 10.1091/mbc.7.12.2029] [Citation(s) in RCA: 465] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R), a key enzyme of sterol synthesis, is an integral membrane protein of the endoplasmic reticulum (ER). In both humans and yeast, HMG-R is degraded at or in the ER. The degradation of HMG-R is regulated as part of feedback control of the mevalonate pathway. Neither the mechanism of degradation nor the nature of the signals that couple the degradation of HMG-R to the mevalonate pathway is known. We have launched a genetic analysis of the degradation of HMG-R in Saccharomyces cerevisiae using a selection for mutants that are deficient in the degradation of Hmg2p, an HMG-R isozyme. The underlying genes are called HRD (pronounced "herd"), for HMG-CoA reductase degradation. So far we have discovered mutants in three genes: HRD1, HRD2, and HRD3. The sequence of the HRD2 gene is homologous to the p97 activator of the 26S proteasome. This p97 protein, also called TRAP-2, has been proposed to be a component of the mature 26S proteasome. The hrd2-1 mutant had numerous pleiotropic phenotypes expected for cells with a compromised proteasome, and these phenotypes were complemented by the human TRAP-2/p97 coding region. In contrast, HRD1 and HRD3 genes encoded previously unknown proteins predicted to be membrane bound. The Hrd3p protein was homologous to the Caenorhabditis elegans sel-1 protein, a negative regulator of at least two different membrane proteins, and contained an HRD3 motif shared with several other proteins. Hrd1p had no full-length homologues, but contained an H2 ring finger motif. These data suggested a model of ER protein degradation in which the Hrd1p and Hrd3p proteins conspire to deliver HMG-R to the 26S proteasome. Moreover, our results lend in vivo support to the proposed role of the p97/TRAP-2/Hrd2p protein as a functionally important component of the 26S proteasome. Because the HRD genes were required for the degradation of both regulated and unregulated substrates of ER degradation, the HRD genes are the agents of HMG-R degradation but not the regulators of that degradation.
Collapse
Affiliation(s)
- R Y Hampton
- Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA
| | | | | |
Collapse
|
38
|
González J, Ramalho-Pinto FJ, Frevert U, Ghiso J, Tomlinson S, Scharfstein J, Corey EJ, Nussenzweig V. Proteasome activity is required for the stage-specific transformation of a protozoan parasite. J Exp Med 1996; 184:1909-18. [PMID: 8920878 PMCID: PMC2192890 DOI: 10.1084/jem.184.5.1909] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A prominent feature of the life cycle of intracellular parasites is the profound morphological changes they undergo during development in the vertebrate and invertebrate hosts. In eukaryotic cells, most cytoplasmic proteins are degraded in proteasomes. Here, we show that the transformation in axenic medium of trypomastigotes of Trypanosoma cruzi into amastigote-like organisms, and the intracellular development of the parasite from amastigotes into trypomastigotes, are prevented by lactacystin, or by a peptide aldehyde that inhibits proteasome function. Clasto-lactacystin, an inactive analogue of lactacystin, and cell-permeant peptide aldehyde inhibitors of T. cruzi cysteine proteinases have no effect. We have also identified the 20S proteasomes from T. cruzi as a target of lactacystin in vivo. Our results document the essential role of proteasomes in the stage-specific transformation of a protozoan.
Collapse
Affiliation(s)
- J González
- Michael Heidelberger Division of Immunology, Department of Pathology, New York, University Medical Center, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Døskeland AP, Flatmark T. Recombinant human phenylalanine hydroxylase is a substrate for the ubiquitin-conjugating enzyme system. Biochem J 1996; 319 ( Pt 3):941-5. [PMID: 8921003 PMCID: PMC1217879 DOI: 10.1042/bj3190941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian phenylalanine hydroxylase (PAH) catalyses the conversion of L-phenylalanine to L-tyrosine in the presence of dioxygen and tetrahydrobiopterin; it is a highly regulated enzyme. Little is known about the rates of synthesis and degradation of PAH in vivo. The enzyme has been reported to have a half-life of approx. 2 days in rat liver and 7-8 h in rat hepatoma cells, but the mechanism of its degradation is not known. In the present study it is shown that the tetrameric form of the recombinant wild-type human enzyme is a substrate for the ubiquitin-conjugating enzyme system in the cytosolic fraction of rat testis. Our findings support the conclusion that multi-/poly-ubiquitination of human PAH plays a key role in the turnover of this cytosolic liver enzyme and provides a mechanism for the increased turnover observed for a number of recombinant mutant forms of the enzyme related to the metabolic disorder phenylketonuria, when expressed in eukaryotic cells.
Collapse
Affiliation(s)
- A P Døskeland
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | |
Collapse
|
40
|
Groettrup M, Soza A, Kuckelkorn U, Kloetzel PM. Peptide antigen production by the proteasome: complexity provides efficiency. IMMUNOLOGY TODAY 1996; 17:429-35. [PMID: 8854562 DOI: 10.1016/0167-5699(96)10051-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Groettrup
- Institute for Biochemistry, Humboldt University, Medical Faculty (Charite), Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
The Ntn (N-terminal nucleophile) hydrolases are enzymes with an unusual four-layer alpha + beta fold. The amino-terminal residue (cysteine, serine or threonine) of the mature protein is the catalytic nucleophile, and its side chain is activated for nucleophilic attack by transfer of its proton to the free N terminus, although other active-site residues may also be involved. The four currently known Ntn hydrolases (glutamine PRPP amidotransferase, penicillin acylase, the 20S proteasome and aspartylglucosaminidase) are encoded as inactive precursors, and are activated by cleavage of the peptide bond preceding the catalytic residue. It has been suggested that autocatalytic processing is a common feature of Ntn hydrolases, and proceeds by an intramolecular mechanism determined by their common fold. Here we show that propeptide processing in the proteasome from Thermoplasma acidophilum is indeed autocatalytic, but is probably intermolecular. Processing is not required for assembly, is largely unaffected by propeptide length and sequence, and occurs before beta-subunit folding is completed. Although serine is an acceptable active-site nucleophile for proteolysis, and cysteine for processing, only threonine is fully functional in both. This explains why threonine is universally conserved in active proteasome subunits.
Collapse
Affiliation(s)
- E Seemuller
- Max-Planck-Institut für Biochemie, Martinsried bei München, Germany
| | | | | |
Collapse
|
42
|
Yokota K, Kagawa S, Shimizu Y, Akioka H, Tsurumi C, Noda C, Fujimuro M, Yokosawa H, Fujiwara T, Takahashi E, Ohba M, Yamasaki M, DeMartino GN, Slaughter CA, Toh-e A, Tanaka K. CDNA cloning of p112, the largest regulatory subunit of the human 26s proteasome, and functional analysis of its yeast homologue, sen3p. Mol Biol Cell 1996; 7:853-70. [PMID: 8816993 PMCID: PMC275938 DOI: 10.1091/mbc.7.6.853] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 26S proteasome is a large multisubunit protease complex, the largest regulatory subunit of which is a component named p112. Molecular cloning of cDNA encoding human p112 revealed a polypeptide predicted to have 953 amino acid residues and a molecular mass of 105,865. The human p112 gene was mapped to the q37.1-q37.2 region of chromosome 2. Computer analysis showed that p112 has strong similarity to the Saccharomyces cerevisiae Sen3p, which has been listed in a gene bank as a factor affecting tRNA splicing endonuclease. The SEN3 also was identified in a synthetic lethal screen with the nin1-1 mutant, a temperature-sensitive mutant of NIN1. NIN1 encodes p31, another regulatory subunit of the 26S proteasome, which is necessary for activation of Cdc28p kinase. Disruption of the SEN3 did not affect cell viability, but led to temperature-sensitive growth. The human p112 cDNA suppressed the growth defect at high temperature in a SEN3 disruptant, indicating that p112 is a functional homologue of the yeast Sen3p. Maintenance of SEN3 disruptant cells at the restrictive temperature resulted in a variety of cellular dysfunctions, including defects in proteolysis mediated by the ubiquitin pathway, in the N-end rule system, in the stress response upon cadmium exposure, and in nuclear protein transportation. The functional abnormality induced by SEN3 disruption differs considerably from various phenotypes shown by the nin1-1 mutation, suggesting that these two regulatory subunits of the 26S proteasome play distinct roles in the various processes mediated by the 26S proteasome.
Collapse
Affiliation(s)
- K Yokota
- Department of Urology, School of Medicine, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Groettrup M, Kraft R, Kostka S, Standera S, Stohwasser R, Kloetzel PM. A third interferon-gamma-induced subunit exchange in the 20S proteasome. Eur J Immunol 1996; 26:863-9. [PMID: 8625980 DOI: 10.1002/eji.1830260421] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 20S proteasome is a protease complex of functional importance for antigen processing. Two of the 14 proteasome subunits, delta and MB1, can be replaced by the major histocompatibility complex (MHC)-encoded and interferon-gamma (IFN-gamma)-inducible subunits LMP2 and LMP7, respectively. LMP2 and LMP7 alter the cleavage site specificity of the 20S proteasome and are required for the efficient generation of T cell epitopes from a number of viral proteins and for optimal MHC class I cell surface expression. We compared the 20S proteasome subunit pattern from IFN-gamma-induced and non-induced mouse fibroblasts on two-dimensional gels and identified a third subunit exchange by microsequencing: the non-MHC-encoded subunit MECL-1 is induced by IFN-gamma and replaces a sofar barely characterized beta subunit designated 'MC14'. In analogy to LMP2 and LMP7, MECL-1 may be functional in MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
- M Groettrup
- Institute for Biochemistry, Medical Faculty (Charité), Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Abstract
The crystal structure of the proteasome suggests that degradation of ubiquitin-protein conjugates is achieved by unfolding the protein substrate and translocating it through a channel into a peptidase-containing chamber.
Collapse
Affiliation(s)
- D M Rubin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|