1
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
2
|
Abstract
Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication following chronic exposure to centrally acting dopamine receptor antagonists, mainly of the class of antipsychotics drugs. New generations of antipsychotic drugs reduced its mean prevalence to 20%, but it continues to mar the drug experience and social integration in a significant fraction of patients. The underlying molecular cascade remains elusive, explaining in part why TD management is so often difficult. Protocol variations between experimental laboratories and inter-species differences in the biological response to antipsychotic drugs have added layers of complexity. The traditional dopamine D2 receptor supersensitivity hypothesis was revisited in an experimental nonhuman primate model. Findings in the striatum revealed a strong upregulation of D3, not D2, receptors specific to dyskinetic animals, and indirect evidence suggestive of a link between overactivation of glycogen synthase kinase-3β signaling and TD. New effective vesicular monoamine transporter type 2 inhibitors alleviating TD have been approved in the USA. They were integrated to an emerging stepwise treatment algorithm for troublesome TD, which also includes consideration for changes in the current antipsychotic drug regimen and recognition of potentially aggravating factors such as anticholinergic co-medications. These advances may benefit TD.
Collapse
|
3
|
Ali Z, Roque A, El-Mallakh RS. A unifying theory for the pathoetiologic mechanism of tardive dyskinesia. Med Hypotheses 2020; 140:109682. [PMID: 32200182 DOI: 10.1016/j.mehy.2020.109682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Chronic treatment with dopamine D2 receptor antagonists has been proposed to lead to dopamine receptor supersensitivity. Frequently, this is conceptualized as upregulation or changes in the structure or function of the post-synaptic D2 receptor. However, the measured 1.4-fold increase in D2 receptor density and the lack of actual receptor supersensitivity are probably inadequate to explain outcomes such as tardive dyskinesia (TD) and dopamine supersensitivity psychosis. HYPOTHESIS Recent data suggest that TD may result from a combination of presynaptic, synaptic, and postsynaptic changes. DISCUSSION Presynaptic increase in dopamine release occurs when super-therapeutic blockade of postsynaptic D2 receptors results in excess synaptic unbound dopamine which ultimately ends up being reuptaken by the presynaptic neuron through the dopamine transporter. The increased availability of recycled dopamine results in higher vesicular dopamine concentrations. Since the quantity of neurotransmitter released (known as quanta) is determined by the number of presynaptic neurotransmitter vesicles, the increase in the number (concentration) of dopamine molecules in the vesicles results in a higher concentration of synaptic dopamine with successive depolarization events. Synaptic changes such as the appearance of perforated synapses which is an early step in new synapse formation have been shown in animal models of TD. Finally, postsynaptic increases in D2 receptor expression without demonstration of increased sensitivity or potency has been demonstrated. CONCLUSION TD likely develops due to changes across the synapse and terminology such as 'dopamine receptor supersensitivity' can be misleading. 'Synaptic upregulation' may be a more correct term.
Collapse
Affiliation(s)
- Ziad Ali
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States.
| | - Autumn Roque
- Center for Mindfulness and CBT, 10845 Olive Blvd, St. Louis, MO 63141, United States.
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
4
|
Blanchet PJ, Lévesque D. Time for a New Slate in Tardive Dyskinesia Research. Mov Disord 2020; 35:752-755. [PMID: 32067258 DOI: 10.1002/mds.28003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Pierre J Blanchet
- Department of Stomatology, Faculty of Dental Medicine, University of Montreal, Montreal, QC, Canada.,Department of Medicine, University of Montreal Hospital Centre (CHU Montreal), Montreal, QC, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
5
|
Ribot B, Aupy J, Vidailhet M, Mazère J, Pisani A, Bezard E, Guehl D, Burbaud P. Dystonia and dopamine: From phenomenology to pathophysiology. Prog Neurobiol 2019; 182:101678. [PMID: 31404592 DOI: 10.1016/j.pneurobio.2019.101678] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine", « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.
Collapse
Affiliation(s)
- Bastien Ribot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jérome Aupy
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Sorbonne Université, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Joachim Mazère
- Université de Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France; Service de médecine nucléaire, CHU de Bordeaux, France
| | - Antonio Pisani
- Department of Neuroscience, University "Tor Vergata'', Rome, Italy; Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique, Hôpital Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
6
|
Abstract
Tardive dyskinesia is a disturbance in the balance between dopamine receptor stimulation and dopamine receptor blockade in the motor striatum, with hypothetically too much stimulation of supersensitive D2 receptors, resulting in "don't stop" signaling to motor output.
Collapse
|
7
|
Deficient striatal adaptation in aminergic and glutamatergic neurotransmission is associated with tardive dyskinesia in non-human primates exposed to antipsychotic drugs. Neuroscience 2017; 361:43-57. [DOI: 10.1016/j.neuroscience.2017.07.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 11/23/2022]
|
8
|
Mahmoudi S, Lévesque D, Blanchet PJ. Upregulation of dopamine D3, not D2, receptors correlates with tardive dyskinesia in a primate model. Mov Disord 2014; 29:1125-33. [PMID: 24838395 DOI: 10.1002/mds.25909] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/12/2022] Open
Abstract
Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication arising in patients chronically exposed to centrally active dopamine D2 receptor antagonists, including antipsychotic drugs and metoclopramide. The classical dopamine D2 receptor supersensitivity hypothesis in TD, which stemmed from rodent studies, lacks strong support in humans. To investigate the neurochemical basis of TD, we chronically exposed adult capuchin monkeys to haloperidol (median, 18.5 months; n = 11) or clozapine (median, 6 months; n = 6). Six unmedicated animals were used as controls. Five haloperidol-treated animals developed mild TD movements, and no TD was observed in the clozapine group. Using receptor autoradiography, we measured striatal dopamine D1, D2, and D3 receptor levels. We also examined the D3 receptor/preprotachykinin messenger RNA (mRNA) co-expression, and quantified preproenkephalin mRNA levels, in striatal sections. Unlike clozapine, haloperidol strongly induced dopamine D3 receptor binding sites in the anterior caudate-putamen, particularly in TD animals, and binding levels positively correlated with TD intensity. Interestingly, the D3 receptor upregulation was observed in striatonigral neurons. In contrast, D2 receptor binding was comparable to controls, and dopamine D1 receptor binding was reduced in the anterior putamen. Enkephalin mRNA widely increased in all animals, but to a greater extent in TD-free animals. These results suggest for the first time that upregulated striatal D3 receptors correlate with TD in nonhuman primates, adding new insights to the dopamine receptor supersensitivity hypothesis. The D3 receptor could provide a novel target for drug intervention in human TD.
Collapse
Affiliation(s)
- Souha Mahmoudi
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Teo JT, Edwards MJ, Bhatia K. Tardive dyskinesia is caused by maladaptive synaptic plasticity: A hypothesis. Mov Disord 2012; 27:1205-15. [DOI: 10.1002/mds.25107] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/22/2012] [Accepted: 06/11/2012] [Indexed: 12/19/2022] Open
|
10
|
Bachus SE, Yang E, McCloskey SS, Minton JN. Parallels between behavioral and neurochemical variability in the rat vacuous chewing movement model of tardive dyskinesia. Behav Brain Res 2012; 231:323-36. [PMID: 22503783 DOI: 10.1016/j.bbr.2012.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 11/18/2022]
Abstract
The widely accepted rat vacuous chewing movement model for tardive dyskinesia could be more fully mined through greater focus on individual variability in vulnerability to this neuroleptic-induced behavior. We have examined parallels between behavioral and neurobiological variability within a cohort in order to evaluate the role that neurobiological factors might play in determining susceptibility to tardive dyskinesia. Inter-observer reliability and individual consistency across time, in both spontaneous and neuroleptic-induced vacuous chewing movements, were empirically demonstrated. While this behavior increased across 8 months of observation in both vehicle controls and haloperidol-treated rats, pre-treatment baselines were predictive of final levels across individuals only in the vehicle control group, not the haloperidol-treated group. Haloperidol-induced elevations in neostriatal D2 and GAD(67) mRNA were not correlated with individual variability in haloperidol-induced vacuous chewing movements. Ambient noise during the observations was found to exacerbate chronic haloperidol-induced, but not spontaneous vacuous chewing movements. Significant correlations were found among the haloperidol-treated rats between nigral and tegmental GAD(67) and tegmental α7 mRNA levels, measured by in situ hybridization histochemistry, and vacuous chewing movements, specifically in the noisy conditions. Variability in these secondary responses to primary striatal dopamine and GABA perturbations may play a role in determining vulnerability to vacuous chewing movements, and by analogy, tardive dyskinesia. Both the differential predictive value of baseline vacuous chewing movements and the differential effect of noise, between controls and haloperidol-treated rats, add to evidence that haloperidol-induced vacuous chewing movements are regulated, in part, by different mechanisms than those mediating spontaneous vacuous chewing movements.
Collapse
Affiliation(s)
- Susan E Bachus
- Department of Psychology, St. Mary's College of Maryland, 18952 E. Fisher Rd., St. Mary's City, MD 20686-3001, USA.
| | | | | | | |
Collapse
|
11
|
Blanchet PJ, Parent MT, Rompré PH, Lévesque D. Relevance of animal models to human tardive dyskinesia. Behav Brain Funct 2012; 8:12. [PMID: 22404856 PMCID: PMC3338072 DOI: 10.1186/1744-9081-8-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 11/15/2022] Open
Abstract
Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Faculty of Dental Medicine, University of Montreal, PO Box 6128, Succ, Centre-ville, Montreal, QC H3C 3J7, Canada.
| | | | | | | |
Collapse
|
12
|
Abstract
Tardive dystonia (TD) is a disabling disorder induced by neuroleptics. Internal globus pallidus (GPi) stimulation can dramatically improve TD. The present positron emission tomography and H(2)(15)O study aimed to characterize the abnormalities of brain activation of TD and the impact of GPi stimulation on these abnormalities in five TD patients treated with GPi stimulation and eight controls. Changes of regional cerebral blood flow (rCBF) were determined: (i) at rest; (ii) when moving a joystick with the right hand in three freely chosen directions in on and off bilateral GPi stimulation. A significant increase of rCBF was found in TD patients in off-stimulation condition compared to controls: (1) during motor execution in the prefrontal, premotor lateral, and anterior cingulate cortex; (2) at rest, in the prefrontal and anterior cingulate cortex and the cerebellum. Internal globus pallidus stimulation led to a reduction of rCBF (1) during motor execution, in the primary motor and prefrontal cortex and the cerebellum; (2) at rest, in the primary motor and anterior cingulate cortex and supplementary motor area. The results are as follows: (1) TD is related to an excess of brain activity notably in the prefrontal and premotor areas; (2) GPi stimulation reduces the activation of motor, premotor, and prefrontal cortex as well as cerebellum.
Collapse
|
13
|
Abstract
Factors that place constraints on radio-chemists who are seeking to design and develop radiopharmaceuticals for PET imaging studies include the short half-lives of 11C and 18F, minimum radiochemical yield and specific activity requirements, and high radiation fields that are associated with multi-Curie quantities of PET radionuclides. Nevertheless, during the past 20 years, considerable progress has been made in the development and application of a variety of PET radiotracers for a range of imaging studies in human subjects. We have highlighted a few areas of radiochemistry that focused on PET radiotracers that are described in this issue. Although the number of PET radiotracers synthesized is in the hundreds [6], much work remains to develop specific and useful PET radiotracers for a host of new and exciting noninvasive imaging applications.
Collapse
Affiliation(s)
- N Scott Mason
- Positron Emission Tomography Facility, Department of Radiology, University of Pittsburgh, B-938, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213-2582, USA.
| | | |
Collapse
|
14
|
Turrone P, Remington G, Nobrega JN. The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy? Neurosci Biobehav Rev 2002; 26:361-80. [PMID: 12034136 DOI: 10.1016/s0149-7634(02)00008-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tardive dyskinesia (TD) is a late side effect of long-term antipsychotic use in humans, and the vacuous chewing movement (VCM) model has been used routinely to study this movement disorder in rats. Recent receptor occupancy studies in humans and rats have found that antipsychotics given in doses which lead to moderate levels of D(2) receptor blockade can achieve optimal clinical response while minimizing the emergence of acute motor side effects. This suggests that clinicians may have been using inappropriately high doses of antipsychotics. A review of the existing VCM literature indicates that most animal studies have similarly employed antipsychotic doses that are high, i.e. doses that lead to near complete D(2) receptor saturation. To verify whether the incidence or severity of VCMs would decrease with lower antipsychotic doses, we conducted initial experiments with different doses of haloperidol (HAL) given either as repeated daily injections or as depot injections over the course of several weeks. Our results demonstrate that (1) the incidence of VCMs is significantly related to HAL dose, and (2) significant levels of VCMs only emerge when haloperidol is continually present. These findings are consistent with the possibility that total D(2) occupancy, as well as 'transience' of receptor occupation, may be important in the development of late-onset antipsychotic-induced dyskinetic syndromes.
Collapse
Affiliation(s)
- Peter Turrone
- Institute of Medical Science, University of Toronto, Toronto, Ont., Canada.
| | | | | |
Collapse
|
15
|
Mitchell IJ, Cooper AC, Griffiths MR, Cooper AJ. Acute administration of haloperidol induces apoptosis of neurones in the striatum and substantia nigra in the rat. Neuroscience 2002; 109:89-99. [PMID: 11784702 DOI: 10.1016/s0306-4522(01)00455-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic administration of typical neuroleptics is associated with tardive dyskinesia in some patients. This dyskinetic syndrome has been associated with loss of GABAergic markers in the basal ganglia but the cause of these GABAergic depletions remains uncertain. Haloperidol, a commonly prescribed typical neuroleptic, is known to be toxic in vitro, possibly as a consequence of its conversion to pyridinium-based metabolites and potentially by raising glutamate-mediated transmission. We report here that the in vivo, acute administration of a large dose of haloperidol resulted in a microglial response indicative of neuronal damage. This was accompanied by an increase in the number of apoptotic cells in the striatum (especially in the dorsomedial caudate putamen) and in the substantia nigra pars reticulata. These apoptotic cells were characterised by the stereotaxic injection of a retrograde neuroanatomical tracer into the projection targets of the striatum and substantia nigra pars reticulata prior to the systemic injection of haloperidol. This procedure confirmed that the dying cells were neurones and demonstrated that within the striatum the majority were striatopallidal neurones though relatively high levels of apoptotic striatoentopeduncular neurones were also seen.The possibility that chronic administration of haloperidol could induce cumulative neuronal loss in the substantia nigra pars reticulata and thereby induce the pathological changes which lead to tardive dyskinesia is discussed.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Apoptosis/drug effects
- Apoptosis/physiology
- Avian Proteins
- Basigin
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Blood Proteins
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopamine Antagonists/toxicity
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/pathology
- Dyskinesia, Drug-Induced/physiopathology
- Haloperidol/toxicity
- Immunohistochemistry
- In Situ Nick-End Labeling
- Male
- Membrane Glycoproteins/metabolism
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neural Pathways/pathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Rats
- Rats, Sprague-Dawley
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Substantia Nigra/pathology
- Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
Collapse
Affiliation(s)
- I J Mitchell
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
16
|
Abstract
Tardive dyskinesia develops as a common complication of long-term neuroleptic use. The emergence of such dyskinesias may reflect a shift in the balance of dopamine D(1) and D(2) receptor-mediated activity, with a relative increase in activity in the D(1) receptor-regulated direct striatonigral pathway. In rats, chronic treatment with the antipsychotic fluphenazine triggers a syndrome of vacuous chewing movements, which are attenuated by dopamine D(1) receptor antagonists. A similar syndrome can be seen in drug-naive animals following acute administration of selective dopamine D(1) receptor agonists. However, not all dopamine D(1) receptor agonists elicit these mouth movements. Thus, some investigators have suggested the existence of novel subtypes of the dopamine D(1) receptor. In these studies, we sought to clarify the role of the dopamine D(1A) receptor in vacuous chewing movements induced both by the selective dopamine D(1) receptor agonist SKF 38393, as well as by chronic neuroleptic administration, using in vivo oligonucleotide antisense to dopamine D(1A) receptor messenger RNA. Intrastriatal antisense treatment significantly and selectively attenuated striatal dopamine D(1) receptor binding, accompanied by reductions in SKF 38393- and chronic fluphenazine-induced vacuous chewing movements. These findings suggest that the dopamine D(1A) receptor plays an important role in the expression of vacuous chewing movements in a rodent model of tardive dyskinesia and may contribute to the pathogenesis of the human disorder. This may have important implications for the treatment of tardive dyskinesia in humans.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Antipsychotic Agents/adverse effects
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Binding Sites/drug effects
- Binding Sites/physiology
- Disease Models, Animal
- Dopamine Agonists/pharmacology
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/pathology
- Dyskinesia, Drug-Induced/physiopathology
- Fluphenazine/pharmacology
- Male
- Mastication/drug effects
- Mastication/physiology
- Neostriatum/drug effects
- Neostriatum/pathology
- Neostriatum/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Raclopride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Tritium
Collapse
Affiliation(s)
- J M Van Kampen
- Neurodegenerative Disorders Centre, Faculty of Medicine, University of British Columbia, 2221 Wesbrook Mall, B.C., V6T 2B5, Vancouver, Canada
| | | |
Collapse
|
17
|
Turrone P, Seeman MV, Silvestri S. Estrogen receptor activation and tardive dyskinesia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2000; 45:288-290. [PMID: 10779888 DOI: 10.1177/070674370004500310] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To undertake a selective review of the epidemiology, etiology, and treatment of tardive dyskinesia (TD), with emphasis on the potential influence of estrogen in its expression. METHOD Both Medline and Psycinfo databases were used to search for articles with the following key words: tardive dyskinesia, humans, animals, dopamine, estrogen, estrogen replacement therapy, antioxidants and oxidative stress. RESULTS The studies reviewed here suggest that estrogen modulates dopamine-mediated behaviours and that it protects against oxidative stress-induced cell damage caused by long-term exposure to antipsychotic medication. CONCLUSIONS Estrogen's multimodal role in the central nervous system may prove useful for the amelioration or prevention of TD. All the evidence suggests that a placebo-controlled, randomized trial with safer forms of estrogen should be conducted in postmenopausal women with TD.
Collapse
Affiliation(s)
- P Turrone
- Institute of Medical Science, University of Toronto, Ontario.
| | | | | |
Collapse
|
18
|
Borbely K, Brooks RA, Wong DF, Burns RS, Cumming P, Gjedde A, Di Chiro G. NMSP binding to dopamine and serotonin receptors in MPTP-induced parkinsonism: relation to dopa therapy. Acta Neurol Scand 1999; 100:42-52. [PMID: 10416511 DOI: 10.1111/j.1600-0404.1999.tb00722.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We tested the hypothesis that N-methylspiperone binding to dopamine D2 receptors must be reduced when L-dopa therapy of parkinsonism augments the binding of dopamine to the receptors and improves the clinical state expressed by the Hoehn & Yahr stage. A patient with MPTP-induced parkinsonism underwent two positron emission tomographic studies of the D2-like dopamine receptors with N-[11C]methylspiperone (NMSP). The first study took place 3 days after cessation of the L-dopa medication, the second 5 days after its resumption. Noticeable clinical deterioration occurred during both studies, consistent with significant dopamine receptor blockade by NMSP and elevated NMSP binding in both scans. The dopa treatment did not reduce the NMSP binding. On the contrary, the rate of binding of NMSP (k3) was increased on-dopa, compared to off-dopa. The increase was consistent with the slightly greater dopamine receptor density estimated after resumption of the dopa therapy. The NMSP binding to serotonin receptors suggested lower synaptic serotonin on-dopa than off-dopa. The results are consistent with negative correlation between the Hoehn & Yahr stage and the amount of dopamine bound to dopamine D2 receptors. Low synaptic serotonin may explain the depression seen in some patients on dopa for Parkinson's disease.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects
- Adult
- Antiparkinson Agents/pharmacology
- Antiparkinson Agents/therapeutic use
- Binding Sites/drug effects
- Cerebellum/diagnostic imaging
- Cerebellum/metabolism
- Dopamine Antagonists/adverse effects
- Dopamine Antagonists/metabolism
- Dopamine Antagonists/pharmacokinetics
- Humans
- Levodopa/pharmacology
- Levodopa/therapeutic use
- Male
- Models, Chemical
- Occupational Diseases/chemically induced
- Parkinson Disease, Secondary/diagnosis
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/etiology
- Putamen/diagnostic imaging
- Putamen/metabolism
- Receptors, Dopamine/drug effects
- Receptors, Serotonin/drug effects
- Severity of Illness Index
- Spiperone/adverse effects
- Spiperone/metabolism
- Spiperone/pharmacokinetics
- Tomography, Emission-Computed
Collapse
Affiliation(s)
- K Borbely
- Neuroimaging Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Sudo Y, Suhara T, Suzuki K, Okubo Y, Yoshikawa K, Uchida S, Sassa T, Okauchi T, Sasaki Y, Matsushita M. Muscarinic receptor occupancy by biperiden in living human brain. Life Sci 1999; 64:PL99-104. [PMID: 10069534 DOI: 10.1016/s0024-3205(98)00613-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anticholinergic drug is often used to treat extrapyramidal symptoms. We measured muscarinic cholinergic receptor (mAchR) occupancy by the oral administration of biperiden in eight healthy subjects using positron emission tomography (PET) and [11C]N-methyl-4-piperidylbenzilate (NMPB). After the baseline scan each subject underwent one or two post-dose PET scans. mAchR occupancy was 10-45% in the frontal cortex three hours after the oral administration of 4 mg of biperiden. The occupancy correlated with the plasma concentration of biperiden in a curvilinear manner.
Collapse
Affiliation(s)
- Y Sudo
- Division of Advanced Technology for Medical Imaging, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
Drug-induced movement disorders are often unrecognized, especially when not due to dopamine receptor blockers. This review discusses acute, subacute, and chronic syndromes. Pathophysiology relates almost always to dopaminergic transmission. Patient-dependent vulnerability and drug-dependent sensitivity are contributing factors. Young patients are more prone to acute reactions, and tardive or chronic conditions are more frequent in the elderly. Subclinical Parkinsonism can be unmasked by medication exposure. Treatment of tardive dyskinesia remains a challenging task for the clinician, but novel antipsychotics and dopamine depleting agents can be beneficial.
Collapse
Affiliation(s)
- N J Diederich
- Department of Neurological Sciences, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois, USA
| | | |
Collapse
|
22
|
Stoessl AJ, James KA, Napier BJ. The neurotensin antagonist SR 48692 fails to modify the behavioural responses to a dopamine D1 receptor agonist in the rat. Neuropharmacology 1997; 36:93-9. [PMID: 9144645 DOI: 10.1016/s0028-3908(96)00163-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of the neurotensin antagonist SR 48692 on the behavioural responses to the dopamine D1 receptor agonist SKF 38393 were investigated in the rat. SKF 38393 (5 mg/kg s.c.) elicited vacuous chewing movements (VCMs) and grooming, which were unaffected by SR 48692 (50 micrograms/kg i.p.). The dopamine D2 receptor antagonist raclopride (0.5 mg/kg s.c.) elicited a small increase in VCMs in animals treated with SR 48692 and attenuated grooming induced by SKF 38393. These effects were not otherwise modified by SR 48692. We conclude that VCMs induced by acute administration of a dopamine D1 receptor agonist are unlikely to be dependent upon enhanced release of neurotensin in the striatum or its projections. This is contrast to the vacuous chewing response which emerges following chronic administration of neuroleptics, which is attenuated by neurotensin receptor antagonist. Thus, inasmuch as chronic neuroleptic-induced VCMs in the rat may be analogous to tardive dyskinesia in humans, the responses induced by acute administration of a D1 agonist to the rat cannot be used as a model of this disorder. Furthermore, the behavioural effects of chronic neuroleptic administration reflect more than a simple shift in the balance of D1 versus D2 receptor stimulation.
Collapse
Affiliation(s)
- A J Stoessl
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada.
| | | | | |
Collapse
|
23
|
Knable MB, Hyde TM, Egan MF, Tosayali M, Wyatt RJ, Kleinman JE. Quantitative autoradiography of striatal dopamine D1, D2 and re-uptake sites in rats with vacuous chewing movements. Brain Res 1994; 646:217-22. [PMID: 8069667 DOI: 10.1016/0006-8993(94)90081-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rats treated with haloperidol that developed vacuous chewing movements (VCM), a possible animal model of tardive dyskinesia, were studied with quantitative autoradiography for dopamine type-1 (D1) and type-2 (D2) receptors as well as dopamine re-uptake sites. Haloperidol increased striatal D2 receptors, but did not affect D1 receptors or the dopamine re-uptake site. D2 receptor increases occurred in rats with and without VCMs. In so far as VCM is a model for tardive dyskinesia, haloperidol induced increases in striatal D2 receptors do not appear to be etiologic for these abnormal movements.
Collapse
Affiliation(s)
- M B Knable
- Clinical Brain Disorders Branch, National Institute of Mental Health, St. Elizabeths Hospital, Washington, DC 20032
| | | | | | | | | | | |
Collapse
|
24
|
Shinotoh H, Asahina M, Inoue O, Suhara T, Hirayama K, Tateno Y. Effects of trihexyphenidyl and L-dopa on brain muscarinic cholinergic receptor binding measured by positron emission tomography. JOURNAL OF NEURAL TRANSMISSION. PARKINSON'S DISEASE AND DEMENTIA SECTION 1994; 7:35-46. [PMID: 8579768 DOI: 10.1007/bf02252661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of pharmacological intervention on brain muscarinic cholinergic receptor (mAChR) binding were assessed in seven patients with Parkinson's disease by positron emission tomography and carbon-11 labelled N-methyl-4-piperidyl benzilate ([11C]NMPB). [11C]NMPB was injected twice, approximately 2 hours apart, in each patient, to assess the effect of single doses of 4 mg of trihexyphenidyl (n = 5) or 400 mg of L-dopa with 57 mg of benserazide (n = 2) on the binding parameter of mAChRs (K3). There was a mean 28% inhibition of K3 values in the brain in the presence of trihexyphenidyl, which was assumed to reflect mAChR occupancy. No significant change in K3 was observed in the presence of L-dopa. This study demonstrates the feasibility of measuring mAChR occupancy by an anticholinergic medication with PET.
Collapse
Affiliation(s)
- H Shinotoh
- Department of Neurology, School of Medicine, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Miller R, Chouinard G. Loss of striatal cholinergic neurons as a basis for tardive and L-dopa-induced dyskinesias, neuroleptic-induced supersensitivity psychosis and refractory schizophrenia. Biol Psychiatry 1993; 34:713-38. [PMID: 7904833 DOI: 10.1016/0006-3223(93)90044-e] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the first section of this paper several aspects of tardive dyskinesia (TD) (clinical, epidemiological, pharmacological) are reviewed. We propose that this syndrome is not the consequence of dopamine receptor proliferation, but results from damage or degeneration of striatal cholinergic interneurons. We suggest that this cellular damage is caused by prolonged overactivation of these neurons, which occurs when they are released from dopaminergic inhibition following neuroleptic administration. Overactivity of central cholinergic systems during akinetic and motor retarded depression could be a contributory cause. The predisposition to L-DOPA-induced peak-dose dyskinesia in Parkinson's disease may depend on the same type of striatal neuronal loss. In the second part of the paper, the subject of supersensitivity psychosis and drug-resistant schizophrenia is reviewed. These two syndromes, are commonly associated with TD, have similar predisposing factors and pharmacology to TD, and are potentially persistent. We suggest that these conditions also result from degeneration of cholinergic striatal interneurons following chronic neuroleptic administration. The efficacy of clozapine for such treatment-refractory psychoses is explained in terms of its blockade of D-1 dopamine receptors. Other drugs effective against refractory psychoses (e.g. risperidone) are predicted to reduce activation at D-1 receptors.
Collapse
Affiliation(s)
- R Miller
- Department of Anatomy and Structural Biology, University of Otago Medical School, Dunedin, New Zealand
| | | |
Collapse
|
26
|
Stoessl AJ, Polanski E, Frydryszak H. The opiate antagonist naloxone suppresses a rodent model of tardive dyskinesia. Mov Disord 1993; 8:445-52. [PMID: 7901759 DOI: 10.1002/mds.870080405] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The effects of both opiate agonists and the opiate antagonist naloxone were examined in a rodent model of tardive dyskinesia (TD). Chronic (approximately 20 weeks) administration of fluphenazine resulted in the emergence of vacuous chewing mouth movements (VCMs), a response which may be a useful model for this disorder. Fluphenazine-induced VCMs were not affected by a variety of selective opiate agonists administered intracerebroventricularly, but were potently suppressed by subcutaneous administration of the opiate antagonist naloxone. These findings suggest that increased opiate transmission may contribute to the pathogenesis of TD. Further investigation of the role of opiate antagonists in treating this disorder are warranted.
Collapse
Affiliation(s)
- A J Stoessl
- Department of Clinical Neurological Sciences, University of Western Ontario, University Hospital, London, Canada
| | | | | |
Collapse
|
27
|
Leenders K, Hartvig P, Forsgren L, Holmgren G, Almay B, Eckernäs SA, Lundqvist H, Långström B. Striatal [11C]-N-methyl-spiperone binding in patients with focal dystonia (torticollis) using positron emission tomography. JOURNAL OF NEURAL TRANSMISSION. PARKINSON'S DISEASE AND DEMENTIA SECTION 1993; 5:79-87. [PMID: 8101445 DOI: 10.1007/bf02251198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Specific binding of [11C]-N-methyl-spiperone to striatal dopamine D2 receptors was assessed using positron emission tomography (PET) in 6 patients with adult-onset focal dystonia (predominantly spasmodic torticollis) and in 5 healthy subjects. No significant difference in average specific striatal tracer uptake between patients and healthy subjects was found. However, in the 5 patients showing lateralisation of clinical signs a trend to higher striatal tracer uptake in the contralateral hemisphere was observed.
Collapse
Affiliation(s)
- K Leenders
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lublin H, Gerlach J, Peacock L. Chronic treatment with the D1 receptor antagonist, SCH 23390, and the D2 receptor antagonist, raclopride, in cebus monkeys withdrawn from previous haloperidol treatment. Extrapyramidal syndromes and dopaminergic supersensitivity. Psychopharmacology (Berl) 1993; 112:389-97. [PMID: 7871047 DOI: 10.1007/bf02244938] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of chronic treatment with dopamine (DA) D1 and D2 receptor antagonists were evaluated in eight cebus apella monkeys with mild oral dyskinesia after previous haloperidol treatment. SCH 23390 (D1 antagonist) was given daily to investigate the direct behavioural effect during long-term treatment and the subsequent supersensitivity to DA agonists. Raclopride (D2 antagonist) was investigated for comparison. All drugs were given subcutaneously. SCH 23390 and raclopride induced dystonic syndromes, catalepsy, sedation and reduced locomotor activity. The monkeys developed marked tolerance to the dystonic effect of SCH 23390, while they showed increased sensibility to the dystonic effect of raclopride. Baseline oral dyskinesia (24 h after injection) remained unchanged during D1 antagonist treatment, while it increased during D2 antagonist treatment. SCH 23390 induced supersensitivity to the oral dyskinesia- and grooming-inducing effects of SKF 81297 (D1 agonist) after 9 weeks, while the subsequent treatment with raclopride induced supersensitivity to the reactivity- and stereotypy-inducing effects of quinpirole (D2 receptor agonist) after 3 weeks. Because of the possibility of a carry-over effect (SKF 81297-induced oral hyperkinesia and grooming), other changes in raclopride-induced behaviours cannot be ruled out. The development of tolerance to the dystonic effect of SCH 23390 and the unchanged baseline oral dyskinesia during SCH 23390 treatment indicate an advantageous profile of side effects of DA D1 receptor blockade.
Collapse
Affiliation(s)
- H Lublin
- St Hans Hospital, Department P, Roskilde, Denmark
| | | | | |
Collapse
|
29
|
Karbe H, Wienhard K, Hamacher K, Huber M, Herholz K, Coenen HH, Stöcklin G, Lövenich A, Heiss WD. Positron emission tomography with (18F)methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol. J Neural Transm (Vienna) 1991; 86:163-73. [PMID: 1837996 DOI: 10.1007/bf01250702] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Four schizophrenic patients were investigated with dynamic positron emission tomography (PET) using (18F)fluorodeoxyglucose (FDG) and (18F)methylspiperone (MSP) as tracers. Two schizophrenics were on haloperidol therapy at the time of MSP PET. The other two schizophrenics were treated with clozapine, in one of them MSP PET was carried out twice with different daily doses (100 mg and 450 mg respectively). Neuroleptic serum levels were measured in all patients. Results were compared with MSP PET of two drug-free male control subjects and with a previous fluoroethylspiperone (FESP) study of normals. Three hours after tracer injection specific binding of MSP was observed in the striatum in all cases. The striatum to cerebellum ratio was used to estimate the degree of neuroleptic-caused striatal D2 dopamine receptor occupancy. In the haloperidol treated patients MSP binding was significantly decreased, whereas in the clozapine treated patients striatum to cerebellum ratio was normal. Even the increase of clozapine dose in the same patient had no influence on this ratio. Despite the smaller number of patients the study shows for the first time in humans that striatal MSP binding reflects the different D2 dopamine receptor affinities of clozapine and haloperidol.
Collapse
Affiliation(s)
- H Karbe
- Universitätsklinik für Neurologie, Köln, Federal Republic of Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed.
Collapse
Affiliation(s)
- B Mazière
- Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, Orsay, France
| | | |
Collapse
|
31
|
Abstract
The development of PET and in vivo ligand-binding techniques over the past decade has allowed the analysis of dopamine receptor functions in the basal ganglia of human subjects. Using ligands selective for the different subtypes of dopamine receptors, their gross distribution, total number of binding sites and affinity have been determined in the caudate-putamen of the living human brain. Recent studies in young, drug-naive schizophrenic patients failed to demonstrate a consistent alteration in the densities or affinities of D2 dopamine receptors in the basal ganglia of these subjects, contradicting the view that elevated densities of D2 dopamine receptors are a major pathophysiological mechanism in this disorder. PET measurements of D2 dopamine receptor occupancy in relation to clinical antipsychotic drug treatment demonstrated that all chemically different categories of antipsychotic drugs induced a marked occupancy of D2 dopamine receptors. This effect was dose-dependent and fully reversible. It appeared earlier than the antipsychotic effect and was also present in neuroleptic-resistant patients. Resistance to neuroleptic drugs is in all probability related to heterogeneity of biological factors causing schizophrenia. Some, but not all, antipsychotic drugs also induced a significant D1 dopamine receptor occupancy. This effect was most marked for the unconventional drug clozapine, which showed about the same degree of D1 as D2 dopamine receptor blockade when given in clinical doses.
Collapse
Affiliation(s)
- G Sedvall
- Department of Psychiatry and Psychology, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Mazière B, Mazière M. Where have we got to with neuroreceptor mapping of the human brain? EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1990; 16:817-35. [PMID: 2170141 DOI: 10.1007/bf00833018] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the past two decades, tritiated radioligand receptor binding, a tool commonly used to investigate the site of action of drugs in laboratory animals, has provided a vast body of information on neuropharmacology and neurobiology. Several neurological and psychiatric diseases have been related to neurotransmitter and receptor disorders. In order to study ligand interactions with receptors in vivo in humans, new tracers capable of carrying a gamma-emitting radionuclide to the receptor have been designed. Emission computerized tomography (ECT) techniques such as positron (PET) or single photon emission tomography (SPET) allow monitoring of the time-course of regional tissue concentration of these radiolabelled ligands. PET and SPET each have their inherent advantages and drawbacks. The cyclotron-based technology of PET is a demanding and expensive technique that, to date, is still mainly reserved for research purposes. It is hoped that once the scientific basis of a physiopathological study is established using PET, diagnostic information might be provided by the more readily available SPET technology. The purpose of this article is to review the current state of receptor-binding gamma-emitting radioligands and to present the clinical potential of these new kinds of radiopharmaceuticals in clinical investigation.
Collapse
Affiliation(s)
- B Mazière
- Service Hospitalier Frédéric Joliot Commissariat à l'Energie Atomique, Orsay, France
| | | |
Collapse
|