1
|
Wipf S, Mabey P, Urso RG, Wolf S, Stok A, Ricco AJ, Quinn RC, Mattioda AL, Jones NC, Hoffmann SV, Cottin H, Chaput D, Ehrenfreund P, Elsaesser A. Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station. ASTROBIOLOGY 2025; 25:97-114. [PMID: 39869065 DOI: 10.1089/ast.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Photochemistry on the Space Station (PSS) experiment was part of the European Space Agency's EXPOSE-R2 mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers. We tested pure alanine thin films, alanine thin films protected from direct UV exposure by a thin cover layer of montmorillonite, and an intimate combination of the two substances forming an organoclay. The samples were exposed to space conditions for 15.5 months and then returned to Earth for detailed analysis. Concurrent ground-control experiments subjected identical samples to simulated solar light irradiation. Fourier-transform infrared (FTIR) spectroscopy quantified molecular changes by comparing spectra obtained before and after exposure for both the space and ground-control samples. To more deeply understand the photochemical processes influencing the stability of irradiated alanine molecules, we performed an additional experiment using time-resolved FTIR spectroscopy for a second set of ground samples exposed to simulated solar light. Our collective experiments reveal that montmorillonite clay exhibits a dual, configuration-dependent effect on the stability of alanine: while a thin cover layer of the clay provides UV shielding that slows degradation, an intimate mixture of clay and amino acid hastens the photochemical decomposition of alanine by promoting certain chemical reactions. This observation is important to understand the preservation of amino acids in specific extraterrestrial environments, such as Mars: cover mineral layer depths of several millimeters are required to effectively shield organics from the harmful effects of UV radiation. We also explored the role of carbon dioxide (CO2), a byproduct of alanine photolysis, as a tracer of the amino acid. CO2 can be trapped within clay interlayers, particularly in clays with small interlayer ions such as sodium. Our studies emphasize the multifaceted interactions between montmorillonite clay and alanine under nonterrestrial conditions; thus, they contribute valuable insights to broader astrobiological research questions.
Collapse
Affiliation(s)
- Severin Wipf
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| | - Paul Mabey
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| | | | - Sebastian Wolf
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| | - Arthur Stok
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Nykola C Jones
- Department of Physics and Astronomy, ISA, Aarhus University, Aarhus, Denmark
| | - Søren V Hoffmann
- Department of Physics and Astronomy, ISA, Aarhus University, Aarhus, Denmark
| | - Hervé Cottin
- Univ Paris Est Creteil and Université Paris Cité, France
| | - Didier Chaput
- Centre Spatial de Toulouse, Centre National d'Etudes Spatiales (CNES), Toulouse cedex 9, France
| | - Pascale Ehrenfreund
- Space Policy Institute, George Washington University, Washington, District of Columbia, USA
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Andreas Elsaesser
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
2
|
Alberini A, Fornaro T, García-Florentino C, Biczysko M, Poblacion I, Aramendia J, Madariaga JM, Poggiali G, Vicente-Retortillo Á, Benison KC, Siljeström S, Biancalani S, Lorenz C, Cloutis EA, Applin DM, Gómez F, Steele A, Wiens RC, Hand KP, Brucato JR. Investigating the stability of aromatic carboxylic acids in hydrated magnesium sulfate under UV irradiation to assist detection of organics on Mars. Sci Rep 2024; 14:15945. [PMID: 38987581 PMCID: PMC11237158 DOI: 10.1038/s41598-024-66669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard the Mars 2020 Perseverance rover detected so far some of the most intense fluorescence signals in association with sulfates analyzing abraded patches of rocks at Jezero crater, Mars. To assess the plausibility of an organic origin of these signals, it is key to understand if organics can survive exposure to ambient Martian UV after exposure by the Perseverance abrasion tool and prior to analysis by SHERLOC. In this work, we investigated the stability of organo-sulfate assemblages under Martian-like UV irradiation and we observed that the spectroscopic features of phthalic and mellitic acid embedded into hydrated magnesium sulfate do not change for UV exposures corresponding to at least 48 Martian sols and, thus, should still be detectable in fluorescence when the SHERLOC analysis takes place, thanks to the photoprotective properties of magnesium sulfate. In addition, different photoproduct bands diagnostic of the parent carboxylic acid molecules could be observed. The photoprotective behavior of hydrated magnesium sulfate corroborates the hypothesis that sulfates might have played a key role in the preservation of organics on Mars, and that the fluorescence signals detected by SHERLOC in association with sulfates could potentially arise from organic compounds.
Collapse
Affiliation(s)
- Andrew Alberini
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy.
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, Sesto Fiorentino, 50019, Florence, Italy.
| | - Teresa Fornaro
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy.
| | - Cristina García-Florentino
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Malgorzata Biczysko
- College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Iratxe Poblacion
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Julene Aramendia
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Giovanni Poggiali
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- LESIA - Observatoire de Paris, CNRS, Université Paris Cité, Université PSL, Sorbonne Université, 5 Place Jules Janssen, 92190, Meudon, France
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
| | | | - Sole Biancalani
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo, Italy
- Italian Space Angency (ASI), Viale del Politecnico Snc, 00133, Rome, Italy
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy
| | - Christian Lorenz
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Edward A Cloutis
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Dan M Applin
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Felipe Gómez
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| | | | - Roger C Wiens
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - John R Brucato
- INAF- Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125, Firenze, Italy
| |
Collapse
|
3
|
Abstract
This work presents the first quantification of bulk organic carbon in Mars surface sedimentary rocks, enabled by a stepped combustion experiment performed by the Curiosity Rover in Gale crater, Mars. The mudstone sample analyzed by Curiosity represents a previously habitable lacustrine environment and a depositional environment favorable for preservation of organics formed in situ and/or transported from a wide catchment area. Here we present the abundance of bulk organic carbon in these mudstone samples and discuss the contributions from various carbon reservoirs on Mars. The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO2. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8‰) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO2 and CO (with estimated δ13C = −32.9‰ to −10.1‰ for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.
Collapse
|
4
|
Liu D, Kounaves SP. Degradation of Amino Acids on Mars by UV Irradiation in the Presence of Chloride and Oxychlorine Salts. ASTROBIOLOGY 2021; 21:793-801. [PMID: 33787313 DOI: 10.1089/ast.2020.2328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The degradation of glycine (Gly), proline (Pro), and tryptophan (Trp) was studied under simulated Mars conditions during UV-driven production of oxychlorines and compared under Mars ambient and humid conditions, as films, and with addition of sodium chloride (NaCl), sodium chlorate (NaClO3), and sodium perchlorate (NaClO4) salts. It was shown that glycine sustained no significant destruction in either of the non-salt samples under Mars ambient or humid conditions. However, its degradation increased in the presence of any of the three salts and under both conditions though more under humid conditions. Proline degradation followed the order No Salt > NaCl > NaClO3 > NaClO4 under Mars ambient conditions but the reverse order under Mars humid conditions. A mechanism is proposed to explain how water and silica participate in these degradation reactions and how it is strongly influenced by the identity of the salt and its ability to promote deliquescence. No difference was observed for tryptophan between Mars ambient and humid conditions, or for the different salts, suggesting its degradation mechanism is different compared to glycine and proline. The results reported here will help to better understand the survival of amino acids in the presence of oxychlorines and UV on Mars and thus provide new insights for the detection of organic compounds on future Mars missions.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Samuel P Kounaves
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
5
|
Rouquette L, Stalport F, Cottin H, Colas C, Georgelin T, Chaouche-Mechidal N, Lasne J, Mahfouf S, Raulin F, Selliez L, Szopa C, Coll P. Dimerization of Uracil in a Simulated Mars-like UV Radiation Environment. ASTROBIOLOGY 2020; 20:1363-1376. [PMID: 33179968 DOI: 10.1089/ast.2019.2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The search for organic molecules at the surface of Mars is a key objective in astrobiology, given that many organic compounds are possible biosignatures and their presence is of interest with regard to the habitability of Mars. Current environmental conditions at the martian surface are harsh and affect the stability of organic molecules. For this reason, and because current and future Mars rovers collect samples from the upper surface layer, it is important to assess the fate of organic molecules under the conditions at the martian surface. Here, we present an experimental study of the evolution of uracil when exposed to UV radiation, pressure, and temperature conditions representative of the surface of Mars. Uracil was selected because it is a nucleobase that composes RNA, and it has been detected in interplanetary bodies that could be the exogenous source of this molecule by meteoritic delivery to the surface of Mars. Our results show that the experimental quantum efficiency of photodecomposition of uracil is 0.16 ± 0.14 molecule/photon. Although these results suggest that uracil is quickly photodegraded when directly exposed to UV light on Mars, such exposure produces dimers that are more stable over time than the monomer. The identified dimers could be targets of interest for current and future Mars space missions.
Collapse
Affiliation(s)
- Laura Rouquette
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| | - Fabien Stalport
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| | - Hervé Cottin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans, France
- Centre de Biophysique Moléculaire (CBM), UPR CNRS 4301, Université d'Orléans, Orléans, France
| | - Thomas Georgelin
- Centre de Biophysique Moléculaire (CBM), UPR CNRS 4301, Université d'Orléans, Orléans, France
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Sorbonne Université, Paris, France
| | - Naïla Chaouche-Mechidal
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| | - Jerome Lasne
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| | - Sara Mahfouf
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| | - François Raulin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| | - Laura Selliez
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR CNRS7328, Université d'Orléans, Orléans Cedex, France
- Laboratoire atmosphères, milieux, observations spatiales, Institut Pierre Simon Laplace, UMR 8190, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Cyril Szopa
- Laboratoire atmosphères, milieux, observations spatiales, Institut Pierre Simon Laplace, UMR 8190, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
- Institut Universitaire de France, Paris, France
| | - Patrice Coll
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Creteil Cedex, France
| |
Collapse
|
6
|
Ang TN, Udugama IA, Mansouri SS, Taylor M, Burrell R, Young BR, Baroutian S. A techno-economic-societal assessment of recovery of waste volatile anaesthetics. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Mißbach H, Steininger H, Thiel V, Goetz W. Investigating the Effect of Perchlorate on Flight-like Gas Chromatography-Mass Spectrometry as Performed by MOMA on board the ExoMars 2020 Rover. ASTROBIOLOGY 2019; 19:1339-1352. [PMID: 31532228 DOI: 10.1089/ast.2018.1997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) instrument on board ESA's ExoMars 2020 rover will be essential in the search for organic matter. MOMA applies gas chromatography-mass spectrometry (GC-MS) techniques that rely on thermal volatilization. Problematically, perchlorates and chlorates in martian soils and rocks become highly reactive during heating (>200°C) and can lead to oxidation and chlorination of organic compounds, potentially rendering them unidentifiable. Here, we analyzed a synthetic sample (alkanols and alkanoic acids on silica gel) and a Silurian chert with and without Mg-perchlorate to evaluate the applicability of MOMA-like GC-MS techniques to different sample types and assess the impact of perchlorate. We used a MOMA flight analog system coupled to a commercial GC-MS to perform MOMA-like pyrolysis, in situ derivatization, and in situ thermochemolysis. We show that pyrolysis can provide a sufficient overview of the organic inventory but is strongly affected by the presence of perchlorates. In situ derivatization facilitates the identification of functionalized organics but showed low efficiency for n-alkanoic acids. Thermochemolysis is shown to be an effective technique for the identification of both refractory and functional compounds. Most importantly, this technique was barely affected by perchlorates. Therefore, MOMA GC-MS analyses of martian surface/subsurface material may be less affected by perchlorates than commonly thought, in particular when applying the full range of available MOMA GC-MS techniques.
Collapse
Affiliation(s)
- Helge Mißbach
- Geobiology, Geoscience Centre, University of Goettingen, Goettingen, Germany
- Max Planck Institute for Solar System Research, Goettingen, Germany
| | - Harald Steininger
- Max Planck Institute for Solar System Research, Goettingen, Germany
- OHB System AG, Weßling-Oberpfaffenhofen, Germany
| | - Volker Thiel
- Geobiology, Geoscience Centre, University of Goettingen, Goettingen, Germany
| | - Walter Goetz
- Max Planck Institute for Solar System Research, Goettingen, Germany
| |
Collapse
|
8
|
Fornaro T, Steele A, Brucato JR. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life (Basel) 2018; 8:life8040056. [PMID: 30400661 PMCID: PMC6315534 DOI: 10.3390/life8040056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022] Open
Abstract
Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between the "building blocks of life" and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms, often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.
Collapse
Affiliation(s)
- Teresa Fornaro
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - Andrew Steele
- Geophysical Laboratory of the Carnegie Institution for Science, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA.
| | - John Robert Brucato
- INAF-Astrophysical Observatory of Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy.
| |
Collapse
|
9
|
Olsson-Francis K, Ramkissoon NK, Price AB, Slade DJ, Macey MC, Pearson VK. The Study of Microbial Survival in Extraterrestrial Environments Using Low Earth Orbit and Ground-Based Experiments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Lasne J, Noblet A, Szopa C, Navarro-González R, Cabane M, Poch O, Stalport F, François P, Atreya SK, Coll P. Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results. ASTROBIOLOGY 2016; 16:977-996. [PMID: 27925795 DOI: 10.1089/ast.2016.1502] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 1976, the Viking landers carried out the most comprehensive search for organics and microbial life in the martian regolith. Their results indicate that Mars' surface is lifeless and, surprisingly, depleted in organics at part-per-billion levels. Several biology experiments on the Viking landers gave controversial results that have since been explained by the presence of oxidizing agents on the surface of Mars. These oxidants may degrade abiotic or biological organics, resulting in their nondetection in the regolith. As several exploration missions currently focus on the detection of organics on Mars (or will do so in the near future), knowledge of the oxidative state of the surface is fundamental. It will allow for determination of the capability of organics to survive on a geological timescale, the most favorable places to seek them, and the best methods to process the samples collected at the surface. With this aim, we review the main oxidants assumed to be present on Mars, their possible formation pathways, and those laboratory studies in which their reactivity with organics under Mars-like conditions has been evaluated. Among the oxidants assumed to be present on Mars, only four have been detected so far: perchlorate ions (ClO4-) in salts, hydrogen peroxide (H2O2) in the atmosphere, and clays and metal oxides composing surface minerals. Clays have been suggested as catalysts for the oxidation of organics but are treated as oxidants in the following to keep the structure of this article straightforward. This work provides an insight into the oxidizing potential of the surface of Mars and an estimate of the stability of organic matter in an oxidizing environment. Key Words: Mars surface-Astrobiology-Oxidant-Chemical reactions. Astrobiology 16, 977-996.
Collapse
Affiliation(s)
- J Lasne
- 1 LISA, Universités Paris-Est Créteil and Paris Diderot, Institut Pierre Simon Laplace , CNRS UMR 7583, Créteil, France
| | - A Noblet
- 1 LISA, Universités Paris-Est Créteil and Paris Diderot, Institut Pierre Simon Laplace , CNRS UMR 7583, Créteil, France
| | - C Szopa
- 2 LATMOS, UPMC Université Paris 06, Université Versailles St Quentin , CNRS, Guyancourt, France
| | - R Navarro-González
- 3 Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México , Ciudad de México, México
| | - M Cabane
- 2 LATMOS, UPMC Université Paris 06, Université Versailles St Quentin , CNRS, Guyancourt, France
| | - O Poch
- 1 LISA, Universités Paris-Est Créteil and Paris Diderot, Institut Pierre Simon Laplace , CNRS UMR 7583, Créteil, France
- 4 NCCR PlanetS, Physikalisches Institut, Universität Bern , Bern, Switzerland
| | - F Stalport
- 1 LISA, Universités Paris-Est Créteil and Paris Diderot, Institut Pierre Simon Laplace , CNRS UMR 7583, Créteil, France
| | - P François
- 1 LISA, Universités Paris-Est Créteil and Paris Diderot, Institut Pierre Simon Laplace , CNRS UMR 7583, Créteil, France
- 5 IC2MP, Equipe Eau Géochimie Santé, Université de Poitiers , CNRS UMR 7285, Poitiers, France
| | - S K Atreya
- 6 Department of Climate and Space Sciences, University of Michigan , Ann Arbor, Michigan, USA
| | - P Coll
- 1 LISA, Universités Paris-Est Créteil and Paris Diderot, Institut Pierre Simon Laplace , CNRS UMR 7583, Créteil, France
| |
Collapse
|
11
|
Freissinet C, Glavin DP, Mahaffy PR, Miller KE, Eigenbrode JL, Summons RE, Brunner AE, Buch A, Szopa C, Archer PD, Franz HB, Atreya SK, Brinckerhoff WB, Cabane M, Coll P, Conrad PG, Des Marais DJ, Dworkin JP, Fairén AG, François P, Grotzinger JP, Kashyap S, ten Kate IL, Leshin LA, Malespin CA, Martin MG, Martin-Torres FJ, McAdam AC, Ming DW, Navarro-González R, Pavlov AA, Prats BD, Squyres SW, Steele A, Stern JC, Sumner DY, Sutter B, Zorzano MP. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2015; 120:495-514. [PMID: 26690960 PMCID: PMC4672966 DOI: 10.1002/2014je004737] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/12/2015] [Accepted: 02/13/2015] [Indexed: 05/04/2023]
Abstract
UNLABELLED The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.
Collapse
Affiliation(s)
- C Freissinet
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- NASA Postdoctoral Program, Oak Ridge Associated UniversitiesOak Ridge, Tennessee, USA
- Correspondence to:
C. Freissinet and P. R. Mahaffy,, ,
| | - D P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - P R Mahaffy
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Correspondence to:
C. Freissinet and P. R. Mahaffy,, ,
| | - K E Miller
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, Massachusetts, USA
| | - J L Eigenbrode
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, Massachusetts, USA
| | - A E Brunner
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Center for Research and Exploration in Space Science & Technology, University of MarylandCollege Park, Maryland, USA
| | - A Buch
- Laboratoire de Génie des Procédés et Matériaux, Ecole Centrale ParisChâtenay-Malabry, France
| | - C Szopa
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Pierre and Marie Curie University, Université de Versailles Saint-Quentin-en-Yvelines, and CNRSParis, France
| | - P D Archer
- Jacobs, NASA Johnson Space CenterHouston, Texas, USA
| | - H B Franz
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Center for Research and Exploration in Space Science & Technology, University of Maryland, Baltimore CountyBaltimore, Maryland, USA
| | - S K Atreya
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - W B Brinckerhoff
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - M Cabane
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Pierre and Marie Curie University, Université de Versailles Saint-Quentin-en-Yvelines, and CNRSParis, France
| | - P Coll
- Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris-Est Créteil, Paris VII–Denis Diderot University, and CNRSCréteil, France
| | - P G Conrad
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - D J Des Marais
- Exobiology Branch, NASA Ames Research CenterMoffett Field, California, USA
| | - J P Dworkin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - A G Fairén
- Department of Astronomy, Cornell UniversityIthaca, New York, USA
- Centro de Astrobiología, INTA-CSICMadrid, Spain
| | - P François
- Department of Atmospheric, Oceanic and Space Sciences, University of MichiganAnn Arbor, Michigan, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, California, USA
| | - S Kashyap
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Center for Research and Exploration in Space Science & Technology, University of Maryland, Baltimore CountyBaltimore, Maryland, USA
| | - I L ten Kate
- Earth Sciences Department, Utrecht UniversityUtrecht, Netherlands
| | - L A Leshin
- Department of Earth and Environmental Sciences and School of Science, Rensselaer Polytechnic InstituteTroy, New York, USA
| | - C A Malespin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Goddard Earth Sciences and Technologies and Research, Universities Space Research AssociationColumbia, Maryland, USA
| | - M G Martin
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
- Department of Chemistry, Catholic University of AmericaWashington, District of Columbia, USA
| | - F J Martin-Torres
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR)Granada, Spain
- Division of Space Technology, Department of Computer Science, Electrical and Space Engineering, Luleå University of TechnologyKiruna, Sweden
| | - A C McAdam
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - D W Ming
- Astromaterials Research and Exploration Science Directorate, NASA Johnson Space CenterHouston, Texas, USA
| | - R Navarro-González
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad UniversitariaMéxico City, Mexico
| | - A A Pavlov
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - B D Prats
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - S W Squyres
- Department of Astronomy, Cornell UniversityIthaca, New York, USA
| | - A Steele
- Geophysical Laboratory, Carnegie Institution of WashingtonWashington, District of Columbia, USA
| | - J C Stern
- Solar System Exploration Division, NASA Goddard Space Flight CenterGreenbelt, Maryland, USA
| | - D Y Sumner
- Department of Earth and Planetary Sciences, University of CaliforniaDavis, California, USA
| | - B Sutter
- Jacobs, NASA Johnson Space CenterHouston, Texas, USA
| | - M-P Zorzano
- Centro de Astrobiologia (INTA-CSIC)Madrid, Spain
| |
Collapse
|
12
|
Poch O, Jaber M, Stalport F, Nowak S, Georgelin T, Lambert JF, Szopa C, Coll P. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions. ASTROBIOLOGY 2015; 15:221-237. [PMID: 25734356 DOI: 10.1089/ast.2014.1230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.
Collapse
Affiliation(s)
- Olivier Poch
- 1 LISA, Universités Paris Est Créteil and Paris Diderot , Institut Pierre Simon Laplace, UMR CNRS 7583, Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
White LM, Gibson EK, Thomas-Keprta KL, Clemett SJ, McKay DS. Putative indigenous carbon-bearing alteration features in martian meteorite Yamato 000593. ASTROBIOLOGY 2014; 14:170-181. [PMID: 24552234 PMCID: PMC3929347 DOI: 10.1089/ast.2011.0733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
We report the first observation of indigenous carbonaceous matter in the martian meteorite Yamato 000593. The carbonaceous phases are heterogeneously distributed within secondary iddingsite alteration veins and present in a range of morphologies including areas composed of carbon-rich spheroidal assemblages encased in multiple layers of iddingsite. We also observed microtubular features emanating from iddingsite veins penetrating into the host olivine comparable in shape to those interpreted to have formed by bioerosion in terrestrial basalts.
Collapse
Affiliation(s)
- Lauren M. White
- Jet Propulsion Laboratory, California Institute of Technology, Earth, Astronomy & Physics Mission Formulation, Pasadena, California
| | - Everett K. Gibson
- NASA Johnson Space Center, KR, Astromaterials Research & Exploration Science, Houston, Texas
| | | | | | - David S. McKay
- NASA Johnson Space Center, KR, Astromaterials Research & Exploration Science, Houston, Texas
| |
Collapse
|
14
|
Abstract
Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography-mass spectrometry--as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well.
Collapse
Affiliation(s)
- Inge L ten Kate
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.
| |
Collapse
|
15
|
Shkrob IA, Chemerisov SD, Marin TW. Photocatalytic decomposition of carboxylated molecules on light-exposed martian regolith and its relation to methane production on Mars. ASTROBIOLOGY 2010; 10:425-436. [PMID: 20528197 DOI: 10.1089/ast.2009.0433] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We propose that the paucity of organic compounds in martian soil can be accounted for by efficient photocatalytic decomposition of carboxylated molecules due to the occurrence of the photo-Kolbe reaction at the surface of particulate iron(III) oxides that are abundant in the martian regolith. This photoreaction is initiated by the absorption of UVA light, and it readily occurs even at low temperature. The decarboxylation is observed for miscellaneous organic carboxylates, including the nonvolatile products of kerogen oxidation (that are currently thought to accumulate in the soil) as well as alpha-amino acids and peptides. Our study indicates that there may be no "safe haven" for these organic compounds on Mars; oxidation by reactive radicals, such as hydroxyl, is concerted with photocatalytic reactions on the oxide particles. Acting together, these two mechanisms result in mineralization of the organic component. The photooxidation of acetate (the terminal product of radical oxidation of the aliphatic component of kerogen) on the iron(III) oxides results in the formation of methane; this reaction may account for seasonably variable production of methane on Mars. The concomitant reduction of Fe(III) in the regolith leads to the formation of highly soluble ferrous ions that contribute to weathering of the soil particles.
Collapse
Affiliation(s)
- Ilya A Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | | | | |
Collapse
|
16
|
Stalport F, Guan YY, Coll P, Szopa C, Macari F, Raulin F, Chaput D, Cottin H. UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions. ASTROBIOLOGY 2010; 10:449-461. [PMID: 20528199 DOI: 10.1089/ast.2009.0413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [alpha-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer.
Collapse
Affiliation(s)
- Fabien Stalport
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Universities of Paris 7 and Paris 12, Créteil, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Olsson-Francis K, Cockell CS. Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 2009; 80:1-13. [PMID: 19854226 DOI: 10.1016/j.mimet.2009.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 11/24/2022]
Abstract
Microorganisms can be used as model systems for studying biological responses to extraterrestrial conditions; however, the methods for studying their response are extremely challenging. Since the first high altitude microbiological experiment in 1935 a large number of facilities have been developed for short- and long-term microbial exposure experiments. Examples are the BIOPAN facility, used for short-term exposure, and the EXPOSE facility aboard the International Space Station, used for long-term exposure. Furthermore, simulation facilities have been developed to conduct microbiological experiments in the laboratory environment. A large number of microorganisms have been used for exposure experiments; these include pure cultures and microbial communities. Analyses of these experiments have involved both culture-dependent and independent methods. This review highlights and discusses the facilities available for microbiology experiments, both in space and in simulation environments. A description of the microorganisms and the techniques used to analyse survival is included. Finally we discuss the implications of microbiological studies for future missions and for space applications.
Collapse
Affiliation(s)
- Karen Olsson-Francis
- Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | |
Collapse
|
18
|
Stalport F, Coll P, Szopa C, Cottin H, Raulin F. Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions. ASTROBIOLOGY 2009; 9:543-549. [PMID: 19663761 DOI: 10.1089/ast.2008.0300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The detection and identification of organic molecules on Mars are of primary importance to establish the existence of a possible ancient prebiotic chemistry or even biological activity. The harsh environmental conditions at the surface of Mars could explain why the Viking probes-the only efforts, to date, to search for organics on Mars-detected no organic matter. To investigate the nature, abundance, and stability of organic molecules that could survive such environmental conditions, we developed a series of experiments that simulate martian surface environmental conditions. Here, we present results with regard to the impact of solar UV radiation on various carboxylic acids, such as mellitic acid, which are of astrobiological interest to the study of Mars. Our results show that at least one carboxylic acid, mellitic acid, could produce a resistant compound-benzenehexacarboxylic acid-trianhydride (C(12)O(9))-when exposed to martian surface radiation conditions. The formation of such products could contribute to the presence of organic matter in the martian regolith, which should be considered a primary target for in situ molecular analyses during future surface missions.
Collapse
Affiliation(s)
- F Stalport
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Universities of Paris 7 and Paris 12, 94000 Créteil, France.
| | | | | | | | | |
Collapse
|
19
|
Hansen AA, Jensen LL, Kristoffersen T, Mikkelsen K, Merrison J, Finster KW, Lomstein BA. Effects of long-term simulated martian conditions on a freeze-dried and homogenized bacterial permafrost community. ASTROBIOLOGY 2009; 9:229-240. [PMID: 19371163 DOI: 10.1089/ast.2008.0244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.
Collapse
Affiliation(s)
- Aviaja A Hansen
- Department of Biological Sciences, Section for Microbiology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
Jensen LL, Merrison J, Hansen AA, Mikkelsen KA, Kristoffersen T, Nørnberg P, Lomstein BA, Finster K. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH). ASTROBIOLOGY 2008; 8:537-548. [PMID: 18593229 DOI: 10.1089/ast.2006.0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.
Collapse
Affiliation(s)
- Lars Liengaard Jensen
- Department of Biological Sciences, Section for Microbiology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Benner SA, Devine KG, Matveeva LN, Powell DH. The missing organic molecules on Mars. Proc Natl Acad Sci U S A 2000; 97:2425-30. [PMID: 10706606 PMCID: PMC15945 DOI: 10.1073/pnas.040539497] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1998] [Accepted: 12/13/1999] [Indexed: 11/18/2022] Open
Abstract
GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.
Collapse
Affiliation(s)
- S A Benner
- Departments of Chemistry, Anatomy, and Cell Biology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
22
|
Quinn RC, Zent AP. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants. ORIGINS LIFE EVOL B 1999; 29:59-72. [PMID: 10077869 DOI: 10.1023/a:1006506022182] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hydrogen peroxide chemisorbed on titanium dioxide (peroxide-modified titanium dioxide) is investigated as a chemical analog to the putative soil oxidants responsible for the chemical reactivity seen in the Viking biology experiments. When peroxide-modified titanium dioxide (anatase) was exposed to a solution similar to the Viking labeled release (LR) experiment organic medium, CO2 gas was released into the sample cell headspace. Storage of these samples at 10 degrees C for 48 hr prior to exposure to organics resulted in a positive response while storage for 7 days did not. In the Viking LR experiment, storage of the Martian surface samples for 2 sols (approximately 49 hr) resulted in a positive response while storage for 141 sols essentially eliminated the initial rapid release of CO2. Heating the peroxide-modified titanium dioxide to 50 degrees C prior to exposure to organics resulted in a negative response. This is similar to, but not identical to, the Viking samples where heating to approximately 46 degrees C diminished the response by 54-80% and heating to 51.5 apparently eliminated the response. When exposed to water vapor, the peroxide-modified titanium dioxide samples release O2 in a manner similar to the release seen in the Viking gas exchange experiment (GEx). Reactivity is retained upon heating at 50 degrees C for three hours, distinguishing this active agent from the one responsible for the release of CO2 from aqueous organics. The release of CO2 by the peroxide-modified titanium dioxide is attributed to the decomposition of organics by outer-sphere peroxide complexes associated with surface hydroxyl groups, while the release of O2 upon humidification is attributed to more stable inner-sphere peroxide complexes associated with Ti4+ cations. Heating the peroxide-modified titanium dioxide to 145 degrees C inhibited the release of O2, while in the Viking experiments heating to this temperature diminished but did not eliminated the response. Although the thermal stability of the titanium-peroxide complexes in this work is lower than the stability seen in the Viking experiments, it is expected that similar types of complexes will form in titanium containing minerals other than anatase and the stability of these complexes will vary with surface hydroxylation and mineralogy.
Collapse
Affiliation(s)
- R C Quinn
- SETI Institute, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | |
Collapse
|
23
|
McKay CP, Grunthaner FJ, Lane AL, Herring M, Bartman RK, Ksendzov A, Manning CM, Lamb JL, Williams RM, Ricco AJ, Butler MA, Murray BC, Quinn RC, Zent AP, Klein HP, Levin GV. The Mars oxidant experiment (MOx) for Mars '96. PLANETARY AND SPACE SCIENCE 1998; 46:769-777. [PMID: 11541819 DOI: 10.1016/s0032-0633(98)00011-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.
Collapse
Affiliation(s)
- C P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stoker CR, Bullock MA. Organic degradation under simulated Martian conditions. JOURNAL OF GEOPHYSICAL RESEARCH 1997; 102:10881-8. [PMID: 11541744 DOI: 10.1029/97je00667] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on laboratory experiments which simulate the breakdown of organic compounds under Martian surface conditions. Chambers containing Mars-analog soil mixed with the amino acid glycine were evacuated and filled to 100 mbar pressure with a Martian atmosphere gas mixture and then irradiated with a broad spectrum Xe lamp. Headspace gases were periodically withdrawn and analyzed via gas chromatography for the presence of organic gases expected to be decomposition products of the glycine. The quantum efficiency for the decomposition of glycine by light at wavelengths from 2000 to 2400 angstroms was measured to be 1.46 +/- 1.0 x 10(-6) molecules/photon. Scaled to Mars, this represents an organic destruction rate of 2.24 +/- 1.2 x 10(-4) g of C m-2 yr-1. We compare this degradation rate with the rate that organic compounds are brought to Mars as a result of meteoritic infall to show that organic compounds are destroyed on Mars at rates far exceeding the rate that they are deposited by meteorites. Thus the fact that no organic compounds were found on Mars by the Viking Lander Gas Chromatograph Mass Spectrometer experiment can be explained without invoking the presence of strong oxidants in the surface soils. The organic destruction rate may be considered as an upper bound for the globally averaged biomass production rate of extant organisms at the surface of Mars. This upper bound is comparable to the slow growing cryptoendolithic microbial communities found in dry Antarctica deserts. Finally, comparing these organic destruction rates to recently reported experiments on the stability of carbonate on the surface of Mars, we find that organic compounds may currently be more stable than calcite.
Collapse
Affiliation(s)
- C R Stoker
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | | |
Collapse
|
25
|
Kanavarioti A, Mancinelli RL. Could organic matter have been preserved on Mars for 3.5 billion years? ICARUS 1990; 84:196-202. [PMID: 11538399 DOI: 10.1016/0019-1035(90)90165-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
3.5 billion years (byr) ago, when it is thought that Mars and Earth had similar climates, biological evolution on Earth had made considerable progress, such that life was abundant. It is therefore surmised that prior to this time period the advent of chemical evolution and subsequent origin of life occurred on Earth and may have occurred on Mars. Analysis for organic compounds in the soil buried beneath the Martian surface may yield useful information regarding the occurrence of chemical evolution and possibly biological evolution. Calculations based on the stability of amino acids lead to the conclusion that remnants of these compounds, if they existed on Mars 3.5 byr ago, might have been preserved buried beneath the surface oxidizing layer. For example, if phenylalanine, an amino acid of average stability, existed on Mars 3.5 byr ago, then 1.6% would remain buried today, or 25 pg-2.5 ng of C g-1 Martian soil may exist from remnants of meteoritic and cometary bombardment, assuming that 1% of the organics survived impact.
Collapse
Affiliation(s)
- A Kanavarioti
- Chemistry Department, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
26
|
Rothschild LJ, DesMarais D. Stable carbon isotope fractionation in the search for life on early Mars. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1989; 9:159-165. [PMID: 11537367 DOI: 10.1016/0273-1177(89)90223-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Isotopic measurements and, more specifically, ratios of 13C to 12C in organic relative to inorganic deposits, are useful in reconstructing past biological activity on Earth. Organic matter has a lower ratio of 13C to 12C due largely to the preferential fixation of 12C over the heavier isotope by the major carbon-fixation enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase, although other factors (e.g., availability of source carbon, fixation by other carboxylating enzymes and diagenesis of organic material) also contribute to fractionation. Would carbon isotope discrepancies between inorganic and organic carbon indicate past biological activity on Mars? In order to answer this question, we analyse what is known about terrestrial biologic and abiologic carbon fixation and its preservation in the fossil record, and suggest what the isotope discrimination during possible biologic and abiologic carbon fixation on Mars might have been like. Primarily because isotopic signatures of abiotically fixed carbon overlap with those of biotic fixation, but also because heterotrophy does not significantly alter the isotopic signature of ingested carbon, fractionation alone would not be definitive evidence for life. However, a narrow range of fractionation, including no fractionation, would suggest biotic processes. Never-the-less, isotopic ratios in organic deposits on Mars would be extremely useful in analysing prebiotic, if not biotic, carbon transformations on Mars.
Collapse
|
27
|
Oró J, Mills T. Chemical evolution of primitive solar system bodies. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1989; 9:105-120. [PMID: 11537358 DOI: 10.1016/0273-1177(89)90372-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this paper we summarize some of the most salient observations made recently on the organic molecules and other compounds of the biogenic elements present in the interstellar medium and in the primitive bodies of the solar system. They include the discovery of the first phosphorus molecular species in dense interstellar clouds, the presence of complex organic ions in the dust and gas phase of Halley's coma, the finding of unusual, probably presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites, and new developments on the chemical evolution of Titan, the primitive Earth, and early Mars. Some of the outstanding problems concerning the synthesis of organic molecules on different cosmic bodies are also discussed from an exobiological perspective.
Collapse
Affiliation(s)
- J Oró
- Department of Biochemical and Biophysical Sciences, The University of Houston, TX 77004
| | | |
Collapse
|
28
|
Mancinelli RL. Peroxides and the survivability of microorganisms on the surface of Mars. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1989; 9:191-195. [PMID: 11537371 DOI: 10.1016/0273-1177(89)90229-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Results of the Viking mission seem to indicate that there is a ubiquitous layer of highly oxidizing aeolian material covering the Martian surface. This layer is thought to oxidize organic material that may settle on it, and is therefore responsible for the lack of detection of organic matter on the planet's surface by Viking. The mechanism that creates the oxidizing condition is not well understood, nor is the extent of the oxidation potential of this material. It has been suggested that the oxidizing nature of the soil is due to photochemical reactions which create hydrogen peroxide and superoxides in the surface soil. One question of importance to planetary protection regarding this material is, what is its potential for destroying terrestrial microorganisms, thus making the surface of Mars "self-sterilizing"? Using data obtained by the gas exchange experiment on Viking, and for simplicity assuming that all of the O2 released came from H2O2, the concentration range for H2O2 on the surface of Mars can be calculated to be 25-250 ppm. The microbial disinfection rate by H2O2 is concentration dependent, and is highly variable within the microbial community. Data from our laboratory indicate that certain soil bacteria survive and grow to stationary phase in 30,000 ppm H2O2. However, the total number of organisms decreases in the presence of H2O2. These results indicate that it is doubtful that the presence of H2O2 alone on Mars would make the surface "self-sterilizing".
Collapse
Affiliation(s)
- R L Mancinelli
- Solar System Exploration Branch, NASA/Ames Research Center, Moffett Field, CA 94035
| |
Collapse
|
29
|
McKay CP. Exobiology and future Mars missions: the search for Mars' earliest biosphere. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1986; 6:269-285. [PMID: 11537831 DOI: 10.1016/0273-1177(86)90096-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The primordial Mars may have possessed a thick carbon dioxide atmosphere, with liquid water common on the surface, similar in many ways to the primordial Earth. During this epoch, billions of years ago, the surface of Mars could have been conducive to the origin of life. It is possible that life evolved on Mars to be later eliminated as the atmospheric pressure dropped. Analysis of the surface of Mars for the traces of this early martian biota could provide many insights into the phenomenon of life and its coupling to planetary evolution.
Collapse
Affiliation(s)
- C P McKay
- Solar System Exploration Branch, NASA/Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
30
|
Basile B, Lazcano A, Oró J. Prebiotic syntheses of purines and pyrimidines. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1984; 4:125-131. [PMID: 11537766 DOI: 10.1016/0273-1177(84)90554-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The work done in many laboratories during the last two decades has confirmed that hydrogen cyanide and cyanoacetylene are the two major precursors for the prebiotic synthesis of purines and pyrimidines, respectively. Although several different pathways for the synthesis of purines have been described, they are all variations of the initial mechanism proposed by Oró and Kimball, where hydrogen cyanide leads first to the formation of a 4,5-di-substituted imidazole derivative, and then to the closing of the purine ring with a C1 compound. A number of experiments have shown that purines and pyrimidines can also be obtained from methane, ammonia (nitrogen), and water mixtures, provided an activating source of energy (radiation, electric discharges, etc.) is available. However, in this case the yields are lower by about two orders of magnitude because of the intermediate formation of hydrogen cyanide and cyanoacetylene. The latter two compounds have been found in interstellar space, Titan and other bodies of the solar system. They were probably present in the primordial parent bodies from the solar nebula in concentrations of 10(-2) to 10(-3) M as inferred from recent calculations by Miller and coworkers obtained for the Murchison meteorite. These concentrations should have been sufficient to generate relatively large amounts of purine and pyrimidine bases on the primitive Earth.
Collapse
Affiliation(s)
- B Basile
- Department of Biochemical and Biophysical Sciences, University of Houston, TX 77004, USA
| | | | | |
Collapse
|
31
|
Moskowitz BM, Hargraves RB. Magnetic changes accompanying the thermal decomposition of nontronite (in air) and its relevance to Martian mineralogy. ACTA ACUST UNITED AC 1982. [DOI: 10.1029/jb087ib12p10115] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Abstract
Physical and chemical considerations permit the division of the near-surface regolith on Mars into at least six zones of distinct microenvironments. The zones are euphotic, duricrust/peds, tempofrost, permafrost, endolithic, and interfacial/transitional. Microenvironments vary significantly in temperature extremes, mean temperature, salt content, relative pressure of water vapor, UV and visible light irradiance, and exposure to ionizing radiation events (100 Mrad) and oxidative molecular species. From what is known of the chemistry of the atmosphere and regolith fines (soil), limits upon the aqueous chemistry of soil pastes may be estimated. Heat of wetting could reach 45 cal/g dry soil; initial pH is indeterminate between 1 and 10; ionic strength and salinity are predicted to be extremely high; freezing point depression is inadequate to provide quantities of liquid water except in special cases. The prospects for biotic survival are grim by terrestrial standards, but the extremes of biological resiliency are inaccessible to evaluation. Second-generation in situ experiments which will better define Martian microenvironments are clearly possible. Antarctic dry valleys are approximations to Martian conditions, but deviate significantly by at least half-a-dozen criteria.
Collapse
|
33
|
Abstract
A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0 degrees C during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.
Collapse
|