1
|
Zhang Q, Jiang Q, Sa K, Liang J, Sun D, Li H, Chen L. Research progress of plant-derived natural alkaloids in central nervous system diseases. Phytother Res 2023; 37:4885-4907. [PMID: 37455555 DOI: 10.1002/ptr.7955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/14/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) disease is one of the most important causes of human death. Because of their complex pathogenesis, more and more attention has been paid to them. At present, drug treatment of the CNS is the main means; however, most drugs only relieve symptoms, and some have certain toxicity and side effects. Natural compounds derived from plants can provide safer and more effective alternatives. Alkaloids are common nitrogenous basic organic compounds found in nature, which exist widely in many kinds of plants and have unique application value in modern medicine. For example, Galantamine and Huperzine A from medicinal plants are widely used drugs on the market to treat Alzheimer's disease. Therefore, the main purpose of this review is to provide the available information on natural alkaloids with the activity of treating central nervous system diseases in order to explore the trends and perspectives for the further study of central nervous system drugs. In this paper, 120 alkaloids with the potential effect of treating central nervous system diseases are summarized from the aspects of sources, structure types, mechanism of action and structure-activity relationship.
Collapse
Affiliation(s)
- Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuiru Sa
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Junming Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Padmakumar S, Amiji MM. Long-Acting Therapeutic Delivery Systems for the Treatment of Gliomas. Adv Drug Deliv Rev 2023; 197:114853. [PMID: 37149040 DOI: 10.1016/j.addr.2023.114853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Despite the emergence of cutting-edge therapeutic strategies and tremendous progress in research, a complete cure of glioma remains elusive. The heterogenous nature of tumor, immunosuppressive state and presence of blood brain barrier are few of the major obstacles in this regard. Long-acting depot formulations such as injectables and implantables are gaining attention for drug delivery to brain owing to their ease in administration and ability to elute drug locally for extended durations in a controlled manner with minimal toxicity. Hybrid matrices fabricated by incorporating nanoparticulates within such systems help to enhance pharmaceutical advantages. Utilization of long-acting depots as monotherapy or in conjunction with existing strategies rendered significant survival benefits in many preclinical studies and some clinical trials. The discovery of novel targets, immunotherapeutic strategies and alternative drug administration routes are now coupled with several long-acting systems with an ultimate aim to enhance patient survival and prevent glioma recurrences.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115.
| |
Collapse
|
3
|
Yadav DB, Maloney JA, Wildsmith KR, Fuji RN, Meilandt WJ, Solanoy H, Lu Y, Peng K, Wilson B, Chan P, Gadkar K, Kosky A, Goo M, Daugherty A, Couch JA, Keene T, Hayes K, Nikolas LJ, Lane D, Switzer R, Adams E, Watts RJ, Scearce-Levie K, Prabhu S, Shafer L, Thakker DR, Hildebrand K, Atwal JK. Widespread brain distribution and activity following i.c.v. infusion of anti-β-secretase (BACE1) in nonhuman primates. Br J Pharmacol 2017; 174:4173-4185. [PMID: 28859225 DOI: 10.1111/bph.14021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/09/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The potential for therapeutic antibody treatment of neurological diseases is limited by poor penetration across the blood-brain barrier. I.c.v. delivery is a promising route to the brain; however, it is unclear how efficiently antibodies delivered i.c.v. penetrate the cerebrospinal spinal fluid (CSF)-brain barrier and distribute throughout the brain parenchyma. EXPERIMENTAL APPROACH We evaluated the pharmacokinetics and pharmacodynamics of an inhibitory monoclonal antibody against β-secretase 1 (anti-BACE1) following continuous infusion into the left lateral ventricle of healthy adult cynomolgus monkeys. KEY RESULTS Animals infused with anti-BACE1 i.c.v. showed a robust and sustained reduction (~70%) of CSF amyloid-β (Aβ) peptides. Antibody distribution was near uniform across the brain parenchyma, ranging from 20 to 40 nM, resulting in a ~50% reduction of Aβ in the cortical parenchyma. In contrast, animals administered anti-BACE1 i.v. showed no significant change in CSF or cortical Aβ levels and had a low (~0.6 nM) antibody concentration in the brain. CONCLUSION AND IMPLICATIONS I.c.v. administration of anti-BACE1 resulted in enhanced BACE1 target engagement and inhibition, with a corresponding dramatic reduction in CNS Aβ concentrations, due to enhanced brain exposure to antibody.
Collapse
Affiliation(s)
| | - Janice A Maloney
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Kristin R Wildsmith
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Reina N Fuji
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Kun Peng
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Blair Wilson
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Kapil Gadkar
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Andrew Kosky
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Marisa Goo
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Ann Daugherty
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Jessica A Couch
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | - Eric Adams
- Northern Biomedical Research, Norton Shores, MI, USA
| | - Ryan J Watts
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | | | - Saileta Prabhu
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
4
|
Abstract
This chapter will review the challenges in pharmacotherapy in primary brain tumors that include the presence of the blood-brain barrier, a blood-tumor barrier, active drug efflux pumps, and high plasma protein binding of agents. The approaches to improve the delivery of drugs to the brain will be discussed. Often the management of brain tumors involves the use of corticosteroids and enzyme-inducing antiseizure medications that can have significant drug interactions that may impact the efficacy or toxicity of drugs used to treat these patients. Various techniques used to assess drug distribution to the brain will be reviewed.
Collapse
|
5
|
Allhenn D, Neumann D, Béduneau A, Pellequer Y, Lamprecht A. A “drug cocktail” delivered by microspheres for the local treatment of rat glioblastoma. J Microencapsul 2013; 30:667-73. [DOI: 10.3109/02652048.2013.774446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Abstract
Image-guided drug delivery provides a means for treating a variety of diseases with minimal systemic involvement while concurrently monitoring treatment efficacy. These therapies are particularly useful to the field of interventional oncology, where elevation of tumor drug levels, reduction of systemic side effects and post-therapy assessment are essential. This review highlights three such image-guided procedures: transarterial chemoembolization, drug-eluting implants and convection-enhanced delivery. Advancements in medical imaging technology have resulted in a growing number of new applications, including image-guided drug delivery. This minimally invasive approach provides a comprehensive answer to many challenges with local drug delivery. Future evolution of imaging devices, image-acquisition techniques and multifunctional delivery agents will lead to a paradigm shift in patient care.
Collapse
|
7
|
Allhenn D, Boushehri MAS, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm 2012; 436:299-310. [PMID: 22721856 DOI: 10.1016/j.ijpharm.2012.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/07/2023]
Abstract
As primary brain tumors, malignant gliomas are known to be one of the most insidious types of brain cancer afflicting the humans. The current standard strategy for the treatment of malignant gliomas includes the surgical resection of the tumor when possible, followed by a combination of radiotherapy and/or a certain chemotherapeutic protocol. However, due to the short mean survival, frequent recurrences, and poor prognosis associated with the tumors, new therapeutic strategies are investigated consecutively. These novel drug delivery approaches can be subdivided as systemic and local drug administration. This review focuses on localized drug delivery strategies for the treatment of malignant gliomas, including the injections, infusions, trans-nasal delivery systems, convection enhanced delivery (CED) systems, and various types of polymeric implants. Furthermore, systemic strategies to increase the drug penetration into the brain, such as temporary disruption of the blood brain barrier (BBB), chemical modification of the available therapeutic substances, and utilization of endogenous transport systems will be briefly discussed.
Collapse
Affiliation(s)
- Daniela Allhenn
- Department of Pharm. Technology, Institute of Pharmacy, University of Bonn, Germany.
| | | | | |
Collapse
|
8
|
Girald W, Collin A, Izquierdo M. Toxicity and delivery methods for the linamarase/linamarin/glucose oxidase system, when used against human glioma tumors implanted in the brain of nude rats. Cancer Lett 2011; 313:99-107. [DOI: 10.1016/j.canlet.2011.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/16/2011] [Accepted: 08/28/2011] [Indexed: 12/20/2022]
|
9
|
Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 2009; 6:323-36. [PMID: 19332327 PMCID: PMC2673491 DOI: 10.1016/j.nurt.2009.01.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 01/16/2023] Open
Abstract
Epilepsy results from aberrant electrical activity that can affect either a focal area or the entire brain. In treating epilepsy with drugs, the aim is to decrease seizure frequency and severity while minimizing toxicity to the brain and other tissues. Antiepileptic drugs (AEDs) are usually administered by oral and intravenous routes, but these drug treatments are not always effective. Drug access to the brain is severely limited by a number of biological factors, particularly the blood-brain barrier, which impedes the ability of AEDs to enter and remain in the brain. To improve the efficacy of AEDs, new drug delivery strategies are being developed; these methods fall into the three main categories: drug modification, blood-brain barrier modification, and direct drug delivery. Recently, all three methods have been improved through the use of drug-loaded nanoparticles.
Collapse
Affiliation(s)
- Margaret F. Bennewitz
- grid.47100.320000000419368710Department of Biomedical Engineering, Yale University, 414 Malone Engineering Center, 55 Prospect Street, 06520-8260 New Haven, CT
| | - W. Mark Saltzman
- grid.47100.320000000419368710Department of Biomedical Engineering, Yale University, 414 Malone Engineering Center, 55 Prospect Street, 06520-8260 New Haven, CT
| |
Collapse
|
10
|
Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 2008; 5:123-7. [PMID: 18164491 PMCID: PMC2719019 DOI: 10.1016/j.nurt.2007.10.064] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Convection-enhanced delivery (CED) of substances within the human brain is becoming a more frequent experimental treatment option in the management of brain tumors, and more recently in phase 1 trials for gene therapy in Parkinson's disease (PD). Benefits of this intracranial drug-transfer technology include a more efficient delivery of large volumes of therapeutic agent to the target region when compared with more standard delivery approaches (i.e., biopolymers, local infusion). In this article, we describe specific technical modifications we have made to the CED process to make it more effective. For example, we developed a reflux-resistant infusion cannula that allows increased infusion rates to be used. We also describe our efforts to visualize the CED process in vivo, using liposomal nanotechnology and real-time intraoperative MRI. In addition to carrying the MRI contrast agent, nanoliposomes also provide a standardized delivery vehicle for the convection of drugs to a specific brain-tissue volume. This technology provides an added level of assurance via visual confirmation of CED, allowing intraoperative alterations to the infusion if there is reflux or aberrant delivery. We propose that these specific modifications to the CED technology will improve efficacy by documenting and standardizing the treatment-volume delivery. Furthermore, we believe that this image-guided CED platform can be used in other translational neuroscience efforts, with eventual clinical application beyond neuro-oncology and PD.
Collapse
Affiliation(s)
- Massimo S. Fiandaca
- grid.266102.10000000122976811Department of Neurological Surgery, Laboratory of Molecular Therapeutics, University of California San Francisco, 94103 San Francisco, California
- Department of Neurosurgery, LifeBridge Health Brain & Spine Institute, 21209 Baltimore, Maryland
| | - John R. Forsayeth
- grid.266102.10000000122976811Department of Neurological Surgery, Laboratory of Molecular Therapeutics, University of California San Francisco, 94103 San Francisco, California
| | - Peter J. Dickinson
- grid.27860.3b0000000419369684Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, 95616 Davis, California
| | - Krystof S. Bankiewicz
- grid.266102.10000000122976811Department of Neurological Surgery, Laboratory of Molecular Therapeutics, University of California San Francisco, 94103 San Francisco, California
| |
Collapse
|
11
|
Fleischhack G, Jaehde U, Bode U. Pharmacokinetics Following Intraventricular Administration of Chemotherapy in Patients with Neoplastic Meningitis. Clin Pharmacokinet 2005; 44:1-31. [PMID: 15634030 DOI: 10.2165/00003088-200544010-00001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Intraventricular administration of chemotherapy is one approach to overcoming the limited distribution of anticancer drugs and their active metabolites into the CNS. This form of regional chemotherapy has led to effective treatment of occult and overt meningeal leukaemia in humans. In contrast, the efficacy of this therapy is extremely limited in the treatment of leptomeningeal dissemination of various solid tumours. Pharmacokinetic studies of the commonly intraventricularly applied anticancer agents in humans have demonstrated that, using low drug doses, very high drug concentrations can be achieved in the cerebrospinal fluid (CSF) and relatively high concentrations in the leptomeninges but not in the brain tissue and the plasma. Therefore, this approach is not an effective treatment for bulky disease of brain tissue, and results in minimal systemic toxicity. In comparison with intralumbar administration, lower interpatient variability of CSF drug concentrations and improved clinical efficacy were observed. 'Concentration x time' schedules, i.e. frequent small drug doses over a short period, enable long-term CSF exposure to cytotoxic drug concentrations while avoiding excessively high and potentially neurotoxic drug concentrations. The technique of ventriculolumbar cerebrospinal perfusion delivers continuously high drug concentrations throughout the CSF for several hours, but its widespread use is limited by the technical complexities of this approach. In this article, the dosages, schedules and pharmacokinetic data of routinely used intraventricular agents in humans, e.g. methotrexate, cytarabine, glucocorticoids and thiotepa, are outlined in detail. In addition, pharmacokinetic data of investigational agents for intraventricular administration (diaziquone, DTC 101, mercaptopurine, mafosfamide, etoposide, topotecan, nimustine [ACNU] and bleomycin) are presented. Better understanding of the CSF pharmacology of these drugs is an essential prerequisite for safe, effective administration of these drugs. Investigational efforts are underway to verify the feasibility and efficacy of different dosages, schedules and combination therapies of these new intra-CSF agents. Current and future clinical research should also focus on methods allowing the delivery of tumoricidal drug concentrations for extended periods into the CSF and the brain tissue while minimising neurotoxicity and systemic toxicity (e.g. liposomal drug preparations, monoclonal antibodies, immunotoxins and gene therapy).
Collapse
Affiliation(s)
- Gudrun Fleischhack
- Department of Paediatric Haematology/Oncology, University of Bonn, Adenauerallee 119, Bonn, D-53113, Germany.
| | | | | |
Collapse
|
12
|
Vachon P, Girard C, Théorêt Y. Effects of basic fibroblastic growth factor on the growth of human medulloblastoma xenografts. J Neurooncol 2004; 67:139-46. [PMID: 15072461 DOI: 10.1023/b:neon.0000021824.41701.e5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to evaluate the effect of basic fibroblastic growth factor (bFGF) on the growth of human UM-MB1 medulloblastoma xenografts injected intracranially in nude mice. Under general anesthesia, a homogenous suspension of UM-MB1 cells (10(5)/10 microl) were injected in the caudoputamen nuclei of the right cerebral hemisphere using a stereotaxic apparatus. The treatment group (n = 9) received 10 microl of a bFGF solution (20 microg/ml) at 3 and 6 days following the inoculation of the cells at the injection site using the same stereotaxic coordinates. The control group (n = 9) were injected intracranially with a phosphate-buffered saline vehicle using a similar protocol. Mice were sacrificed 3 weeks following the xenograft surgery and the brains were prepared for histological observations as well as tumor volume evaluations. The mean volume of bFGF-treated tumors (mean volume +/- SD = 50.0 +/- 32.9 +/- mm3) was significantly smaller than for the non-treated xenografts (mean volume +/- SD = 199.0 +/- 42.1 mm3) (t-test, p < 0.001). Compared to non-treated tumor cells, bFGF-treated medulloblastoma cells had a greater cytoplasm volume and their nuclei contained more euchromatin suggesting that bFGF may initiate differentiation. In conclusion, our results suggest that bFGF may offer a new chemotherapeutic modality for the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Pascal Vachon
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montreal, St-Hyacinthe, QC, Canada.
| | | | | |
Collapse
|
13
|
Abstract
Antisense offers a precise and specific means of knocking down expression of a target gene, and is a major focus of research in neuroscience and other areas. It has application as a tool in gene function and target validation studies and is emerging as a therapeutic technology in its own right. It has become increasingly obvious, however, that there are a number of hurdles to overcome before antisense can be used effectively in the CNS, most notably finding suitable nucleic acid chemistries and an effective delivery vehicle to transport antisense oligonucleotides (AS-ODNs) across the blood-brain barrier (BBB) to their site of action. Despite these problems, a number of potential applications of AS-ODNs in CNS therapeutics have been validated in vitro and, in some cases, in vivo. Here the authors outline available nucleic acid chemistries and review progress in the development of non-invasive delivery vehicles that may be applicable to CNS therapeutics. Further to this, they discuss a number of experimental applications of AS-ODNs to CNS research and speculate on the development of antisense techniques to treat CNS disease.
Collapse
Affiliation(s)
- Jenny Godfray
- ExpressOn BioSystems Ltd, The Logan Building, Roslin BioCentre, Roslin, Midlothian EH25 9TT, Scotland.
| | | |
Collapse
|
14
|
Abstract
Controlled release delivery of carmustine from biodegradable polymer wafers was approved as an adjunct to surgical resection in the treatment of recurrent glioblastoma multiforme after it was shown in clinical trials to be well tolerated and effective. Given the localised nature of the drug in the brain tissue, no direct pharmacokinetic measurements have been made in humans after implantation of a carmustine wafer. However, drug distribution and clearance have been extensively studied in both rodent and non-human primate brains at various times after implantation. In addition, studies to characterise the degradation of the polymer matrix, the release kinetics of carmustine and the metabolic fate of the drug and polymer degradation products have been conducted both in vitro and in vivo. GLIADEL wafers have been shown to release carmustine in vivo over a period of approximately 5 days; when in continuous contact with interstitial fluid, wafers should degrade completely over a period of 6 to 8 weeks. Metabolic elimination studies of the polymer degradation products have demonstrated that sebacic acid monomers are excreted from the body in the form of expired CO(2), whereas 1,3-bis-(p-carboxyphenoxy)propane monomers are excreted primarily through the urine. Carmustine degradation products are also excreted primarily through the urine. Pharmacokinetic studies in animals and associated modelling have demonstrated the capability of this modality to produce high dose-delivery (millimolar concentrations) within millimetres of the polymer implant, with a limited penetration distance of carmustine from the site of delivery. The limited spread of drug is presumably due to the high transcapillary permeability of this lipophilic molecule. However, the presence of significant convective flows due to postsurgical oedema may augment the diffusive transport of drug in the hours immediately after wafer implantation, leading to a larger short-term spread of drug. Additionally, in non-human primates, the presence of significant doses in more distant regions of the brain (centimetres away from the implant) has been shown to persist over the course of a week. The drug in this region was presumed to be transported from the implant site by either cerebral blood flow or cerebrospinal fluid flow, suggesting that although drug is able to penetrate the blood-brain barrier at the site of delivery, it may re-enter within the confines of the brain tissue.
Collapse
|
15
|
Roullin VG, Deverre JR, Lemaire L, Hindré F, Venier-Julienne MC, Vienet R, Benoit JP. Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres. Eur J Pharm Biopharm 2002; 53:293-9. [PMID: 11976017 DOI: 10.1016/s0939-6411(02)00011-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was performed (i) to monitor the diffusion of the anti-cancer drug 5-fluorouracil (5-FU) and (ii) to elucidate the fate of poly(lactide-co-glycolide) (PLGA) based microspheres within living rat brain tissue upon intracranial implantation. Drug-loaded microparticles were prepared using a solvent emulsion/extraction process and administered into healthy and C6 glioma-bearing Sprague-Dawley rats. The same surgical procedure was carried out with magnetite-loaded microspheres. To monitor 5-FU diffusion from the implantation site, tissue combustion was performed on animals implanted with tritiated drug microspheres. T2-weighted nuclear magnetic resonance imaging was undertaken on animals implanted with magnetite-loaded microspheres to determine microsphere localization after deposit. Results show that an important microparticle backflow occurs in healthy rats, whereas the microspheres remain at the site of administration in C6 glioma-bearing rats. Drug diffusion is limited to the vicinity of the implantation site.
Collapse
|
16
|
Fletcher TM. Telomerase - strategies to exploit an important chemotherapeutic target. Expert Opin Ther Targets 2001; 5:363-378. [PMID: 12540271 DOI: 10.1517/14728222.5.3.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Telomeres, unique protein-DNA complexes located at the chromosome ends, have important functions involving both DNA protection and cellular signalling. Telomere structure is very dynamic yet tightly controlled. One important factor is the presence of telomerase, a telomere-specific DNA polymerase activated in a majority of cancer cells. Cancer and normal cell telomeres may have dissimilar structures due to variances in telomere length, telomerase activity and levels of telomere binding proteins. In designing compounds to strictly target cancer cells, these distinctions should be investigated. Much of the recent focus has been on the development of highly effective telomerase inhibitors. Another novel group of small molecules target telomere DNA, thereby disrupting both telomerase activity and telomere structure. This class of compounds should have an immediate impact on cell growth and viability. Since many molecular characteristics of telomeres are unknown, small molecules should also be useful in probing differences in telomere dynamics unique to cancer cells.
Collapse
Affiliation(s)
- Terace M Fletcher
- National Institutes of Health, National Cancer Institute, Division of Basic Sciences, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD 20892-5055, USA.
| |
Collapse
|
17
|
Ciordia R, Supko J, Gatineau M, Batchelor T. Cytotoxic chemotherapy: advances in delivery, pharmacology, and testing. Curr Oncol Rep 2000; 2:445-53. [PMID: 11122877 DOI: 10.1007/s11912-000-0065-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adjuvant treatment of malignant gliomas, the most common types of primary brain tumors, with intravenous (iv) chemotherapy has not significantly improved survival for patients with these forms of cancer. A major factor in the failure of iv chemotherapy is the blood-brain barrier (BBB), a physiologic impediment to the delivery of cytotoxic chemotherapeutic drugs to the central nervous system (CNS). Intra-arterial and intrathecal infusion, blood-brain barrier disruption, high-dose chemotherapy, intratumoral administration, and convection-enhanced delivery are methods developed to overcome the BBB. Although some of these methods may increase the local concentration-time profile, improvement in clinical outcomes has yet to be definitively established. New methods for assessment of drug delivery to the brain tumor will assume increasing importance in the study of new cytotoxic chemotherapeutic drugs for these types of cancer. Pharmacokinetic studies are critical components of these clinical trials and allow assessment of drug delivery to the CNS and brain tumor. Additionally, pharmacokinetic studies will remain an important component of early clinical trials, particularly for identifying significant drug interactions involving the various supporting medications that are typically used in this patient population.
Collapse
Affiliation(s)
- R Ciordia
- Brain Tumor Center, Massachusetts General Hospital Cancer Center, Harvard Medical School, Cox 315, 100 Blossom Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
18
|
Oshima Y, Sakamoto T, Nakamura T, Tahara Y, Goto Y, Ishibashi T, Inomata H. The comparative benefits of glaucoma filtering surgery with an electric-pulse targeted drug delivery system demonstrated in an animal model. Ophthalmology 1999; 106:1140-6. [PMID: 10366083 DOI: 10.1016/s0161-6420(99)90249-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To evaluate the safety and effectiveness of glaucoma filtering surgery performed with the adjunctive use of bleomycin administered in conjunction with electric pulses (EP). DESIGN Experimental study in rabbits. CONTROLS AND METHODS: Trabeculectomies were performed on pigmented rabbits (2 to 2.5 kg) using the following adjunctive treatments: 5 microM of topical bleomycin and EP (5V, 50 msec, 8 pulses) (group A: B+E+, n=15); bleomycin but no EP (group B: B+E-, n=15); 5 ,uM mitomycin C (MMC) and EP (group C: M+E+, n= 10); MMC but no EP (group D: M+E-, n=10); EP alone (group E: E+, n=10); and no adjunctive treatment (group F: E-, negative control, n=10). MAIN OUTCOME MEASURES Intraocular pressure (IOP) was measured regularly for 60 days after the operation. Bleb formation and the condition of the conjunctiva, cornea, and retina were also regularly evaluated. Histologic studies were performed by light microscopy, and retinal functions were evaluated by electroretinography. RESULTS Postoperative IOP was significantly lower than the preoperative level in all the animals until day 7. However, in groups E and F (the negative control) it returned to the preoperative level after day 7, and in groups B, C, and D after 15 days. The IOP of group A remained lower even on day 40. The average amount IOP was lowered or increased on day 20 was -6.4 mmHg (P < 0.05) in group A; -0.2 mmHg in group B; +1.2 mmHg in group C; and -3.25 mmHg in group D. The survival rate of the filtering blebs on day 20 was significantly higher in group A than in the other groups. Clinical and histologic studies uncovered no pathologic findings in any intra- or paraocular tissues. Electroretinographic evaluation of retinal function in group A showed no apparent change over the 60 days of the study. CONCLUSION Glaucoma filtering surgery in rabbits with the adjunctive use of bleomycin in conjunction with EP significantly lowered IOP for up to 40 days without clinically, morphologically, or functionally harming intraocular tissues.
Collapse
Affiliation(s)
- Y Oshima
- Department of Ophthalmology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|