1
|
Laffy PW, Wood-Charlson EM, Turaev D, Weynberg KD, Botté ES, van Oppen MJH, Webster NS, Rattei T. HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts. Front Microbiol 2016; 7:822. [PMID: 27375564 PMCID: PMC4899465 DOI: 10.3389/fmicb.2016.00822] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Abundant bioinformatics resources are available for the study of complex microbial metagenomes, however their utility in viral metagenomics is limited. HoloVir is a robust and flexible data analysis pipeline that provides an optimized and validated workflow for taxonomic and functional characterization of viral metagenomes derived from invertebrate holobionts. Simulated viral metagenomes comprising varying levels of viral diversity and abundance were used to determine the optimal assembly and gene prediction strategy, and multiple sequence assembly methods and gene prediction tools were tested in order to optimize our analysis workflow. HoloVir performs pairwise comparisons of single read and predicted gene datasets against the viral RefSeq database to assign taxonomy and additional comparison to phage-specific and cellular markers is undertaken to support the taxonomic assignments and identify potential cellular contamination. Broad functional classification of the predicted genes is provided by assignment of COG microbial functional category classifications using EggNOG and higher resolution functional analysis is achieved by searching for enrichment of specific Swiss-Prot keywords within the viral metagenome. Application of HoloVir to viral metagenomes from the coral Pocillopora damicornis and the sponge Rhopaloeides odorabile demonstrated that HoloVir provides a valuable tool to characterize holobiont viral communities across species, environments, or experiments.
Collapse
Affiliation(s)
- Patrick W. Laffy
- Australian Institute of Marine ScienceTownsville, QLD, Australia
| | - Elisha M. Wood-Charlson
- Center for Microbial Oceanography: Research and Education, University of Hawai‘i at MānoaHonolulu, HI, USA
| | - Dmitrij Turaev
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | | | | | - Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsville, QLD, Australia
- School of Biosciences, University of MelbourneMelbourne, VIC, Australia
| | | | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| |
Collapse
|
2
|
Huang X, Huang Y, Xu L, Wei S, Ouyang Z, Feng J, Qin Q. Identification and characterization of a novel lymphocystis disease virus isolate from cultured grouper in China. JOURNAL OF FISH DISEASES 2015; 38:379-387. [PMID: 24720572 DOI: 10.1111/jfd.12244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
Grouper Epinephelus spp. is one of the most important mariculture fish species in China and South-East Asian countries. The emerging viral diseases, evoked by iridovirus which belongs to genus Megalocytivirus and Ranavirus, have been well characterized in recent years. To date, few data on lymphocystis disease in grouper which caused by lymphocystis disease virus (LCDV) were described. Here, a novel LCDV isolate was identified and characterized. Based on the sequence of LCDV major capsid protein (MCP) and DNA polymerase gene, we found that the causative agents from different species of diseased groupers were the same one and herein were uniformly defined as grouper LCDV (GLCDV). Furthermore, H&E staining revealed that the nodules on the skin were composed of giant cells that contained inclusion bodies in the cytoplasm. Numerous virus particles with >210 nm in diameter and with hexagonal profiles were observed in the cytoplasm. In addition, phylogenetic analysis based on four iridovirus core genes, MCP, DNA polymerase, myristoylated membrane protein (MMP) and ribonucleotide reductase (RNR), consistently showed that GLCDV was mostly related to LCDV-C, followed by LCDV-1. Taken together, our data firstly provided the molecular evidence that GLCDV was a novel emerging iridovirus pathogen in grouper culture.
Collapse
Affiliation(s)
- X Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Du YJ, Hou YL, Hou WR. Molecular characterization of a gene POLR2H encoded an essential subunit for RNA polymerase II from the Giant Panda (Ailuropoda Melanoleuca). Mol Biol Rep 2012; 40:1495-8. [PMID: 23070920 DOI: 10.1007/s11033-012-2192-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/09/2012] [Indexed: 11/24/2022]
Abstract
The Giant Panda is an endangered and valuable gene pool in genetic, its important functional gene POLR2H encodes an essential shared peptide H of RNA polymerases. The genomic DNA and cDNA sequences were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) adopting touchdown-PCR and reverse transcription polymerase chain reaction (RT-PCR), respectively. The length of the genomic sequence of the Giant Panda is 3,285 bp, including five exons and four introns. The cDNA fragment cloned is 509 bp in length, containing an open reading frame of 453 bp encoding 150 amino acids. Alignment analysis indicated that both the cDNA and its deduced amino acid sequence were highly conserved. Protein structure prediction showed that there was one protein kinase C phosphorylation site, four casein kinase II phosphorylation sites and one amidation site in the POLR2H protein, further shaping advanced protein structure. The cDNA cloned was expressed in Escherichia coli, which indicated that POLR2H fusion with the N-terminally His-tagged form brought about the accumulation of an expected 20.5 kDa polypeptide in line with the predicted protein. On the basis of what has already been achieved in this study, further deep-in research will be conducted, which has great value in theory and practical significance.
Collapse
Affiliation(s)
- Yu-Jie Du
- Biochemical Department, Basic Education College of Zhanjiang Normal University, 8# Cunjinsiheng Road, Zhanjiang, 524037, China.
| | | | | |
Collapse
|
4
|
Yutin N, Koonin EV. Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes. Virol J 2012; 9:161. [PMID: 22891861 PMCID: PMC3493329 DOI: 10.1186/1743-422x-9-161] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/08/2012] [Indexed: 11/27/2022] Open
Abstract
Background The Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) constitute an apparently monophyletic group that consists of at least 6 families of viruses infecting a broad variety of eukaryotic hosts. A comprehensive genome comparison and maximum-likelihood reconstruction of the NCLDV evolution revealed a set of approximately 50 conserved, core genes that could be mapped to the genome of the common ancestor of this class of eukaryotic viruses. Results We performed a detailed phylogenetic analysis of these core NCLDV genes and applied the constrained tree approach to show that the majority of the core genes are unlikely to be monophyletic. Several of the core genes have been independently acquired from different sources by different NCLDV lineages whereas for the majority of these genes displacement by homologs from cellular organisms in one or more groups of the NCLDV was demonstrated. Conclusions A detailed study of the evolution of the genomic core of the NCLDV reveals substantial complexity and diversity of evolutionary scenarios that was largely unsuspected previously. The phylogenetic coherence between the core genes is sufficient to validate the hypothesis on the evolution of all NCLDV from a common ancestral virus although the set of ancestral genes might be smaller than previously inferred from patterns of gene presence-absence.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
5
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0440-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Knutson BA, Broyles SS. Expansion of poxvirus RNA polymerase subunits sharing homology with corresponding subunits of RNA polymerase II. Virus Genes 2008; 36:307-11. [PMID: 18264749 DOI: 10.1007/s11262-008-0207-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/22/2008] [Indexed: 01/22/2023]
Abstract
Poxvirus-encoded RNA polymerases were known previously to share extensive sequence homology in their two largest subunits with the corresponding subunits of cellular RNA polymerases and a modest alignment between the smallest poxvirus subunit and RBP10 of RNA polymerase II. The remaining subunits had no apparent cellular homologs. In this study, the HHpred program that combines amino acid sequence alignments with secondary structure predictions was used to search for homologs to the poxvirus RNA polymerase subunits. Significant matches of vaccinia RNA polymerase 22-, 19-, and 18-kDa subunits to RNA polymerase II subunits RPB5, 6, and 7, respectively, were identified. These results strengthen the concept that poxviral RNA polymerases likely evolved from cellular RNA polymerases.
Collapse
Affiliation(s)
- Bruce A Knutson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA.
| | | |
Collapse
|
8
|
|
9
|
Jakob NJ, Darai G. Molecular anatomy of Chilo iridescent virus genome and the evolution of viral genes. Virus Genes 2002; 25:299-316. [PMID: 12881641 DOI: 10.1023/a:1020984210358] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chilo iridescent virus (CIV) or Insect iridescent virus 6 (IIV-6) is the type species of the genus iridovirus, a member of the Iridoviridae family. CIV is highly pathogenic for a variety of insect larvae and this implicates a possible use as a biological insecticide. CIV progeny and assembly occur in the cytoplasm of the infected cell and accumulate in the fatbody of the infected insects. Since the discovery of CIV in 1966, many attempts were made to elucidate the viral genome structure and the amino acid sequences of different viral gene products. The elucidation of the coding capacity and strategy of CIV was the first step towards understanding the underlying mechanisms of viral infection, replication and virus-host interaction. The virions contain a single linear ds DNA molecule that is circularly permuted and terminally redundant. The coding capacity of the CIV genome was determined by the analysis of the complete DNA nucleotide sequence consisting of 212,482 bp that represent 468 open reading frames encoding for polypeptides ranging from 40 to 2432 amino acid residues. The analysis of the coding capacity of the CIV genome revealed that 50% (234 ORFs) of all identified ORFs (468 ORFs) were non-overlapping. The identification of several putative viral gene products including a DNA ligase and a viral antibiotic peptide is a powerful tool for the investigation of the phylogenetic relatedness of this evolutionary and ecologically relevant eukaryotic virus.
Collapse
Affiliation(s)
- Nurith J Jakob
- Institut für Medizinische Virologie, Universität Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
10
|
Kazmierczak K, Davydova E, Mustaev A, Rothman-Denes L. The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 2002; 21:5815-23. [PMID: 12411499 PMCID: PMC131081 DOI: 10.1093/emboj/cdf584] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vitro, bacteriophage N4 virion RNA polymerase (vRNAP) recognizes in vivo sites of transcription initiation on single-stranded templates. N4 vRNAP promoters are comprised of a hairpin structure and conserved sequences. Here, we show that vRNAP consists of a single 3500 amino acid polypeptide, and we define and characterize a transcriptionally active 1106 amino acid domain (mini-vRNAP). Biochemical and genetic characterization of this domain indicates that, despite its peculiar promoter specificity and lack of extensive sequence similarity to other DNA-dependent RNA polymerases, mini-vRNAP is related to the family of T7-like RNA polymerases.
Collapse
Affiliation(s)
- K.M. Kazmierczak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| | - E.K. Davydova
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| | - A.A. Mustaev
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| | - L.B. Rothman-Denes
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| |
Collapse
|
11
|
Jakob NJ, Kleespies RG, Tidona CA, Müller K, Gelderblom HR, Darai G. Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. J Gen Virol 2002; 83:463-470. [PMID: 11807240 DOI: 10.1099/0022-1317-83-2-463] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The iridovirus isolate termed cricket iridovirus (CrIV) was isolated in 1996 from Gryllus campestris L. and Acheta domesticus L. (both Orthoptera, Gryllidae). CrIV DNA shows distinct DNA restriction patterns different from those known for Insect iridescent virus type 6 (IIV-6). This observation led to the assumption that CrIV might be a new species within the family Iridoviridae. CrIV can be transmitted perorally to orthopteran species, resulting in specific, fatal diseases. These species include Gryllus bimaculatus L. and the African migratory locust Locusta migratoria migratorioides (Orthoptera, Acrididae). Analysis of genomic and host range properties of this isolate was carried out in comparison to those known for IIV-6. Host range studies of CrIV and IIV-6 revealed no differences in the peroral susceptibility in all insect species and developmental stages tested to date. Different gene loci of the IIV-6 genome were analyzed, including the major capsid protein (274L), thymidylate synthase (225R), an exonuclease (012L), DNA polymerase (037L), ATPase (075L), DNA ligase (205R) and the open reading frame 339L, which is homologous to the immediate-early protein ICP-46 of frog virus 3. The average identity of the selected viral genes and their gene products was found to be 95.98 and 95.18% at the nucleotide and amino acid level, respectively. These data led to the conclusion that CrIV and IIV-6 are not different species within the Iridoviridae family and that CrIV must be considered to be a variant and/or a novel strain of IIV-6.
Collapse
Affiliation(s)
- N J Jakob
- Institute for Medical Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Federal Republic of Germany1
| | - R G Kleespies
- Federal Biological Research Center for Agriculture and Forestry, Institute for Biological Control, Heinrichstrasse 243, D-64287 Darmstadt, Federal Republic of Germany2
| | - C A Tidona
- Institute for Medical Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Federal Republic of Germany1
| | - K Müller
- Institute for Medical Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Federal Republic of Germany1
| | - H R Gelderblom
- Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Federal Republic of Germany3
| | - G Darai
- Institute for Medical Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Federal Republic of Germany1
| |
Collapse
|
12
|
Jakob NJ, Müller K, Bahr U, Darai G. Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 2001; 286:182-96. [PMID: 11448171 DOI: 10.1006/viro.2001.0963] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chilo iridescent virus (CIV), the type species of the genus Iridovirus, a member of the Iridoviridae family, is highly pathogenic for a variety of insect larvae. The virions contain a single linear ds DNA molecule that is circularly permuted and terminally redundant. The coding capacity and strategy of the CIV genome was elucidated by the analysis of the complete DNA nucleotide sequence of the viral genome (212,482 bp) using cycle sequencing by primer walking technology. Both DNA strands were sequenced independently and the average redundancy for each nucleotide was found to be 1.85. The base composition of the viral genomic DNA sequence was found to be 71.37% A+T and 28.63% G+C. The CIV genome contains 468 open reading frames (ORFs). The size of the individual viral gene products ranges between 40 and 2432 amino acids. The analysis of the coding capacity of the CIV genome revealed that 50% (234 ORFs) of all identified ORFs were nonoverlapping. The comparison of the deduced amino acid sequences to entries in protein data banks led to the identification of several genes with significant homologies, such as the two major subunits of the DNA-dependent RNA polymerase, DNA polymerase, protein kinase, thymidine and thymidylate kinase, thymidylate synthase, ribonucleoside-diphosphate reductase, major capsid protein, and others. The highest homologies were detected between putative viral gene products of CIV and lymphocystis disease virus of fish (LCDV). Although many CIV putative gene products showed significant homologies to the corresponding viral proteins of LCDV, no colinearity was detected when the coding strategies of the CIV and LCDV-1 were compared to each other. An intriguing result was the detection of a viral peptide of 53 amino acid residues (ORF 160L) showing high homology (identity/similarity: 60.0%/30.0%) to sillucin, an antibiotic peptide encoded by Rhizomucor pusillus. Iridovirus homologs of cellular genes possess particular implications for the molecular evolution of large DNA viruses.
Collapse
Affiliation(s)
- N J Jakob
- Institut für Medizinische Virologie, Universität Heidelberg, Im Neuenheimer Feld 324, Heidelberg, D-69120, Federal Republic of Germany
| | | | | | | |
Collapse
|