1
|
Laothamatas J, Wacharapluesadee S, Lumlertdacha B, Ampawong S, Tepsumethanon V, Shuangshoti S, Phumesin P, Asavaphatiboon S, Worapruekjaru L, Avihingsanon Y, Israsena N, Lafon M, Wilde H, Hemachudha T. Furious and paralytic rabies of canine origin: neuroimaging with virological and cytokine studies. J Neurovirol 2008; 14:119-29. [PMID: 18444083 DOI: 10.1080/13550280701883857] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Furious and paralytic rabies differ in clinical manifestations and survival periods. The authors studied magnetic resonance imaging (MRI) and cytokine and virus distribution in rabies-infected dogs of both clinical types. MRI examination of the brain and upper spinal cord was performed in two furious and two paralytic dogs during the early clinical stage. Rabies viral nucleoprotein RNA and 18 cytokine mRNAs at 12 different brain regions were studied. Rabies viral RNA was examined in four furious and four paralytic dogs during the early stage, and in one each during the late stage. Cytokine mRNAs were examined in two furious and two paralytic dogs during the early stage and in one each during the late stage. Larger quantities of rabies viral RNA were found in the brains of furious than in paralytic dogs. Interleukin-1beta and interferon-gamma mRNAs were found exclusively in the brains of paralytic dogs during the early stage. Abnormal hypersignal T2 changes were found at hippocampus, hypothalamus, brainstem, and spinal cord of paralytic dogs. More widespread changes of less intensity were seen in furious dog brains. During the late stage of infection, brains from furious and paralytic rabid dogs were similarly infected and there were less detectable cytokine mRNAs. These results suggest that the early stage of furious dog rabies is characterized by a moderate inflammation (as indicated by MRI lesions and brain cytokine detection) and a severe virus neuroinvasiveness. Paralytic rabies is characterized by delayed viral neuroinvasion and a more intense inflammation than furious rabies. Dogs may be a good model for study of the host inflammatory responses that may modulate rabies virus neuroinvasiveness.
Collapse
Affiliation(s)
- Jiraporn Laothamatas
- Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Megid J, Appolinario CM, Mazzini AM, Almeida MF. Evaluation of cytokines concentration and percentage of survival of rabies virus-infected mice submitted to anti-rabies Vero-cell propagated vaccine and P. acnes. Vet Immunol Immunopathol 2006; 114:192-6. [PMID: 16930720 DOI: 10.1016/j.vetimm.2006.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
Previously, survival of rabies infection was shown to correlate with low IL-6 serum concentration in mice subjected to post-exposure treatment with the Fuenzalida Palacios rabies vaccine in conjunction with the immunomodulator Propionibacterium acnes, previously Corynebacterium parvum. Considering the substitution of the Fuenzalida Palacios rabies vaccine by the Vero cell raised anti-rabies vaccine in almost all countries, the objective of this work was to evaluate the survival and cytokine serum concentration of rabies virus-infected mice treated with P. acnes in conjunction with or the anti-rabies-VERO vaccine. For this, Swiss mice were experimentally infected with street rabies virus and subjected to vaccine and/or P. acnes following infection. Animals were killed at different times and serum was collected to evaluate cytokines. The greatest survival was observed in animals given one or two does of P. acnes in the absence of vaccination. Animals given anti-rabies VERO vaccine alone or with three doses of P. acnes had the second highest survival rate. The group that had the highest percentage of mortality also had the highest IL-6 concentration on the 10th day, a time correlating with clinical symptoms of the animals. The results reinforce the inefficacy of anti-rabies vaccine in only one dose as a post-exposure treatment irrespective of the type of vaccine used, the immunomodulation activity of P. acnes in rabies post-exposure treatment and suggest a role for IL-6 in rabies virus pathogenesis.
Collapse
Affiliation(s)
- J Megid
- UNESP-School of Veterinary Medice and Animal Production, Department of Veterinary Hygiene and Public Health, Botucatu-SP, Brazil.
| | | | | | | |
Collapse
|
3
|
Juntrakul S, Ruangvejvorachai P, Shuangshoti S, Wacharapluesadee S, Hemachudha T. Mechanisms of escape phenomenon of spinal cord and brainstem in human rabies. BMC Infect Dis 2005; 5:104. [PMID: 16288653 PMCID: PMC1310615 DOI: 10.1186/1471-2334-5-104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/16/2005] [Indexed: 02/08/2023] Open
Abstract
Background Rabies virus preferentially involves brainstem, thalamus and spinal cord in human furious and paralytic rabies beginning in the early stage of illness. Nevertheless, rabies patient remains alert until the pre-terminal phase. Weakness of extremities develops only when furious rabies patient becomes comatose; whereas peripheral nerve dysfunction is responsible for weakness in paralytic rabies. Methods Evidence of apoptosis and mitochondrial outer membrane permeabilization in brain and spinal cord of 10 rabies patients was examined and these findings were correlated with the presence of rabies virus antigen. Results Although apoptosis was evident in most of the regions, cytochrome c leakage was relatively absent in spinal cord of nearly all patients despite the abundant presence of rabies virus antigen. Such finding was also noted in brainstem of 5 patients. Conclusion Cell death in human rabies may be delayed in spinal cord and the reticular activating system, such as brainstem, thus explaining absence of weakness due to spinal cord dysfunction and preservation of consciousness.
Collapse
Affiliation(s)
- Sasiwimol Juntrakul
- Molecular Biology Laboratory for Neurological Diseases, Department of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok, Thailand
| | | | - Shanop Shuangshoti
- Department of Pathology, Chulalongkorn University Hosital, Rama 4 Road, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Molecular Biology Laboratory for Neurological Diseases, Department of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok, Thailand
| | - Thiravat Hemachudha
- Molecular Biology Laboratory for Neurological Diseases, Department of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok, Thailand
| |
Collapse
|
4
|
Megid J, Kaneno R, Nozaki CN, Brito CJC, Almeida MF. Increased interleukin-10 associated with low IL-6 concentration correlated with greater survival rates in mice infected by rabies virus vaccinated against it and immunomodulated with P. acnes. Comp Immunol Microbiol Infect Dis 2004; 27:393-411. [PMID: 15325513 DOI: 10.1016/j.cimid.2004.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2003] [Indexed: 11/20/2022]
Abstract
Macrophage activity, cytokines serum concentration, serum neutralizing antibodies and lethality by rabies were evaluated in swiss mice experimentally infected with street rabies virus and submitted or not to antirabies vaccination and immunomodulation with P. acnes. Animals were killed at different times and serum was collected in order to evaluate cytokines concentration; peritonial and splenic macrophages were collected for macrophage activity evaluation. Greater survival rates higher IL-10 and low IL-6 serum concentration were observed in vaccinated animals treated using P. acnes.
Collapse
Affiliation(s)
- J Megid
- Faculdade de Medicina Veterinária, Department of Veterinary Hygiene and Public Health, UNESP, Botucatu SP, Brazil.
| | | | | | | | | |
Collapse
|
5
|
Borsody MK, Weiss JM. The effects of endogenous interleukin-1 bioactivity on locus coeruleus neurons in response to bacterial and viral substances. Brain Res 2004; 1007:39-56. [PMID: 15064134 DOI: 10.1016/j.brainres.2004.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2004] [Indexed: 11/25/2022]
Abstract
In a previous study, we found that microinjection of the cytokine interleukin-1 (IL-1) into the locus coeruleus (LC) increased the electrophysiological activity of LC neurons. To determine if endogenous IL-1 similarly affects the LC, brain IL-1 was induced with lipopolysaccharide (LPS), a substance derived from Gram-negative bacteria. LPS microinjected directly into the LC increased the activity of LC neurons in anesthetized rats, and this effect was blocked by microinfusion of the IL-1 receptor antagonist (IL-1RA) protein into the LC indicating the involvement of IL-1 receptors. Similarly, intraperitoneal (i.p.) LPS injection increased the activity of LC neurons in a dose- and time-related manner that was sensitive to IL-1RA. The change in the activity of LC neurons caused by a single i.p. injection of LPS was surprisingly long-lasting, and evolved over a period of at least 3 weeks. Other microbial substances-namely, peptidoglycan from Gram-positive bacteria and poly-inosine/poly-cytosine (poly(I)/(C)), which resembles RNA viruses-were used to determine the generality of the findings with LPS. Both i.p. peptidoglycan and poly(I)/(C) increased LC activity but with lesser efficacy than LPS. IL-1RA reversed the increase in the activity of LC neurons caused by i.p. peptidoglycan treatment; however, that caused by i.p. Poly(I)/(C) was not diminished by IL-1RA. Thus, the increased activity of LC neurons caused by LPS and peptidoglycan requires IL-1 receptor binding, suggesting the involvement of endogenously-produced IL-1. In contrast, poly(I)/(C) increased the activity of LC neurons but this did not critically involve IL-1 receptors in the LC.
Collapse
Affiliation(s)
- Mark K Borsody
- Department of Psychiatry and Behavioral Sciences, Emory University Medical School, Emory West Campus, 1256 Briarcliff Road, N.E., Atlanta, GA 30306, USA.
| | | |
Collapse
|
6
|
Strazielle N, Khuth ST, Murat A, Chalon A, Giraudon P, Belin MF, Ghersi-Egea JF. Pro-Inflammatory Cytokines Modulate Matrix Metalloproteinase Secretion and Organic Anion Transport at the Blood-Cerebrospinal Fluid Barrier. J Neuropathol Exp Neurol 2003; 62:1254-64. [PMID: 14692701 DOI: 10.1093/jnen/62.12.1254] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation and neuroinfection trigger cytokine-mediated responses that include an increase in the cerebrospinal fluid (CSF) levels of pro-inflammatory matrix metalloproteinases (MMPs) and organic anions such as leukotrienes and prostaglandins. The choroid plexus (CP) epithelium forming the interface between the blood and the CSF regulates the CSF concentration of bioactive organic anions and is involved in neuro-immune regulation. We demonstrated that both fourth and lateral ventricle CPs are a source of pro- and active MMP-2 and MMP-9 in the brain. Using a cellular model of the blood-CSF barrier, we showed that a pro-inflammatory cytokine treatment leads to an increase in the choroidal MMP secretion at either the apical or the basolateral membrane, depending on the ventricular origin of the choroidal cells. This effect was not concomitant with an alteration in the structural blood-CSF barrier. Neither was the pool of antioxidant sulfhydryls in the choroidal cells challenged. In contrast, the efficiency of the choroidal epithelium to clear the CSF from organic anions was highly reduced. Thus, during inflammation, the CPs could be one source of MMPs found in the CSF facilitate leucocyte migration by secreting MMPs into the choroidal stroma, and promote the inflammatory process by failing in its ability to clear deleterious compounds from the brain.
Collapse
|
7
|
Lledó A, Borrell J, Guaza C. Dexamethasone regulation of interleukin-1-receptors in the hippocampus of Theiler's virus-infected mice: effects on virus-mediated demyelination. Eur J Pharmacol 1999; 372:75-83. [PMID: 10374717 DOI: 10.1016/s0014-2999(99)00187-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intracerebral (i.c.) inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in immune-mediated demyelinating disease. Interleukin-1 receptors are expressed in the brain of mice, in particular in the hippocampus, and have been implicated in neuroimmunoendocrine interactions. In the present study we investigated the regulation of interleukin-1 receptors in the hippocampus of a susceptible (SJL/J) and a resistant (BALB/c) strain of mice infected with TMEV, at different time intervals of the disease. Our results show that interleukin-1 receptors in the hippocampus were decreased in TMEV-infected mice at early times post-infection (10 and 14 days p.i.). The reduction in interleukin-1 receptors only occurred in the susceptible strain of mice (SJL/J), whereas interleukin-1 binding in the hippocampus of TMEV-infected resistant mice (BALB/c) showed values similar to those in control animals. The TMEV-induced down-regulation of interleukin-1 receptors was secondary to a marked decrease in the affinity of the receptor (control: Kd = 10.5 pM; TMEV: Kd = 1.30 pM) accompanied by a decrease in receptor number (control: Bmax = 2.189 fmol/mg protein; TMEV: B max = 0.84 fmol/mg protein). We also investigated the effects of glucocorticoid treatment on the regulation of hippocampal interleukin-1 receptors of TMEV-infected mice. Dexamethasone treatment in the early phase (500 microg/kg or 1 mg/kg during days 5-10 p.i.) of the disease significantly reversed the deficits in hippocampal interleukin-1 receptors observed at 10 days p.i. in SJL/J mice, and suppressed neurological signs of demyelination. These results suggest that: (i) the reduction of interleukin-1 receptors may be a consequence, at least in part, of local production of interleukin-1 at early times during TMEV infection; (ii) interleukin-1 seems to be a critical factor for the susceptibility to TMEV-induced demyelination and (iii) the protective effect of dexamethasone appears to be related to its ability to reverse the reduction in interleukin-1 receptors during the early disease. These results suggest that interleukin-1 is a pivotal mediator in TMEV-induced demyelination.
Collapse
Affiliation(s)
- A Lledó
- Department of Neural Plasticity, Cajal Institute, CSIC, Madrid, Spain
| | | | | |
Collapse
|
8
|
Derrien M, Fields BN. Reovirus type 3 clone 9 increases interleukin-1alpha level in the brain of neonatal, but not adult, mice. Virology 1999; 257:35-44. [PMID: 10208918 DOI: 10.1006/viro.1999.9611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reovirus Type 3 clone 9 (T3C9)-induced lethal encephalitis is age dependent. We examined the effects of T3C9 inoculated into neonatal and adult mice by intracerebral, intramuscular, or peroral routes and the effect of lipopolysaccharide (LPS) on IL-1alpha levels in the blood and the brain. In parallel, we measured mice survival to T3C9 challenge, primary replication, and growth in and spread to the brain. The results show that T3C9 infection increased IL-1alpha only in the brain of neonatal mice, whereas LPS enhanced IL-1alpha in the brain and in the blood in both neonatal and adult mice. In neonatal mice, a T3C9-induced IL-1alpha increase coincided with viral replication-induced nervous tissue injury and preceded death. Anti-IL-1alpha antibody partially protected neonatal mice against T3C9 peroral challenge, further suggesting that this cytokine is involved in the mechanisms leading to lethal encephalitis. In adult mice, T3C9 was not lethal and did not modify IL-1alpha levels although it slowly replicated in nervous tissues when inoculated directly into the brain. Together, these results suggest that differences in nervous tissue response to T3C9 replication between newborn and adult mice could account in part for the age-dependent susceptibility to T3C9-induced lethal encephalitis.
Collapse
Affiliation(s)
- M Derrien
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts, 02115, USA.
| | | |
Collapse
|
9
|
Abstract
Cytokines are important partners in the bidirectional network interrelating the immune and the neuroendocrine systems. These substances and their specific receptors, initially thought to be exclusively present in the immune system, have recently been shown to be also expressed in the neuroendocrine system. Cytokines can modulate the responses of all endocrine axes by acting at both the central and the peripheral levels. To explain how systemic cytokines may gain access to the brain, several mechanisms have been proposed, including an active transport through the blood-brain barrier, a passage at the circumventricular organ level, as well as a neuronal pathway through the vagal nerve. The immune-neuroendocrine interactions are involved in numerous physiological and pathophysiological conditions and seem to play an important role to maintain homeostasis.
Collapse
Affiliation(s)
- R C Gaillard
- Division of Endocrinology and Metabolism, University Hospital (CHUV), Lausanne/Switzerland
| |
Collapse
|
10
|
Haour F, Jafarian-Tehrani M, Gabellec MM, Crumeyrolle-Arias M, Hu Y, Wick G, Ternynck T. Interleukin-1 receptor defect in autoimmune NZB mouse brain. Ann N Y Acad Sci 1998; 840:755-61. [PMID: 9629302 DOI: 10.1111/j.1749-6632.1998.tb09614.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-1 receptors (IL-1R type I and II) have been characterized in murine nervous structures (hippocampus and frontal cortex), in vascular structures (vessels, choroid plexus), and in the anterior pituitary. Because interleukin-1 (IL-1), injected or induced in the brain, is a powerful regulator of the stress axis and immune functions, it was of interest to investigate IL-1Rs and IL-1 in autoimmune mice. In control mice, bacterial lipopolysaccharide (LPS), administered i.p. or i.c.v., induces a sharp decrease in available brain IL-1 receptors, in spite of a moderate increase in mRNAs for both receptor types. This is concomitant with an increase in IL-1 alpha, beta, and ra mRNA. Ligand production clearly overcomes receptor turnover. In autoimmune mice (NZB and NZB/NZW F1), a strong defect in IL-1R (type I) is demonstrated in the dentate gyrus. This tissue-specific defect cannot be explained by increased occupancy by endogeneous ligands as for LPS-treated mice. The transmission of the defect is Mendelian and suggests the involvement of a single gene. However patterns of IL-1R mRNAs (evaluated by RT-PCR) are similar in NZB and in controls, suggesting a translational or post-translational abnormality. The contribution of this genetic disorder in the development of autoimmunity remains to be clarified. Because the brain IL-1 system sends inhibitory signals towards immune functions, this lack of functional IL-1 binding sites might participate in the disregulations observed in NZB autoimmune mice.
Collapse
Affiliation(s)
- F Haour
- Pharmacologie Neuro-Immuno-Endocrinienne, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Marquette C, Van Dam AM, Ceccaldi PE, Weber P, Haour F, Tsiang H. Induction of immunoreactive interleukin-1 beta and tumor necrosis factor-alpha in the brains of rabies virus infected rats. J Neuroimmunol 1996; 68:45-51. [PMID: 8784259 DOI: 10.1016/0165-5728(96)00056-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF alpha) are important cytokines in the development of brain inflammation during pathological process. During rabies virus infection, the level of these proinflammatory cytokines are enhanced in the brain. In the present study we determined the cellular localization of these two cytokines by immunocytochemistry in brains of rats infected with rabies virus, at different time-intervals of the disease (day 1, 3, 4, 5 and at final stage day 6 post-infection (p.i.)). Cellular identification of IL-1 beta (irIL-1 beta) and TNF alpha (irTNF alpha) immunopositive cells was studied using a polyclonal antibody against these cytokines and against glial fibrillary acidic protein (GFAP) to detect astrocytes and GSA-I-B4 isolectin to detect microglial cells and/or infiltrating macrophages. In brains of control and early infected rats, irIL-1 beta was only detected in fibers located in the hypothalamus, supraoptic and tractus optic nuclei and infundibular nucleus. From day 4 onwards until day 6 p.i., enhanced irIL-1 beta was found and identified either in activated ameboid and/or infiltrated macrophages (amygdala, thalamus, internal capsula, subtantia nigra, septal nuclei and around blood vessels), or in activated ramified cells (hypothalamus and periventricular nucleus, piriformis and cingulate cortex, hippocampus). IrTNF alpha was observed in the brains of rats at a final stage of disease (day 5 and 6 p.i.): in the hypothalamus, the amygdala, the internal capsula, the thalamus, the septal nuclei, the hippocampus, the habenular nuclei and around the blood vessels. Ir-TNF alpha was detected in round cells identified as ameboid microglia and/or infiltrated macrophages. A marked activation of microglial and astroglial cells was observed mainly in the hypothalamus, the thalamus and hippocampus and around the blood vessels, at day 4 p.i. and later, revealing a high central inflammatory reaction in brains of rabies virus infected rats. These results showed that IL-1 beta and TNF alpha are produced in the brain both by local microglial cells and infiltrating macrophages during rabies infection. Thus, these cytokines may play an important role in coordinating the dramatic inflammatory response associated with the rabies-encephalopathy as well as in the neural modification and alteration of brain functions.
Collapse
Affiliation(s)
- C Marquette
- Rabies Unit, Pasteur Institute, Paris, France.
| | | | | | | | | | | |
Collapse
|