1
|
Ferrihydrite synthesis in the presence of amino acids and artificial seawater. Amino Acids 2023:10.1007/s00726-023-03253-w. [PMID: 36877410 DOI: 10.1007/s00726-023-03253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023]
Abstract
Ferrihydrite is widespread in clays, soils, and living organisms and was found on Mars. This iron-mineral could be found on the prebiotic Earth, which also contained simple monomeric amino acids. For prebiotic chemistry, it is important to understand how amino acids have an effect on the process of iron oxide formations. There are three important results in this work: (a) preconcentration of cysteine and aspartic acid, (b) formation of cystine and probably the cysteine peptide occurred during ferrihydrite syntheses, and (c) amino acids have an effect on iron oxide synthesis. For samples containing aspartic acid and cysteine, their presence on the surface or mineral structure can be confirmed by FT-IR spectra. Surface charge analysis showed a relatively high decrease for samples synthesized with cysteine. Scanning electron microscopy did not show marked morphological differences among the samples, except for the seawater sample containing cysteine, which had a lamina-shaped morphology surrounded by circular iron particles, indicating the possible formation of a cysteine structure involving iron oxide particles. The thermogravimetric analysis of the samples indicates that the presence of salts and amino acids in the synthesis of ferrihydrite has an effect on the thermal behavior of the iron oxide/amino acids and modifying the water-loss temperature. The heating of the cysteine samples, synthesized in distilled water and artificial seawater, showed several peaks of degradation of cysteine. In addition, heating of the aspartic acid samples produced the polymerization of this amino acid and peaks of degradation of it. FTIR spectra and XRD patterns did not indicate the precipitation of methionine, 2-aminoisobutyric acid, lysine, or glycine with the iron oxide formations. However, the heating of the glycine, methionine and lysine samples, synthesized in artificial seawater, showed peaks that could be attributed to the degradation of them. Then this could be an indication that these amino acids precipitate with the minerals during the syntheses. Also, the dissolution of these amino acids in artificial seawater prevents the formation of ferrihydrite.
Collapse
|
2
|
Guo X, Fu S, Ying J, Zhao Y. Prebiotic chemistry: a review of nucleoside phosphorylation and polymerization. Open Biol 2023; 13:220234. [PMID: 36629018 PMCID: PMC9832566 DOI: 10.1098/rsob.220234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The phosphorylation of nucleosides and their polymerization are crucial issues concerning the origin of life. The question of how these plausible chemical processes took place in the prebiotic Earth is still perplexing, despite several studies that have attempted to explain these prebiotic processes. The purpose of this article is to review these chemical reactions with respect to chemical evolution in the primeval Earth. Meanwhile, from our perspective, the chiral properties and selection of biomolecules should be considered in the prebiotic chemical origin of life, which may contribute to further research in this field to some extent.
Collapse
Affiliation(s)
- Xiaofan Guo
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| |
Collapse
|
3
|
Sati SC, Pant CK, Bhatt P, Pandey Y. Thymine Adsorption onto Cation Exchanged Montmorillonite Clay: Role of Biogenic Divalent Metal Cations in Prebiotic Processes of Chemical Evolution. ORIGINS LIFE EVOL B 2022; 52:233-247. [DOI: 10.1007/s11084-022-09633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
|
4
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Rodrigues F, Georgelin T, Rigaud B, Zhuang G, Fonseca MG, Valtchev V, Jaber M. Deadlocks of adenine ribonucleotide synthesis: evaluation of adsorption and condensation reactions in a zeolite micropore space. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report on adenine, d-ribose, and monophosphate adsorption/co-adsorption into the synthetic analog of the zeolite mineral mordenite followed by drying at 50 °C and thermal activation at 150 °C under an argon atmosphere.
Collapse
Affiliation(s)
- Francisco Rodrigues
- Sorbonne University, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale, 4 place Jussieu, F-75005 Paris, France
- State University of Paraíba, UEPB, Department of Chemistry, Campina Grande, Paraíba, Brazil
| | - Thomas Georgelin
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45000 Orléans, France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482), 4 place jussieu, 75005 Paris, France
| | - Guanzheng Zhuang
- Sorbonne University, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale, 4 place Jussieu, F-75005 Paris, France
| | | | - Valentin Valtchev
- Normandy University, Laboratoire Catalyse & Spectrochimie, ENSICAEN, 6 bl Maréchal Juin, 14050 Caen, France
| | - Maguy Jaber
- Sorbonne University, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale, 4 place Jussieu, F-75005 Paris, France
- Institut Universitaire de France, France
| |
Collapse
|
6
|
A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to show that using minerals it is possible, at least, to obtain peptides whose composition includes a high quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry environments, it is important to perform the experiments in distilled water and diluted salt solutions. Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world, a small peptide set could emerge that better resembles modern proteins.
Collapse
|
7
|
Baú JPT, Villafañe-Barajas SA, da Costa ACS, Negrón-Mendoza A, Colín-Garcia M, Zaia DAM. Adenine Adsorbed onto Montmorillonite Exposed to Ionizing Radiation: Essays on Prebiotic Chemistry. ASTROBIOLOGY 2020; 20:26-38. [PMID: 31549853 DOI: 10.1089/ast.2018.1909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most adsorption and radiolysis experiments related to prebiotic chemistry studies are performed in distilled water or sodium chloride solutions. However, distilled water and sodium chloride solutions do not represent the composition of the primitive seas of Earth. In this work, an artificial seawater with ion abundances Mg2+ > Ca2+ >> Na+ ≈ K+ and SO42- >> Cl- was used, one that is different from the average composition of seawater today. This artificial seawater is named seawater 4.0 Ga, since it better represents the composition of the major constituents of seawater of primitive Earth. The radiolysis of adenine adsorbed onto montmorillonite was studied. The most important result is that adenine is adsorbed onto montmorillonite, when it is dissolved in artificial seawater 4.0 Ga, and the clay protects adenine against gamma radiation decomposition. However, desorption of adenine from montmorillonite was possible only with 0.10 mol L-1 of KOH. This result indicates that adenine was strongly bonded to montmorillonite. Fourier transform infrared spectroscopy showed that NH2 group and electrostatic interactions, between negatively charged montmorillonite and positively charged adenine, are responsible for adsorption of adenine onto montmorillonite. In addition, X-ray diffractograms showed that adenine enters in the interlayer space of montmorillonite.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, Brasil
| | - Sául A Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | | | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - María Colín-Garcia
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, Brasil
| |
Collapse
|
8
|
How do Nucleotides Adsorb Onto Clays? Life (Basel) 2018; 8:life8040059. [PMID: 30486384 PMCID: PMC6316844 DOI: 10.3390/life8040059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Adsorption of prebiotic building blocks is proposed to have played a role in the emergence of life on Earth. The experimental and theoretical study of this phenomenon should be guided by our knowledge of the geochemistry of the habitable early Earth environments, which could have spanned a large range of settings. Adsorption being an interfacial phenomenon, experiments can be built around the minerals that probably exhibited the largest specific surface areas and were the most abundant, i.e., phyllosilicates. Our current work aims at understanding how nucleotides, the building blocks of RNA and DNA, might have interacted with phyllosilicates under various physico-chemical conditions. We carried out and refined batch adsorption studies to explore parameters such as temperature, pH, salinity, etc. We built a comprehensive, generalized model of the adsorption mechanisms of nucleotides onto phyllosilicate particles, mainly governed by phosphate reactivity. More recently, we used surface chemistry and geochemistry techniques, such as vibrational spectroscopy, low pressure gas adsorption, X-ray microscopy, and theoretical simulations, in order to acquire direct data on the adsorption configurations and localization of nucleotides on mineral surfaces. Although some of these techniques proved to be challenging, questioning our ability to easily detect biosignatures, they confirmed and complemented our pre-established model.
Collapse
|
9
|
Villafañe-Barajas SA, Baú JPT, Colín-García M, Negrón-Mendoza A, Heredia-Barbero A, Pi-Puig T, Zaia DAM. Salinity Effects on the Adsorption of Nucleic Acid Compounds on Na-Montmorillonite: a Prebiotic Chemistry Experiment. ORIGINS LIFE EVOL B 2018; 48:181-200. [PMID: 29392543 DOI: 10.1007/s11084-018-9554-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.
Collapse
Affiliation(s)
- Saúl A Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México.
| | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Alejandro Heredia-Barbero
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Teresa Pi-Puig
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
10
|
Gujjari A, Rodriguez BV, Pescador J, Maeder C, Beall GW, Lewis LK. Factors affecting the association of single- and double-stranded RNAs with montmorillonite nanoclays. Int J Biol Macromol 2018; 109:551-559. [PMID: 29277420 PMCID: PMC6247799 DOI: 10.1016/j.ijbiomac.2017.12.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Montmorillonite (MMT) nanoclays exist as single and stacked sheet-like structures with large surface areas that can form stable associations with many naturally occurring biomolecules, including nucleic acids. They have been utilized successfully as vehicles for delivery of both drugs and genes into cells. Most previous studies have focused on interactions of MMT with DNA. In the current study, we have investigated the binding of small RNAs similar to those used for RNA interference (RNAi) therapy to two major forms of the clay, Na-MMT and Ca-MMT. Association of both forms of MMT with several double-stranded RNAs (dsRNAs), including 25mers, 54mers and cloverleaf-shaped transfer RNAs, was weak and increased only slightly after addition of Mg2+ ions to the binding reactions. By contrast, ssRNA 25mers and 54mers bound poorly to Na-MMT but interacted strongly with Ca-MMT. The weak binding of ssRNAs to Na-MMT could be strongly enhanced by addition of Mg2+ ions. The strength of MMT-ssRNA interactions was also examined using inorganic anion competition and displacement assays, as well as electrophoretic mobility shift assays (EMSAs). The aggregate results point to a cation-bridging mechanism for binding of ssRNAs, but not dsRNAs, in the presence of divalent metal cations.
Collapse
Affiliation(s)
- Archana Gujjari
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States
| | - Blanca V Rodriguez
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States
| | - Jorge Pescador
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States
| | - Corina Maeder
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, TX, 78212, United States
| | - Gary W Beall
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States
| | - L Kevin Lewis
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, United States.
| |
Collapse
|
11
|
Canhisares-Filho JE, Carneiro CEA, de Santana H, Urbano A, da Costa ACS, Zaia CTBV, Zaia DAM. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry. ASTROBIOLOGY 2015; 15:728-738. [PMID: 26393397 DOI: 10.1089/ast.2015.1309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Minerals could have played an important role in concentration, protection, and polymerization of biomolecules. Although iron is the fourth most abundant element in Earth's crust, there are few works in the literature that describe the use of iron oxide-hydroxide in prebiotic chemistry experiments. In the present work, the interaction of adenine, thymine, and uracil with ferrihydrite was studied under conditions that resemble those of prebiotic Earth. At acidic pH, anions in artificial seawater decreased the pH at the point of zero charge (pHpzc) of ferrihydrite; and at basic pH, cations increased the pHpzc. The adsorption of nucleic acid bases onto ferrihydrite followed the order adenine >> uracil > thymine. Adenine adsorption peaked at neutral pH; however, for thymine and uracil, adsorption increased with increasing pH. Electrostatic interactions did not appear to play an important role on the adsorption of nucleic acid bases onto ferrihydrite. Adenine adsorption onto ferrihydrite was higher in distilled water compared to artificial seawater. After ferrihydrite was mixed with artificial seawaters or nucleic acid bases, X-ray diffractograms and Fourier transform infrared spectra did not show any change. Surface-enhanced Raman spectroscopy showed that the interaction of adenine with ferrihydrite was not pH-dependent. In contrast, the interactions of thymine and uracil with ferrihydrite were pH-dependent such that, at basic pH, thymine and uracil lay flat on the surface of ferrihydrite, and at acidic pH, thymine and uracil were perpendicular to the surface. Ferrihydrite adsorbed much more adenine than thymine; thus adenine would have been better protected against degradation by hydrolysis or UV radiation on prebiotic Earth.
Collapse
Affiliation(s)
- José E Canhisares-Filho
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Cristine E A Carneiro
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Henrique de Santana
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Alexandre Urbano
- 2 Departamento de Física-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Antonio C S da Costa
- 3 Departamento de Agronomia-CCA, Universidade Estadual de Maringá , Maringá-PR, Brazil
| | - Cássia T B V Zaia
- 4 Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Dimas A M Zaia
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| |
Collapse
|
12
|
Anizelli PR, Baú JPT, Gomes FP, da Costa ACS, Carneiro CEA, Zaia CTBV, Zaia DAM. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite. ORIGINS LIFE EVOL B 2015; 45:289-306. [PMID: 25754589 DOI: 10.1007/s11084-015-9401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/22/2014] [Indexed: 11/30/2022]
Abstract
There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.
Collapse
Affiliation(s)
- Pedro R Anizelli
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Hashizume H. Adsorption of nucleic Acid bases, ribose, and phosphate by some clay minerals. Life (Basel) 2015; 5:637-50. [PMID: 25734235 PMCID: PMC4390872 DOI: 10.3390/life5010637] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the "RNA world". The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.
Collapse
Affiliation(s)
- Hideo Hashizume
- National Institute for Materials Science, Tsukuba 305-0044, Japan.
| |
Collapse
|
14
|
Ramírez Jiménez SI. The early Earth atmosphere and early life catalysts. Met Ions Life Sci 2014; 14:1-14. [PMID: 25416388 DOI: 10.1007/978-94-017-9269-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.
Collapse
Affiliation(s)
- Sandra Ignacia Ramírez Jiménez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad # 1001, Col. Chamilpa, Cuernavaca, 62209, Morelos, Mexico,
| |
Collapse
|
15
|
Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem Soc Rev 2012; 41:5526-65. [PMID: 22684046 DOI: 10.1039/c2cs35066a] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Life is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, and carbon). The transmissible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information, of living and non-living. The origin-of-life quest has long been split into several attitudes exemplified by the aphorisms "genetics-first" or "metabolism-first". Recently, the opposition between these approaches has been solved by more unitary theoretical and experimental frames taking into account energetic, evolutionary, proto-metabolic and environmental aspects. Nevertheless, a unitary and simple chemical frame is still needed that could afford both the precursors of the synthetic pathways eventually leading to RNA and to the key components of the central metabolic cycles, possibly connected with the synthesis of fatty acids. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, and were embedded under physical-chemical conditions favourable for the onset of both. The singleness of such a prebiotically productive chemical process would partake of Darwinian advantages over more complex fragmentary chemical systems. The prebiotic chemistry of formamide affords in a single and simple physical-chemical frame nucleic bases, acyclonucleosides, nucleotides, biogenic carboxylic acids, sugars, amino sugars, amino acids and condensing agents. Thus, we suggest the possibility that formamide could have jointly provided the main components for the onset of both (pre)genetic and (pre)metabolic processes. As a note of caution, we discuss the fact that these observations only indicate possible solutions at the level of organic substrates, not at the systemic chemical level.
Collapse
Affiliation(s)
- Raffaele Saladino
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | | | | | | | | |
Collapse
|
16
|
Baú JPT, Carneiro CEA, de Souza Junior IG, de Souza CMD, da Costa ACS, di Mauro E, Zaia CTBV, Coronas J, Casado C, de Santana H, Zaia DAM. Adsorption of adenine and thymine on zeolites: FT-IR and EPR spectroscopy and X-ray diffractometry and SEM studies. ORIGINS LIFE EVOL B 2012; 42:19-29. [PMID: 22011879 DOI: 10.1007/s11084-011-9246-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/27/2011] [Indexed: 11/29/2022]
Abstract
The interactions of adenine and thymine with and adsorption on zeolites were studied using different techniques. There were two main findings. First, as shown by X-ray diffractometry, thymine increased the decomposition of the zeolites (Y, ZSM-5) while adenine prevented it. Second, zeolite Y adsorbed almost the same amount of adenine and thymine, thus both nucleic acid bases could be protected from hydrolysis and UV radiation and could be available for molecular evolution. The X-ray diffractometry and SEM showed that artificial seawater almost dissolved zeolite A. The adsorption of adenine on ZSM-5 zeolite was higher than that of thymine (Student-Newman-Keuls test-SNK p<0.05). Adenine was also more greatly adsorbed on ZSM-5 zeolite, when compared to other zeolites (SNK p<0.05). However the adsorption of thymine on different zeolites was not statistically different (SNK p>0.05). The adsorption of adenine and thymine on zeolites did not depend on pore size or Si/Al ratio and it was not explained only by electrostatic forces; rather van der Waals interactions should also be considered.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mignon P, Sodupe M. Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite. Phys Chem Chem Phys 2012; 14:945-54. [DOI: 10.1039/c1cp22454a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Carneiro CEA, Berndt G, de Souza Junior IG, de Souza CMD, Paesano A, da Costa ACS, di Mauro E, de Santana H, Zaia CTBV, Zaia DAM. Adsorption of adenine, cytosine, thymine, and uracil on sulfide-modified montmorillonite: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies. ORIGINS LIFE EVOL B 2011; 41:453-68. [PMID: 21717172 DOI: 10.1007/s11084-011-9244-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
In the present work the interactions of nucleic acid bases with and adsorption on clays were studied at two pHs (2.00, 7.00) using different techniques. As shown by Mössbauer and EPR spectroscopies and X-ray diffractometry, the most important finding of this work is that nucleic acid bases penetrate into the interlayer of the clays and oxidize Fe(2+) to Fe(3+), thus, this interaction cannot be regarded as a simple physical adsorption. For the two pHs the order of the adsorption of nucleic acid bases on the clays was: adenine ≈ cytosine > thymine > uracil. The adsorption of adenine and cytosine on clays increased with decreasing of the pH. For unaltered montmorillonite this result could be explained by electrostatic forces between adenine/cytosine positively charged and clay negatively charged. However for montmorillonite modified with Na(2)S, probably van der Waals forces also play an important role since both adenine/cytosine and clay were positively charged. FT-IR spectra showed that the interaction between nucleic acid bases and clays was through NH(+) or NH (2) (+) groups. X-ray diffractograms showed that nucleic acid bases adsorbed on clays were distributed into the interlayer surface, edge sites and external surface functional groups (aluminol, silanol) EPR spectra showed that the intensity of the line g ≈ 2 increased probably because the oxidation of Fe(2+) to Fe(3+) by nucleic acid bases and intensity of the line g = 4.1 increased due to the interaction of Fe(3+) with nucleic acid bases. Mössbauer spectra showed a large decreased on the Fe(2+) doublet area of the clays due to the reaction of nucleic acid bases with Fe(2+).
Collapse
Affiliation(s)
- Cristine E A Carneiro
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu M, Wang J, Mura M, Meng QQ, Xu W, Gersen H, Lægsgaard E, Stensgaard I, Kelly REA, Kjems J, Linderoth TR, Kantorovich LN, Besenbacher F. Homochiral xanthine quintet networks self-assembled on Au(111) surfaces. ACS NANO 2011; 5:6651-6660. [PMID: 21749154 DOI: 10.1021/nn202157m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Xanthine molecule is an intermediate in nucleic acid degradation from the deamination of guanine and is also a compound present in the ancient solar system that is found in high concentrations in extraterrestrial meteorites. The self-assembly of xanthine molecules on inorganic surfaces is therefore of interest for the study of biochemical processes, and it may also be relevant to the fundamental understanding of prebiotic biosynthesis. Using a combination of high-resolution scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, two new homochiral xanthine structures have been found on Au(111) under ultrahigh vacuum conditions. Xanthine molecules are found to be self-assembled into two extended homochiral networks tiled by two types of di-pentamer units and stabilized by intermolecular double hydrogen bonding. Our findings indicate that the deamination of guanine into xanthine leads to a very different base pairing potential and the chemical properties of the base which may be of relevance to the function of the cell and potential development of human diseases. Moreover, the adsorption of xanthine molecules on inorganic surfaces leading to homochiral assemblies may be of interest for the fundamental understanding of the emerged chirality at early stages of life.
Collapse
Affiliation(s)
- Miao Yu
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Michalkova A, Robinson TL, Leszczynski J. Adsorption of thymine and uracil on 1:1 clay mineral surfaces: comprehensive ab initio study on influence of sodium cation and water. Phys Chem Chem Phys 2011; 13:7862-81. [PMID: 21437301 DOI: 10.1039/c1cp00008j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This computational study performed using the density functional theory shows that hydrated and non-hydrated tetrahedral and octahedral kaolinite mineral surfaces in the presence of a cation adsorb the nucleic acid bases thymine and uracil well. Differences in the structure and chemistry of specific clay mineral surfaces led to a variety of DNA bases adsorption mechanisms. The energetically most predisposed positions for an adsorbate molecule on the mineral surface were revealed. The target molecule binding with the surface can be characterized as physisorption, which occurs mainly due to a cation-molecular oxygen interaction, with hydrogen bonds providing an additional stabilization. The adsorption strength is proportional to the number of intermolecular interactions formed between the target molecule and the surface. From the Atoms in Molecules analysis and comparison of binding energy values of studied systems it is concluded that the sorption activity of kaolinite minerals for thymine and uracil depends on various factors, among which are the structure and accessibility of the organic compounds. The adsorption is governed mostly by the surface type, its properties and presence of cation, which cause a selective binding of the nucleobase. Adsorbate stabilization on the mineral surface increases only slightly with explicit addition of water. Comparison of activity of different studied kaolinite mineral models reveals the following order for stabilization: octahedral-Na-water > octahedral-Na > tetrahedral-Na > tetrahedral-Na-water. Further investigation of the electrostatic potentials helps understanding of the adsorption process and confirmation of the active sites on the kaolinite mineral surfaces. Based on the conclusions that clay mineral affinity for DNA and RNA bases can vary due to different structural and chemical properties of the surface, a hypothesis on possible role of clays in the origin of life was made.
Collapse
Affiliation(s)
- A Michalkova
- Interdisciplinary Nanotoxicity Center, Department of Chemistry, Jackson State University, Jackson, MS 39217, USA
| | | | | |
Collapse
|
21
|
Al-Rajab AJ, Sabourin L, Chapman R, Lapen DR, Topp E. Fate of the antiretroviral drug tenofovir in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5559-5564. [PMID: 20800877 DOI: 10.1016/j.scitotenv.2010.07.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/06/2010] [Accepted: 07/28/2010] [Indexed: 05/29/2023]
Abstract
Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-(14)C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT(50)s ranging from 24±2 to 67+22days (first order kinetic model) or 44+9 to 127+55days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4°C to 30°C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-(14)C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.
Collapse
|
22
|
Hatton B, Rickard D. Nucleic acids bind to nanoparticulate iron (II) monosulphide in aqueous solutions. ORIGINS LIFE EVOL B 2008; 38:257-70. [PMID: 18409029 DOI: 10.1007/s11084-008-9132-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/22/2008] [Indexed: 11/27/2022]
Abstract
In the hydrothermal FeS-world origin of life scenarios nucleic acids are suggested to bind to iron (II) monosulphide precipitated from the reaction between hydrothermal sulphidic vent solutions and iron-bearing oceanic water. In lower temperature systems, the first precipitate from this process is nanoparticulate, metastable FeSm with a mackinawite structure. Although the interactions between bulk crystalline iron sulphide minerals and nucleic acids have been reported, their reaction with nanoparticulate FeSm has not previously been investigated. We investigated the binding of different nucleic acids, and their constituents, to freshly precipitated, nanoparticulate FeSm. The degree to which the organic molecules interacted with FeSm is chromosomal DNA > RNA > oligomeric DNA > deoxadenosine monophosphate approximately deoxyadenosine approximately adenine. Although we found that FeSm does not fluoresce within the visible spectrum and there is no quantum confinement effect seen in the absorption, the mechanism of linkage of the FeSm to these biomolecules appears to be primarily electrostatic and similar to that found for the attachment of ZnS quantum dots. The results of a preliminary study of similar reactions with nanoparticulate CuS further supported the suggestion that the interaction mechanism was generic for nanoparticulate transition metal sulphides. In terms of the FeS-world hypothesis, the results of this study further support the idea that sulphide minerals precipitated at hydrothermal vents interact with biomolecules and could have assisted in the formation and polymerisation of nucleic acids.
Collapse
Affiliation(s)
- Bryan Hatton
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, CF10 3YE, UK.
| | | |
Collapse
|
23
|
Adsorption of nucleic acid bases on clays: an investigation using Langmuir and Freundlich isotherms and FT-IR spectroscopy. MONATSHEFTE FUR CHEMIE 2008. [DOI: 10.1007/s00706-008-0862-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Ciciriello F, Costanzo G, Pino S, Crestini C, Saladino R, Di Mauro E. Molecular complexity favors the evolution of ribopolymers. Biochemistry 2008; 47:2732-42. [PMID: 18220362 DOI: 10.1021/bi7021014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have explored the stability of selected ribo oligomers in water and have determined the physical-chemical conditions in which the key 3'-phosphoester bond is more stable when embedded in the polymer than when present in the monomer. In these conditions, the spontaneous formation and the survival of ribo polymers are potentially favored. A narrow pH range was identified in which complex sequences resist degradation markedly more than monotonous ones, thus potentially favoring the evolution of sequence-based genetic information. Given that the founding property of a polymer is to maintain its polymeric form and its sequence information, these findings support the view that the evolution of pregenetic molecular information occurred based on intrinsic properties of nucleic polymers.
Collapse
Affiliation(s)
- Fabiana Ciciriello
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma Sapienza, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Costanzo G, Saladino R, Crestini C, Ciciriello F, Di Mauro E. Nucleoside phosphorylation by phosphate minerals. J Biol Chem 2007; 282:16729-35. [PMID: 17412692 DOI: 10.1074/jbc.m611346200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.
Collapse
Affiliation(s)
- Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pizalle Aldo Moro, 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
26
|
Abstract
Recent studies support an earlier suggestion that, if adenine was formed prebiotically on the primitive earth, eutectic freezing of hydrogen cyanide solutions is likely to have been important. Here we revisit the suggestion that the synthesis of adenine may have involved the photochemical conversion of the tetramer of hydrogen cyanide in eutectic solution to 4-amino-5-cyano-imidazole. This would make possible a reaction sequence that does not require the presence of free ammonia. It is further suggested that the reaction of cyanoacetylene with cyanate in eutectic solution to give cytosine might have proceeded in parallel with adenine synthesis.
Collapse
Affiliation(s)
- Leslie E Orgel
- The Salk Institute for Biological Studies, San Diego, CA, USA.
| |
Collapse
|
27
|
El Amri C, Baron MH, Maurel MC. Adenine and RNA in mineral samples. Surface-enhanced Raman spectroscopy (SERS) for picomole detections. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:2645-2654. [PMID: 12963461 DOI: 10.1016/s1386-1425(03)00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Studies on the interactions of biological macromolecules with mineral surfaces are crucial for the detecting biomarkers. But before this can be done for real samples like rocks or sediments, rational methods based on mineral models plus known amounts of nucleic acids must be developed. The methods must be very sensitive, as the amount of bound macromolecule may be very small. Surface-enhanced Raman spectroscopy (SERS) is perfect for detecting picomolar amounts of nucleic acid materials. In this study, the models used were adenine and GAAA hairpin for nucleic acids materials and a clay (montmorillonite) plus colloidal silver (used for SERS detection) for mineral supports. We have shown that OH(-) anions compete with adenine and the adenyl residues in the GAAA loop for adsorption onto nano-sized silver particles in basic medium. The GAAA adenyl moieties are less well adsorbed onto either clay or silver than is adenine. Also, the transfer of either adenine or the RNA hairpin from the clay to the silver aggregates is pH-dependent. Contact between adenine and the montmorillonite also seems to disperse adenine aggregates. The clay could also increase the flexibility of the RNA hairpin so that it is released from the clay at pH 10, and the affinity of its adenyl moieties for the metallic substrate is enhanced.
Collapse
Affiliation(s)
- Chahrazade El Amri
- Laboratoire de Biochimie de l'Evolution et Adaptabilité Moléculaire, Institut Jacques Monod, Université Paris-6, tour 43, 2, place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
28
|
Abstract
The hypothesis that life originated and evolved from linear informational molecules capable of facilitating their own catalytic replication is deeply entrenched. However, widespread acceptance of this paradigm seems oblivious to a lack of direct experimental support. Here, we outline the fundamental objections to the de novo appearance of linear, self-replicating polymers and examine an alternative hypothesis of template-directed coding of peptide catalysts by adsorbed purine bases. The bases (which encode biological information in modern nucleic acids) spontaneously self-organize into two-dimensional molecular solids adsorbed to the uncharged surfaces of crystalline minerals; their molecular arrangement is specified by hydrogen bonding rules between adjacent molecules and can possess the aperiodic complexity to encode putative protobiological information. The persistence of such information through self-reproduction, together with the capacity of adsorbed bases to exhibit enantiomorphism and effect amino acid discrimination, would seem to provide the necessary machinery for a primitive genetic coding mechanism.
Collapse
|
29
|
Abstract
The origins of life and nanotechnology are two seemingly disparate areas of scientific investigation. However, the fundamental questions of life's beginnings and the applied construction of a Drexlerian nanotechnology both share a similar problem; how did and how can self-reproducing molecular machines originate? Here we draw attention to the coincidence between nanotechnology and origins research with particular attention paid to the spontaneous adsorption and scanning tunneling microscopy investigation of purine and pyrimidine bases self-organized into monolayers, adsorbed to the surfaces of crystalline solids. These molecules which encode biological information in nucleic acids, can form supramolecular architectures exhibiting enantiomorphism with the complexity to store and encode putative protobiological information. We conclude that the application of nanotechnology to the investigation of life's origins, and vice versa, could provide a viable route to an evolution-driven synthetic life.
Collapse
Affiliation(s)
- S J Sowerby
- Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Sowerby SJ, Cohn CA, Heckl WM, Holm NG. Differential adsorption of nucleic acid bases: Relevance to the origin of life. Proc Natl Acad Sci U S A 2001; 98:820-2. [PMID: 11158553 PMCID: PMC14666 DOI: 10.1073/pnas.98.3.820] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adsorption of organic molecules onto the surfaces of inorganic solids has long been considered a process relevant to the origin of life. We have determined the equilibrium adsorption isotherms for the nucleic acid purine and pyrimidine bases dissolved in water on the surface of crystalline graphite. The markedly different adsorption behavior of the bases describes an elutropic series: guanine > adenine > hypoxanthine > thymine > cytosine > uracil. We propose that such differential properties were relevant to the prebiotic chemistry of the bases and may have influenced the composition of the primordial genetic architecture.
Collapse
Affiliation(s)
- S J Sowerby
- Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Abstract
Equilibrium adsorption isotherms for the purine base adenine on the surface of graphite crystals have been obtained at 30, 40, 50, and 60 degrees C by frontal analysis using water as a mobile phase. These data were fitted to the Langmuir isotherm model and interpreted in terms of the well-characterized adsorbate monolayer structure. A van't Hoff plot was used to estimate the adsorption enthalpy, -delta H degree which we determined to be 20 kJ mol-1. The susceptibility of nucleic acid bases to aqueous-phase hydrolysis may have been a limiting feature for their inclusion in the primordial genetic architecture; our results suggest that the effects of temperature and the presence of inorganic solids must also be included when assessing the prebiotic availability of adenine.
Collapse
Affiliation(s)
- S J Sowerby
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Abstract
Equilibrium adsorption isotherm data for the purine base adenine has been obtained on several prebiotically relevant minerals by frontal analysis using water as a mobile phase. Adenine is far displaced toward adsorption on pyrite (FeS2), quartz (SiO2), and pyrrhotite (FeS), but somewhat less for magnetite (Fe3O4) and forsterite (Mg2SiO4). The prebiotic prevalence of these minerals would have allowed them to act as a sink for adenine; removal from the aqueous phase would confer protection from hydrolysis as well, establishing a nonequilibrium thermodynamic framework for increased adenine synthesis. Our results provide evidence that adsorption phenomena may have been critical for the primordial genetic architecture.
Collapse
Affiliation(s)
- C A Cohn
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Sowerby SJ, Petersen GB. Scanning tunnelling microscopy and molecular modelling of xanthine monolayers self-assembled at the solid-liquid interface: relevance to the origin of life. ORIGINS LIFE EVOL B 1999; 29:597-614. [PMID: 10666743 DOI: 10.1023/a:1006619915681] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of scanning tunnelling microscopy (STM) has allowed examination of inorganic crystalline surfaces and their interactions with organic adsorbates with unparalleled resolution. As a novel technique in origin of life studies, the application of STM is detailed with particular attention paid to the methods employed in the analysis of organic monolayer structures. STM imaging and molecular modelling of self-assembled monolayers of the purine base, xanthine, formed on the surfaces of graphite and molybdenum disulfide are presented as an example. The putative role of such structures in the origin of life is discussed.
Collapse
Affiliation(s)
- S J Sowerby
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
34
|
Reimann R, Zubay G. Nucleoside phosphorylation: a feasible step in the prebiotic pathway to RNA. ORIGINS LIFE EVOL B 1999; 29:229-47. [PMID: 10465714 DOI: 10.1023/a:1006580009791] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plausible prebiotic conditions for the phosphorylation of nucleosides by inorganic phosphate were reported by Lohrmann and Orgel in 1971. This reaction was carried out on heated dry films and promoted by urea. The major products formed were nucleoside-2:3 cyclicPs;5-NMPs and other derivatives were also formed. Minor modifications of the Lohrmann and Orgel system have resulted in the preferential formation of 5-NMPs. In this modified system a 2-fold preference for phosphorylation of the 5-OH group over the 3(2)-OH group was observed and the formation of other derivatives was minimized. The small amounts of bis compounds that were formed in this system could be quantitatively removed by selective binding to the mineral hydroxylapatite at moderate ionic strengths. It was also discovered that under hydrolytic conditions there was a 3:1 preference for removal of phosphates attached to the 3-OH group over the 5-OH group. A recycling procedure for obtaining additonal 5-NMPs from bis compounds and 3-NMPs is proposed.
Collapse
Affiliation(s)
- R Reimann
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
35
|
Sowerby SJ, Heckl WM. The role of self-assembled monolayers of the purine and pyrimidine bases in the emergence of life. ORIGINS LIFE EVOL B 1998; 28:283-310. [PMID: 9611768 DOI: 10.1023/a:1006570726326] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The experimental evidence for the spontaneous formation and structure determination of two-dimensional monolayers of the purine and pyrimidine bases is examined. The plausibility of such structures forming spontaneously at the solid-liquid interface following their prebiotic synthesis suggests a functional role for them in the emergence of life. It is proposed that prebiotic interactions of enantiomorphic monolayers of mixed base composition with racemic amino acids might be implicated in a simultaneous origin of a primitive genetic coding mechanism and biomolecular homochirality. The interactions of these monolayers with carbohydrates and other derivatives is also discussed.
Collapse
Affiliation(s)
- S J Sowerby
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
36
|
Smith JV. Biochemical evolution. I. Polymerization On internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proc Natl Acad Sci U S A 1998; 95:3370-5. [PMID: 9520372 PMCID: PMC19842 DOI: 10.1073/pnas.95.7.3370] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.
Collapse
Affiliation(s)
- J V Smith
- Department of Geophysical Sciences and Center for Advanced Radiation Sources, 5734 S. Ellis Avenue, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|