1
|
Anjos A, Paladini A, Mariguela TC, Cabral-de-Mello DC. U1 snDNA chromosomal mapping in ten spittlebug species (Cercopidade, Auchenorrhyncha, Hemiptera). Genome 2018; 61:59-62. [DOI: 10.1139/gen-2017-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spittlebugs, which belong to the family Cercopidae (Auchenorrhyncha, Hemiptera), form a large group of xylem-feeding insects that are best known for causing damage to plantations and pasture grasses. The holocentric chromosomes of these insects remain poorly studied in regards to the organization of different classes of repetitive DNA. To improve chromosomal maps based on repetitive DNAs and to better understand the chromosomal organization and evolutionary dynamics of multigene families in spittlebugs, we physically mapped the U1 snRNA gene with fluorescence in situ hybridization (FISH) in 10 species of Cercopidae belonging to three different genera. All the U1 snDNA clusters were autosomal and located in interstitial position. In seven species, they were restricted to one autosome per haploid genome, while three species of the genus Mahanarva showed two clusters in two different autosomes. Although it was not possible to precisely define the ancestral location of this gene, it was possible to observe the presence of at least one cluster located in a small bivalent in all karyotypes. The karyotype stability observed in Cercopidae is also observed in respect to the distribution of U1 snDNA. Our data are discussed in light of possible mechanisms for U1 snDNA conservation and compared with the available data from other species.
Collapse
Affiliation(s)
- Allison Anjos
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Andressa Paladini
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tatiane C. Mariguela
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Diogo C. Cabral-de-Mello
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| |
Collapse
|
2
|
Silva DMZA, Utsunomia R, Pansonato-Alves JC, Oliveira C, Foresti F. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA. Cytogenet Genome Res 2015; 146:144-152. [PMID: 26329975 DOI: 10.1159/000438813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group.
Collapse
Affiliation(s)
- Duilio M Z A Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | | | | | | | | |
Collapse
|
3
|
U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization. Heredity (Edinb) 2014; 114:207-19. [PMID: 25248465 DOI: 10.1038/hdy.2014.87] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 11/08/2022] Open
Abstract
The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements.
Collapse
|
4
|
Merlo MA, Pacchiarini T, Portela-Bens S, Cross I, Manchado M, Rebordinos L. Genetic characterization of Plectorhinchus mediterraneus yields important clues about genome organization and evolution of multigene families. BMC Genet 2012; 13:33. [PMID: 22545758 PMCID: PMC3464664 DOI: 10.1186/1471-2156-13-33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022] Open
Abstract
Background Molecular and cytogenetic markers are of great use for to fish characterization, identification, phylogenetics and evolution. Multigene families have proven to be good markers for a better understanding of the variability, organization and evolution of fish species. Three different tandemly-repeated gene families (45S rDNA, 5S rDNA and U2 snDNA) have been studied in Plectorhinchus mediterraneus (Teleostei: Haemulidae), at both molecular and cytogenetic level, to elucidate the taxonomy and evolution of these multigene families, as well as for comparative purposes with other species of the family. Results Four different types of 5S rDNA were obtained; two of them showed a high homology with that of Raja asterias, and the putative implication of a horizontal transfer event and its consequences for the organization and evolution of the 5S rDNA have been discussed. The other two types do not resemble any other species, but in one of them a putative tRNA-derived SINE was observed for the first time, which could have implications in the evolution of the 5S rDNA. The ITS-1 sequence was more related to a species of another different genus than to that of the same genus, therefore a revision of the Hamulidae family systematic has been proposed. In the analysis of the U2 snDNA, we were able to corroborate that U2 snDNA and U5 snDNA were linked in the same tandem array, and this has interest for tracing evolutionary lines. The karyotype of the species was composed of 2n = 48 acrocentric chromosomes, and each of the three multigene families were located in different chromosome pairs, thus providing three different chromosomal markers. Conclusions Novel data can be extracted from the results: a putative event of horizontal transfer, a possible tRNA-derived SINE linked to one of the four 5S rDNA types characterized, and a linkage between U2 and U5 snDNA. In addition, a revision of the taxonomy of the Haemulidae family has been suggested, and three cytogenetic markers have been obtained. Some of these results have not been described before in any other fish species. New clues about the genome organization and evolution of the multigene families are offered in this study.
Collapse
Affiliation(s)
- Manuel A Merlo
- Laboratorio de Genética, Universidad de Cádiz, Polígono Río San Pedro 11510, Puerto Real, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosome Res 2012; 20:279-92. [DOI: 10.1007/s10577-011-9271-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
|
6
|
Cheng Y, Lund E, Kahan BW, Dahlberg JE. Control of mouse U1 snRNA gene expression during in vitro differentiation of mouse embryonic stem cells. Nucleic Acids Res 1997; 25:2197-204. [PMID: 9153321 PMCID: PMC146704 DOI: 10.1093/nar/25.11.2197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Early in mouse development, two classes of U1 RNAs, mU1a and mU1b, are synthesized, but as development proceeds, transcription of the embryo-specific mU1b genes is selectively down-regulated to a barely detectable level. We show here that during in vitro differentiation of mouse embryonic stem (ES) cells, both exogenously introduced and endogenous U1b genes are subject to normal developmental regulation. Thus, ES cells represent a convenient isogenic system for studying the control of expression of developmentally regulated snRNA genes. Using this system, we have identified a region in the proximal 5'flanking region, located outside the PSE element, that is responsible for differential transcription of the mU1a and mU1b genes in both developing cells and transiently transfected NIH 3T3 cells.
Collapse
Affiliation(s)
- Y Cheng
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
7
|
Cheah YC, Nadeau JH, Pugh S, Paigen B. New murine polymorphisms detected by random amplified polymorphic DNA (RAPD) PCR and mapped by use of recombinant inbred strains. Mamm Genome 1994; 5:762-7. [PMID: 7894156 DOI: 10.1007/bf00292009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligonucleotide primers of random sequence that were 12 bases in length, 58% in GC content, and lacking internal palindromes were designed. By random amplified polymorphic DNA (RAPD) PCR, these primers were used to survey for DNA variations between the progenitors of the mouse AXB and BXA recombinant inbred sets (A/J and C57BL/6J). We identified 17 DNA variants detected by 10 primers. Map positions for these variants were determined by comparing their strain distribution patterns in the AXB, BXA recombinant inbred sets with strain distribution patterns of previously published loci. When necessary, BXD and NXSM recombinant inbred sets were also used. These 17 new loci mapped to 12 chromosomes. The 10 primers were also used to survey 20 inbred mouse strains including the progenitors of other recombinant inbred sets and four mouse strains recently inbred from the wild (CAST/Ei, MOLF/Ei, PERA/Ei, and SPRET/Ei).
Collapse
Affiliation(s)
- Y C Cheah
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
8
|
Cáceres JF, McKenzie D, Thimmapaya R, Lund E, Dahlberg JE. Control of mouse U1a and U1b snRNA gene expression by differential transcription. Nucleic Acids Res 1992; 20:4247-54. [PMID: 1508717 PMCID: PMC334132 DOI: 10.1093/nar/20.16.4247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of mouse embryonic U1 snRNA (mU1b) genes is subject to stage- and tissue-specific control, being restricted to early embryos and adult tissues that contain a high proportion of stem cells capable of further differentiation. To determine the mechanism of this control we have sought to distinguish between differential RNA stability and regulation of U1 gene promoter activity in several cell types. We demonstrate here that mU1b RNA can accumulate to high levels in permanently transfected mouse 3T3 and C127 fibroblast cells which normally do not express the endogenous U1b genes, and apparently can do so without significantly interfering with cell growth. Expression of transfected chimeric U1 genes in such cells is much more efficient when their promoters are derived from a constitutively expressed mU1a gene rather than from an mU1b gene. In transgenic mice, introduced U1 transgenes with an mU1b 5' flanking region are subject to normal tissue-specific control, indicating that U1b promoter activity is restricted to tissues that normally express U1b genes. Inactivation of the embryonic genes during normal differentiation is not associated with methylation of upstream CpG-rich sequences; however, in NIH 3T3 fibroblasts, the 5' flanking regions of endogenous mU1b genes are completely methylated, indicating that DNA methylation serves to imprint the inactive state of the mU1b genes in cultured cells. Based on these results, we propose that the developmental control of U1b gene expression is due to differential activity of mU1a and mU1b promoters rather than to differential stability of U1a and U1b RNAs.
Collapse
Affiliation(s)
- J F Cáceres
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- P D'Eustachio
- Department of Biochemistry, Kaplan Cancer Center, New York University Medical Center, New York 10016
| |
Collapse
|
10
|
Affiliation(s)
- M H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618
| | | | | | | | | |
Collapse
|
11
|
Mu JL, Cheah YC, Paigen B. Strain distribution pattern of 25 simple sequence length polymorphisms in the AXB and BXA recombinant inbred strains. Mamm Genome 1992; 3:705-8. [PMID: 1477478 DOI: 10.1007/bf00444366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J L Mu
- Jackson Laboratory, Bar Harbor, Maine 04609-1500
| | | | | |
Collapse
|
12
|
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, ME 04609
| | | |
Collapse
|
13
|
Affiliation(s)
- P D'Eustachio
- Department of Biochemistry, New York University Medical Center, NY 10016
| |
Collapse
|
14
|
Affiliation(s)
- M H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618
| | | |
Collapse
|
15
|
Abstract
I demonstrate that the U1 snRNAs of human cells are heterogeneous in sequence. Polyacrylamide gel and RNase T1 fingerprint analyses of U1 RNAs isolated from a variety of human cultured cells, including HeLa, 293, K562 and NT2/D1, show that minor variants of the human U1 RNA (hUla) comprise between 5% and 15% of the total U1 RNAs in these established cell lines. The patterns of variants are cell line specific, suggesting that expression of these minor species of hUla RNAs reflect polymorphisms of the hUla true genes rather than existence of an additional class of human embryonic U1 genes. Also, the hUla variants described here are not the products of previously identified human U1 Class I pseudogenes.
Collapse
Affiliation(s)
- E Lund
- Department of Physiological Chemistry, University of Wisconsin-Madison
| |
Collapse
|
16
|
Blatt C, Saxe D, Marzluff WF, Lobo S, Nesbitt MN, Simon MI. Mapping and gene order of U1 small nuclear RNA, endogenous viral env sequence, amylase, and alcohol dehydrogenase-3 on mouse chromosome 3. SOMATIC CELL AND MOLECULAR GENETICS 1988; 14:133-42. [PMID: 2450406 DOI: 10.1007/bf01534398] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Linkage was established between a number of genes that map on chromosome 3 by studying the distribution patterns of DNA polymorphisms and protein electrophoretic mobility polymorphisms in recombinant inbred (RI) strains of mice. This analysis resulted in the following suggested gene order between the newly assigned genes and previously mapped genes: gamma-fibrinogen (Fgg), Xmmv-22 of mink cell focus-inducing (MCF) virus, U1b small nuclear RNA gene cluster (Rnu-1b), amylase (Amy-1,2), cadmium resistance (cdm), alcohol dehydrogenase-3 (Adh-3), alcohol dehydrogenase-1 (Adh-1). In situ hybridization to chromosome spreads confirmed the assignment of the Ulb small nuclear RNA (snRNA) gene cluster and the gamma-fibrinogen gene to the center of chromosome 3.
Collapse
Affiliation(s)
- C Blatt
- Agouron Institute, La Jolla, California
| | | | | | | | | | | |
Collapse
|