1
|
Pozarycki C, Seaton KM, C Vincent E, Novak Sanders C, Nuñez N, Castillo M, Ingall E, Klempay B, Pontefract A, Fisher LA, Paris ER, Buessecker S, Alansson NB, Carr CE, Doran PT, Bowman JS, Schmidt BE, Stockton AM. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. ASTROBIOLOGY 2024; 24:795-812. [PMID: 39159437 DOI: 10.1089/ast.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.
Collapse
Affiliation(s)
- Chad Pozarycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth M Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily C Vincent
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carlie Novak Sanders
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nickie Nuñez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mariah Castillo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ellery Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | | | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Nikolas B Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Britney E Schmidt
- Departments of Astronomy and Earth & Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Sibilska-Kaminski IK, Yin J. Toward Molecular Cooperation by De Novo Peptides. ORIGINS LIFE EVOL B 2021; 51:71-82. [PMID: 33566281 PMCID: PMC8212187 DOI: 10.1007/s11084-021-09603-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Theoretical models of the chemical origins of life depend on self-replication or autocatalysis, processes that arise from molecular interactions, recruitment, and cooperation. Such models often lack details about the molecules and reactions involved, giving little guidance to those seeking to detect signs of interaction, recruitment, or cooperation in the laboratory. Here, we develop minimal mathematical models of reactions involving specific chemical entities: amino acids and their condensation reactions to form de novo peptides. Reactions between two amino acids form a dipeptide product, which enriches linearly in time; subsequent recruitment of such products to form longer peptides exhibit super-linear growth. Such recruitment can be reciprocated: a peptide contributes to and benefits from the formation of one or more other peptides; in this manner, peptides can cooperate and thereby exhibit autocatalytic or exponential growth. We have started to test these predictions by quantitative analysis of de novo peptide synthesis conducted by wet-dry cycling of a five-amino acid mixture over 21 days. Using high-performance liquid chromatography, we tracked abundance changes for >60 unique peptide species. Some species were highly transient, with the emergence of up to 17 new species and the extinction of nine species between samplings, while other species persisted across many cycles. Of the persisting species, most exhibited super-linear growth, a sign of recruitment anticipated by our models. This work shows how mathematical modeling and quantitative analysis of kinetic data can guide the search for prebiotic chemistries that have the potential to cooperate and replicate.
Collapse
Affiliation(s)
- Izabela K Sibilska-Kaminski
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery , University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery , University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| |
Collapse
|
3
|
Bayer M, Savelsbergh A, Klinger C, Kaufmann M, König S. Derivatization of the amino acids glycine and valine causes peptide formation-relevance for the analysis of prebiotic oligomerization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8912. [PMID: 32749724 DOI: 10.1002/rcm.8912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Malte Bayer
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| | - Andreas Savelsbergh
- Chair of Biochemistry and Molecular Medicine, Division of Functional Genomics, ZBAF, Witten/Herdecke University, Germany
| | - Claudia Klinger
- Chair of Biochemistry and Molecular Medicine, Division of Functional Genomics, ZBAF, Witten/Herdecke University, Germany
| | - Michael Kaufmann
- Chair of Biochemistry and Molecular Medicine, Division of Functional Genomics, ZBAF, Witten/Herdecke University, Germany
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Lin R, Wang Y, Li X, Liu Y, Zhao Y. pH-Dependent Adsorption of Peptides on Montmorillonite for Resisting UV Irradiation. Life (Basel) 2020; 10:life10040045. [PMID: 32325947 PMCID: PMC7235719 DOI: 10.3390/life10040045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) irradiation is considered an energy source for the prebiotic chemical synthesis of life's building blocks. However, it also results in photodegradation of biology-related organic compounds on early Earth. Thus, it is important to find a process to protect these compounds from decomposition by UV irradiation. Herein, pH effects on both the adsorption of peptides on montmorillonite (MMT) and the abilities of peptides to resist UV irradiation due to this adsorption were systematically studied. We found that montmorillonite (MMT) can adsorb peptides effectively under acidic conditions, while MMT-adsorbed peptides can be released under basic conditions. Peptide adsorption is positively correlated with the length of the peptide chains. MMT's adsorption of peptides and MMT-adsorbed peptide desorption are both rapid-equilibrium, and it takes less than 30 min to reach the equilibrium in both cases. Furthermore, compared to free peptides, MMT-adsorbed peptides under acidic conditions are well protected from UV degradation even after prolonged irradiation. These results indicate amino acid/peptides are able to concentrate from aqueous solution by MMT adsorption under low-pH conditions (concentration step). The MMT-adsorbed peptides survive under UV irradiation among other unprotected species (storage step). Then, the MMT-adsorbed peptides can be released to the aqueous solution if the environment becomes more basic (releasing step), and these free peptides are ready for polymerization to polypeptides. Hence, a plausible prebiotic concentration-storage-release cycle of amino acids/peptides for further polypeptide synthesis is established.
Collapse
Affiliation(s)
- Rongcan Lin
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
| | - Yueqiao Wang
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
| | - Xin Li
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
| | - Yan Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
- Correspondence:
| | - Yufen Zhao
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Greenwald J, Kwiatkowski W, Riek R. Peptide Amyloids in the Origin of Life. J Mol Biol 2018; 430:3735-3750. [PMID: 29890117 DOI: 10.1016/j.jmb.2018.05.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
How life can emerge from non-living matter is one of the fundamental mysteries of the universe. A bottom-up approach to this problem focuses on the potential chemical precursors of life, in particular the nature of the first replicative molecules. Such thinking has led to the currently most popular idea: that an RNA-like molecule played a central role as the first replicative and catalytic molecule. Here, we review an alternative hypothesis that has recently gained experimental support, focusing on the role of amyloidogenic peptides rather than nucleic acids, in what has been by some termed "the amyloid-world" hypothesis. Amyloids are well-ordered peptide aggregates that have a fibrillar morphology due to their underlying structure of a one-dimensional crystal-like array of peptides in a β-strand conformation. While they are notorious for their implication in several neurodegenerative diseases including Alzheimer's disease, amyloids also have many biological functions. In this review, we will elaborate on the following properties of amyloids in relation to their fitness as a prebiotic entity: they can be formed by very short peptides with simple amino acids sequences; as aggregates they are more chemically stable than their isolated component peptides; they can possess diverse catalytic activities; they can form spontaneously during the prebiotic condensation of amino acids; they can act as templates in their own chemical replication; they have a structurally repetitive nature that enables them to interact with other structurally repetitive biopolymers like RNA/DNA and polysaccharides, as well as with structurally repetitive surfaces like amphiphilic membranes and minerals.
Collapse
Affiliation(s)
- Jason Greenwald
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Witek Kwiatkowski
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| |
Collapse
|
6
|
Jacob RS, Das S, Singh N, Patel K, Datta D, Sen S, Maji SK. Amyloids Are Novel Cell-Adhesive Matrices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:79-97. [PMID: 30637692 DOI: 10.1007/978-981-13-3065-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amyloids are highly ordered peptide/protein aggregates traditionally associated with multiple human diseases including neurodegenerative disorders. However, recent studies suggest that amyloids can also perform several biological functions in organisms varying from bacteria to mammals. In many lower organisms, amyloid fibrils function as adhesives due to their unique surface topography. Recently, amyloid fibrils have been shown to support attachment and spreading of mammalian cells by interacting with the cell membrane and by cell adhesion machinery activation. Moreover, similar to cellular responses on natural extracellular matrices (ECMs), mammalian cells on amyloid surfaces also use integrin machinery for spreading, migration, and differentiation. This has led to the development of biocompatible and implantable amyloid-based hydrogels that could induce lineage-specific differentiation of stem cells. In this chapter, based on adhesion of both lower organisms and mammalian cells on amyloid nanofibrils, we posit that amyloids could have functioned as a primitive extracellular matrix in primordial earth.
Collapse
Affiliation(s)
- Reeba S Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Subhadeep Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
7
|
Kitadai N. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation. ORIGINS LIFE EVOL B 2017; 47:13-37. [PMID: 27251366 DOI: 10.1007/s11084-016-9510-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Abstract
Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive Earth.
Collapse
Affiliation(s)
- Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
8
|
Friedmann MP, Torbeev V, Zelenay V, Sobol A, Greenwald J, Riek R. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening. PLoS One 2015; 10:e0143948. [PMID: 26650386 PMCID: PMC4674085 DOI: 10.1371/journal.pone.0143948] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
Enzymes are capable of directing complex stereospecific transformations and of accelerating reaction rates many orders of magnitude. As even the simplest known enzymes comprise thousands of atoms, the question arises as to how such exquisite catalysts evolved. A logical predecessor would be shorter peptides, but they lack the defined structure and size that are apparently necessary for enzyme functions. However, some very short peptides are able to assemble into amyloids, thereby forming a well-defined tertiary structure called the cross-β-sheet, which bestows unique properties upon the peptides. We have hypothesized that amyloids could have been the catalytically active precursor to modern enzymes. To test this hypothesis, we designed an amyloid peptide library that could be screened for catalytic activity. Our approach, amenable to high-throughput methodologies, allowed us to find several peptides and peptide mixtures that form amyloids with esterase activity. These results indicate that amyloids, with their stability in a wide range of conditions and their potential as catalysts with low sequence specificity, would indeed be fitting precursors to modern enzymes. Furthermore, our approach can be efficiently expanded upon in library size, screening conditions, and target activity to yield novel amyloid catalysts with potential applications in aqueous-organic mixtures, at high temperature and in other extreme conditions that could be advantageous for industrial applications.
Collapse
Affiliation(s)
- Michael P. Friedmann
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, Zurich, Switzerland
| | - Vladimir Torbeev
- Laboratory of Organic Chemistry, Department of Chemistry, ETH Zürich, Zurich, Switzerland
| | - Viviane Zelenay
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, Zurich, Switzerland
| | - Alexander Sobol
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, Zurich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, Zurich, Switzerland
- * E-mail: (JG); (RR)
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry, ETH Zürich, Zurich, Switzerland
- * E-mail: (JG); (RR)
| |
Collapse
|
9
|
Da Silva L, Maurel MC, Deamer D. Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J Mol Evol 2014; 80:86-97. [PMID: 25487518 DOI: 10.1007/s00239-014-9661-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
A fundamental problem in origins of life research is how the first polymers with the properties of nucleic acids were synthesized and incorporated into living systems on the prebiotic Earth. Here, we show that RNA-like polymers can be synthesized non-enzymatically from 5'-phosphate mononucleosides in salty environments. The polymers were identified and analyzed by gel electrophoresis, nanopore analysis, UV spectra, and action of RNases. The synthesis of phosphodiester bonds is driven by the chemical potential made available in the fluctuating hydrated and anhydrous conditions of hydrothermal fields associated with volcanic land masses.
Collapse
|
10
|
Fuchida S, Masuda H, Shinoda K. Peptide formation mechanism on montmorillonite under thermal conditions. ORIGINS LIFE EVOL B 2014; 44:13-28. [PMID: 24917118 DOI: 10.1007/s11084-014-9359-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/23/2014] [Indexed: 11/25/2022]
Abstract
The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.
Collapse
Affiliation(s)
- Shigeshi Fuchida
- Department of Geosciences, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan,
| | | | | |
Collapse
|
11
|
Klabunovskii EI. Homochirality and its significance for biosphere and the origin of life theory. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1070428012070019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Lakshmanan A, Hauser CAE. Ultrasmall peptides self-assemble into diverse nanostructures: morphological evaluation and potential implications. Int J Mol Sci 2011; 12:5736-46. [PMID: 22016623 PMCID: PMC3189747 DOI: 10.3390/ijms12095736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/09/2011] [Accepted: 08/22/2011] [Indexed: 12/29/2022] Open
Abstract
In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures.
Collapse
Affiliation(s)
- Anupama Lakshmanan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos 138669, Singapore; E-Mail:
| | | |
Collapse
|
13
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure 2011; 18:1244-60. [PMID: 20947013 DOI: 10.1016/j.str.2010.08.009] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 01/23/2023]
Abstract
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimer's disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.
Collapse
Affiliation(s)
- Jason Greenwald
- ETH Zurich, Physical Chemistry, ETH Honggerberg, 8093 Zurich, Switzerland
| | | |
Collapse
|
15
|
|
16
|
Follmann H, Brownson C. Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 2009; 96:1265-92. [PMID: 19760276 DOI: 10.1007/s00114-009-0602-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
Affiliation(s)
- Hartmut Follmann
- Institute of Biology, University of Kassel, 34109, Kassel, Germany.
| | | |
Collapse
|
17
|
Rode BM, Fitz D, Jakschitz T. The first steps of chemical evolution towards the origin of life. Chem Biodivers 2008; 4:2674-702. [PMID: 18081099 DOI: 10.1002/cbdv.200790220] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bernd M Rode
- Institute for General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck.
| | | | | |
Collapse
|
18
|
Fleminger G, Yaron T, Eisenstein M, Bar-Nun A. The structure and synthetic capabilities of a catalytic peptide formed by substrate-directed mechanism--implications to prebiotic catalysis. ORIGINS LIFE EVOL B 2005; 35:369-82. [PMID: 16228649 DOI: 10.1007/s11084-005-4084-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Accepted: 08/20/2004] [Indexed: 10/25/2022]
Abstract
Previously, we have shown that a small substrate may serve as a template in the formation of a specific catalytic peptide, a phenomenon which might have had a major role in prebiotic synthesis of peptide catalysts. This was demonstrated experimentally by the formation of a catalytic metallo-dipeptide, Cys2-Fe2+, around o-nitrophenyl beta-D-galactopyranoside (ONPG), by dicyandiamide (DCDA)-assisted condensation under aqueous conditions. This dipeptide was capable of hydrolyzing ONPG at a specific activity lower only 1000 fold than that of beta galactosidase. In the present paper we use molecular modeling techniques to elucidate the structure of this catalyst and its complex with the substrate and propose a putative mechanism for the catalyst formation and its mode of action as a "mini enzyme". This model suggests that interaction of Fe2+ ion with ONPG oxygens and with two cysteine SH groups promotes the specific formation of the Cys2-Fe2+ catalyst. Similarly, the interaction of the catalyst with ONPG is mediated by its Fe2+ with the substrate oxygens, leading to its hydrolysis. In addition, immobilized forms of the catalyst were synthesized on two carriers--Eupergit C and amino glass beads. These preparations were capable of catalyzing the formation of ONPG from beta-D-galactose and o-nitrophenol (ONP) under anhydrous conditions. The ability of the catalyst to synthesize the substrate that mediates its own formation creates an autocatalytic cycle where ONPG catalyzes the formation of a catalyst which, in turn, catalyzes ONPG formation. Such autocatalytic cycle can only operate by switching between high and low water activity conditions, such as in tidal pools cycling between wet and dry environments. Implications of the substrate-dependent formation of catalytically active peptides to prebiotic processes are discussed.
Collapse
Affiliation(s)
- Gideon Fleminger
- Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
19
|
Munegumi T, Shimoyama A. Development of homochiral peptides in the chemical evolutionary process: Separation of homochiral and heterochiral oligopeptides. Chirality 2004; 15 Suppl:S108-15. [PMID: 12884382 DOI: 10.1002/chir.10256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Living organisms have one-handed structures of L-amino acids in proteins and D-sugars in nucleic acids. Although the origins of each one-handed structure (or homochirality) have been discussed for many years, these discussions have been restricted to monomeric compounds, such as amino acids and monosaccharides, or their stereospecific condensation reactions. Oligomers of these compounds have to be considered in the accumulation processes of homochirality because of the differences in physical properties of the diastereomers. High-performance liquid chromatography (HPLC) and the calculation of the partition coefficient values showed that the peptides having heterochiral sequences like L-Ala-D-Ala or D-Ala-L-Ala were more hydrophobic than the peptides having homochiral ones (L-Ala-L-Ala and D-Ala-D-Ala). Similar results were given from the calculation of most linear dipeptides and all cyclic ones composed of Gly, Ala, Val, or Asp. In addition, longer homo-oligopeptides composed of Ala, Val, or Asp also gave similar results. This general tendency would be useful for the separation of diastereomeric oligopeptides in water. The results also suggest that the separation of the homochiral peptides from the heterochiral ones by their solubility in water could have progressed in a primitive hydrosphere.
Collapse
Affiliation(s)
- Toratane Munegumi
- Department of Materials Chemistry and Bioengineering, Oyama National College of Technology, Oyama, Tochigi, Japan.
| | | |
Collapse
|
20
|
Plankensteiner K, Righi A, Rode BM. Glycine and diglycine as possible catalytic factors in the prebiotic evolution of peptides. ORIGINS LIFE EVOL B 2002; 32:225-36. [PMID: 12227427 DOI: 10.1023/a:1016523207700] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutual catalytic effects within the Salt-Induced Peptide Formation (SIPF) Reaction might be one little puzzle piece in the complicated process of the formation of complex peptidic systems and their chemical evolution on the prebiotic earth. The catalytic effects of glycine and diglycine on the formation of dipeptides from mixed amino acid systems in the SIPF Reaction was investigated for systems with leucine, proline, valine and aspartic acid and showed to result in a significant increase of the yield of the majority of the produced dipeptides. The results of the experiments strongly confirm previous theories on the catalytic mechanism and show the ability of the SIPF Reaction to produce a very diverse set of peptide products with relevance to the formation of a biosphere.
Collapse
Affiliation(s)
- Kristof Plankensteiner
- Division of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry; University of Innsbruck, Austria
| | | | | |
Collapse
|
21
|
Abstract
The rather unique properties of prions and their presence in very different kinds of living species suggest that this type of molecule was created at a very early stage of evolution and may even represent a relic from a time where peptide evolution was ongoing and RNA/DNA did not yet exist. A comparison of the most frequently occurring amino acid sequences in known prions with the sequences preferentially formed in the salt-induced peptide formation reaction, the most simple mechanism enabling the formation of peptides under primitive earth conditions, shows a remarkable coincidence that strongly supports this hypothesis.
Collapse
Affiliation(s)
- B M Rode
- Theoretical Chemistry Division, Institute for General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Austria.
| | | | | | | |
Collapse
|
22
|
|
23
|
Rode BM, Son HL, Suwannachot Y. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. ORIGINS LIFE EVOL B 1999; 29:273-86. [PMID: 10465717 DOI: 10.1023/a:1006540101290] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two reactions with suggested prebiotic relevance for peptide evolution, the salt induced peptide formation reaction and the peptide chain elongation/stabilization on clay minerals have been combined in experimental series starting from dipeptides and dipeptide/amino acid mixtures. The results show that both reactions can take place simultaneously in the same reaction environment and that the presence of mineral catalysts favours the formation of higher oligopeptides. These findings lend further support to the relevance of these reactions for peptide evolution on the primitive earth. The detailed effects of the specific clay mineral depend both on the nature of the mineral and the reactants in solution.
Collapse
Affiliation(s)
- B M Rode
- Institute for General, Inorganic and Theoretical Chemistry University of Innsbruck, Austria
| | | | | |
Collapse
|
24
|
Abstract
Considering the state-of-the-art views of the geochemical conditions of the primitive earth, it seems most likely that peptides were produced ahead of all other oligomer precursors of biomolecules. Among all the reactions proposed so far for the formation of peptides under primordial earth conditions, the salt-induced peptide formation reaction in connection with adsorption processes on clay minerals would appear to be the simplest and most universal mechanism known to date. The properties of this reaction greatly favor the formation of biologically relevant peptides within a wide variation of environmental conditions such as temperature, pH, and the presence of inorganic compounds. The reaction-inherent preferences of certain peptide linkages make the argument of 'statistical impossibility' of the evolutionary formation of the 'right' peptides and proteins rather insignificant. Indeed, the fact that these sequences are reflected in the preferential sequences of membrane proteins of archaebacteria and prokaryonta distinctly indicates the relevance of this reaction for chemical peptide evolution. On the basis of these results and the recent findings of self-replicating peptides, some ideas have been developed as to the first steps leading to life on earth.
Collapse
Affiliation(s)
- B M Rode
- Department of Theoretical Chemistry, Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria.
| |
Collapse
|
25
|
Le Son H, Suwannachot Y, Bujdak J, Rode BM. Salt-induced peptide formation from amino acids in the presence of clays and related catalysts. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)05975-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Suwannachot Y, Rode BM. Catalysis of dialanine formation by glycine in the salt-induced peptide formation reaction. ORIGINS LIFE EVOL B 1998; 28:79-90. [PMID: 11536857 DOI: 10.1023/a:1006503928834] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.
Collapse
Affiliation(s)
- Y Suwannachot
- Institute for General, Inorganic and Theoretical Chemistry, University of Innsbruck, Austria
| | | |
Collapse
|
27
|
Schwendinger MG, Tattler R, Saetia S, Liedl KR, Kroemer RT, Rode BM. Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorganica Chim Acta 1995. [DOI: 10.1016/0020-1693(94)04186-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Muller AW. Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1995; 63:193-231. [PMID: 7542789 DOI: 10.1016/0079-6107(95)00004-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A W Muller
- E.C. Slater Institute, BioCentrum Amsterdam, Universiteit van Amsterdam, The Netherlands
| |
Collapse
|
29
|
On the possible role of montmorillonites in prebiotic peptide formation. MONATSHEFTE FUR CHEMIE 1994. [DOI: 10.1007/bf00811510] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Eder AH, Rode BM. Influence of alkali- and alkaline-earth-metal cations on the ‘salt-induced peptide formation’ reaction. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/dt9940001125] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Saetia S, Liedl KR, Eder AH, Rode BM. Evaporation cycle experiments--a simulation of salt-induced peptide synthesis under possible prebiotic conditions. ORIGINS LIFE EVOL B 1993; 23:167-76. [PMID: 8316349 DOI: 10.1007/bf01581836] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Evaporation cycles applied to dilute solutions of amino acids, Cu(II) and NaCl lead to peptides within 1-3 days. This simulation of possible coastal or laguna processes in a primitive earth environment gives further indications towards the relevance of the salt-induced peptide formation reaction in chemical evolution. The experiments were successfully applied to glycine, alanine, aspartic and glutamic acid. Besides isolated amino acids, also their mixtures with glycine as reaction partner were studied, leading to peptides for all of the aforementioned substances, as well as for valine and proline, which do not dimerize alone. Sequence preferences and some conservation of optical purity were observed.
Collapse
Affiliation(s)
- S Saetia
- Institute for Inorganic and Analytical Chemistry, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
32
|
HPLC and electrochemical investigations of the salt-induced peptide formation from glycine, alanine, valine and aspartic acid under possible prebiotic conditions. Inorganica Chim Acta 1993. [DOI: 10.1016/s0020-1693(00)91449-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|