1
|
Omelchuk O, Tevyashova A, Efimova S, Grammatikova N, Bychkova E, Zatonsky G, Dezhenkova L, Savin N, Solovieva S, Ostroumova O, Shchekotikhin A. A Study on the Effect of Quaternization of Polyene Antibiotics' Structures on Their Activity, Toxicity, and Impact on Membrane Models. Antibiotics (Basel) 2024; 13:608. [PMID: 39061290 PMCID: PMC11274224 DOI: 10.3390/antibiotics13070608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Polyene antibiotics have been used in antifungal therapy since the mid-twentieth century. They are highly valued for their broad spectrum of activity and the rarity of pathogen resistance to their action. However, their use in the treatment of systemic mycoses often results in serious side-effects. Recently, there has been a renewed interest in the development of new antifungal drugs based on polyenes, particularly due to the emergence of highly dangerous pathogenic strains of fungi, such as Candida auris, and the increased incidence of mucormycosis. Considerable understanding has been established regarding the structure-biological activity relationships of polyene antifungals. Yet, no previous studies have examined the effect of introducing quaternized fragments into their molecular structure. In this study, we present a series of amides of amphotericin B, nystatin, and natamycin bearing a quaternized group in the side chain, and discuss their biological properties: antifungal activity, cytotoxicity, and effects on lipid bilayers that mimic fungal and mammalian cell membranes. Our research findings suggest that the nature of the introduced quaternized residue plays a more significant role than merely the introduction of a constant positive charge. Among the tested polyenes, derivatives 4b, 5b, and 6b, which contain a fragment of N-methyl-4-(aminomethyl)pyridinium in their structure, are particularly noteworthy due to their biological activity.
Collapse
Affiliation(s)
- Olga Omelchuk
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Anna Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Svetlana Efimova
- Institute of Cytology, The Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; (S.E.); (O.O.)
| | - Natalia Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Elena Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - George Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Lyubov Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Nikita Savin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 4 p.1 Leninsky Pr., Moscow 119049, Russia
| | - Svetlana Solovieva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| | - Olga Ostroumova
- Institute of Cytology, The Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia; (S.E.); (O.O.)
| | - Andrey Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia (G.Z.)
| |
Collapse
|
2
|
Efimova SS, Ostroumova OS. Antibiotic Loaded Phytosomes as a Way to Develop Innovative Lipid Formulations of Polyene Macrolides. Pharmaceutics 2024; 16:665. [PMID: 38794328 PMCID: PMC11124810 DOI: 10.3390/pharmaceutics16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The threat of antibiotic resistance of fungal pathogens and the high toxicity of the most effective drugs, polyene macrolides, force us to look for new ways to develop innovative antifungal formulations. OBJECTIVE The aim of this study was to determine how the sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers that mimic the membranes of mammalian and fungal cells. METHODS To monitor the membrane permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the electrophysiological technique based on planar lipid bilayers were used. KEY RESULTS The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes. The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target fungi. I-V characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in the antibiotic threshold concentration. CONCLUSIONS AND PERSPECTIVES The therapeutic window of polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations.
Collapse
Affiliation(s)
- Svetlana S. Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
| | | |
Collapse
|
3
|
Efimova SS, Malykhina AI, Ostroumova OS. Triggering the Amphotericin B Pore-Forming Activity by Phytochemicals. MEMBRANES 2023; 13:670. [PMID: 37505036 PMCID: PMC10384262 DOI: 10.3390/membranes13070670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
The macrolide polyene antibiotic amphotericin B (AmB), remains a valuable drug to treat systemic mycoses due to its wide antifungal activity and low probability of developing resistance. The high toxicity of AmB, expressed in nephropathy and hemolysis, could be partially resolved by lowering therapeutic AmB concentration while maintaining efficacy. This work discusses the possibility of using plant polyphenols and alkaloids to enhance the pore-forming and consequently antifungal activity of AmB. We demonstrated that phloretin, phlorizin, naringenin, taxifolin, quercetin, biochanin A, genistein, resveratrol, and quinine led to an increase in the integral AmB-induced transmembrane current in the bilayers composed of palmitoyloleoylphosphocholine and ergosterol, while catechin, colchicine, and dihydrocapsaicin did not practically change the AmB activity. Cardamonin, 4'-hydroxychalcone, licochalcone A, butein, curcumin, and piperine inhibited AmB-induced transmembrane current. Absorbance spectroscopy revealed no changes in AmB membrane concentration with phloretin addition. A possible explanation of the potentiation is related to the phytochemical-produced changes in the elastic membrane properties and the decrease in the energy of formation of the lipid mouth of AmB pores, which is partially confirmed by differential scanning microcalorimetry. The possibility of AmB interaction with cholesterol in the mammalian cell membranes instead of ergosterol in fungal membranes, determines its high toxicity. The replacement of ergosterol with cholesterol in the membrane lipid composition led to a complete loss or a significant decrease in the potentiating effects of tested phytochemicals, indicating low potential toxicity of these compounds and high therapeutic potential of their combinations with the antibiotic. The discovered combinations of AmB with plant molecules that enhance its pore-forming ability in ergosterol-enriched membranes, seem to be promising for further drug development in terms of the toxicity decrease and efficacy improvement.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Anna I Malykhina
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
4
|
Semisynthetic Amides of Amphotericin B and Nystatin A 1: A Comparative Study of In Vitro Activity/Toxicity Ratio in Relation to Selectivity to Ergosterol Membranes. Antibiotics (Basel) 2023; 12:antibiotics12010151. [PMID: 36671352 PMCID: PMC9854944 DOI: 10.3390/antibiotics12010151] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Polyene antifungal amphotericin B (AmB) has been used for over 60 years, and remains a valuable clinical treatment for systemic mycoses, due to its broad antifungal activity and low rate of emerging resistance. There is no consensus on how exactly it kills fungal cells but it is certain that AmB and the closely-related nystatin (Nys) can form pores in membranes and have a higher affinity towards ergosterol than cholesterol. Notably, the high nephro- and hemolytic toxicity of polyenes and their low solubility in water have led to efforts to improve their properties. We present the synthesis of new amphotericin and nystatin amides and a comparative study of the effects of identical modifications of AmB and Nys on the relationship between their structure and properties. Generally, increases in the activity/toxicity ratio were in good agreement with increasing ratios of selective permeabilization of ergosterol- vs. cholesterol-containing membranes. We also show that the introduced modifications had an effect on the sensitivity of mutant yeast strains with alterations in ergosterol biosynthesis to the studied polyenes, suggesting a varying affinity towards intermediate ergosterol precursors. Three new water-soluble nystatin derivatives showed a prominent improvement in safety and were selected as promising candidates for drug development.
Collapse
|
5
|
Chromone-Containing Allylmorpholines Influence Ion Channels in Lipid Membranes via Dipole Potential and Packing Stress. Int J Mol Sci 2022; 23:ijms231911554. [PMID: 36232854 PMCID: PMC9570167 DOI: 10.3390/ijms231911554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, we report that chromone-containing allylmorpholines can affect ion channels formed by pore-forming antibiotics in model lipid membranes, which correlates with their ability to influence membrane boundary potential and lipid-packing stress. At 100 µg/mL, allylmorpholines 1, 6, 7, and 8 decrease the boundary potential of the bilayers composed of palmitoyloleoylphosphocholine (POPC) by about 100 mV. At the same time, the compounds do not affect the zeta-potential of POPC liposomes, but reduce the membrane dipole potential by 80-120 mV. The allylmorpholine-induced drop in the dipole potential produce 10-30% enhancement in the conductance of gramicidin A channels. Chromone-containing allylmorpholines also affect the thermotropic behavior of dipalmytoylphosphocholine (DPPC), abolishing the pretransition, lowering melting cooperativity, and turning the main phase transition peak into a multicomponent profile. Compounds 4, 6, 7, and 8 are able to decrease DPPC's melting temperature by about 0.5-1.9 °C. Moreover, derivative 7 is shown to increase the temperature of transition of palmitoyloleoylphosphoethanolamine from lamellar to inverted hexagonal phase. The effects on lipid-phase transitions are attributed to the changes in the spontaneous curvature stress. Alterations in lipid packing induced by allylmorpholines are believed to potentiate the pore-forming ability of amphotericin B and gramicidin A by several times.
Collapse
|
6
|
Umegawa Y, Yamamoto T, Dixit M, Funahashi K, Seo S, Nakagawa Y, Suzuki T, Matsuoka S, Tsuchikawa H, Hanashima S, Oishi T, Matsumori N, Shinoda W, Murata M. Amphotericin B assembles into seven-molecule ion channels: An NMR and molecular dynamics study. SCIENCE ADVANCES 2022; 8:eabo2658. [PMID: 35714188 PMCID: PMC9205587 DOI: 10.1126/sciadv.abo2658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 05/30/2023]
Abstract
Amphotericin B, an antifungal drug with a long history of use, forms fungicidal ion-permeable channels across cell membranes. Using solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we experimentally elucidated the three-dimensional structure of the molecular assemblies formed by this drug in membranes in the presence of the fungal sterol ergosterol. A stable assembly consisting of seven drug molecules was observed to form an ion conductive channel. The structure is somewhat similar to the upper half of the barrel-stave model proposed in the 1970s but substantially different in the number of molecules and in their arrangement. The present structure explains many previous findings, including structure-activity relationships of the drug, which will be useful for improving drug efficacy and reducing adverse effects.
Collapse
Affiliation(s)
- Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mayank Dixit
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kosuke Funahashi
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yasuo Nakagawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Taiga Suzuki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Oishi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Zielińska J, Wieczór M, Chodnicki P, Grela E, Luchowski R, Nierzwicki Ł, Bączek T, Gruszecki WI, Czub J. Self-assembly, stability and conductance of amphotericin B channels: bridging the gap between structure and function. NANOSCALE 2021; 13:3686-3697. [PMID: 33543744 DOI: 10.1039/d0nr07707k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amphotericin B (AmB), one of the most powerful but also toxic drugs used to treat systemic mycoses, is believed to selectively permeabilize fungal cell membranes to ions in a sterol-dependent manner. Unfortunately, the structure of the biologically active AmB channels has long eluded researchers, obstructing the design of safer alternatives. Here, we investigate the structural and thermodynamic aspects of channel formation, stability, and selective ion conduction. We combine fluorescence lifetime imaging and molecular simulations to trace the process of channel assembly until the formation of stable, roughly octameric double-length channels (DLCs). This stoichiometry is confirmed by matching the predicted channel conductances with the past results of patch-clamp measurements. We then use free energy calculations to explain the effect of sterols on DLC stability and discuss the observed cation selectivity in structural terms, addressing several long-standing controversies in the context of their physiological relevance. Simulations of ion permeation indicate that only solvated ions pass through DLCs, revealing surprising solvation patterns in the channel lumen. We conclude our investigation by inspecting the role of the tail hydroxyl in the assembly of functional channels, pointing at possible origins of the cholesterol-ergosterol selectivity.
Collapse
Affiliation(s)
- Joanna Zielińska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland. and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Paweł Chodnicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Ewa Grela
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Rafał Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
8
|
Tevyashova AN, Bychkova EN, Solovieva SE, Zatonsky GV, Grammatikova NE, Isakova EB, Mirchink EP, Treshchalin ID, Pereverzeva ER, Bykov EE, Efimova SS, Ostroumova OS, Shchekotikhin AE. Discovery of Amphamide, a Drug Candidate for the Second Generation of Polyene Antibiotics. ACS Infect Dis 2020; 6:2029-2044. [PMID: 32598131 DOI: 10.1021/acsinfecdis.0c00068] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphotericin B (AmB, 1) is the drug of choice for treating the most serious systemic fungal or protozoan infections. Nevertheless, its application is limited by low solubility in aqueous media and serious side effects such as infusion-related reactions, hemolytic toxicity, and nephrotoxicity. Owing to these limitations, it is essential to search for the polyene derivatives with better chemotherapeutic properties. With the objective of obtaining AmB derivatives with lower self-aggregation and improved solubility, we synthesized a series of amides of AmB bearing an additional basic group in the introduced residue. The screening of antifungal activity in vitro revealed that N-(2-aminoethyl)amide of AmB (amphamide, 6) had superior antifungal activity compared to that of the paternal AmB. Preclinical studies in mice confirmed that compound 6 had a much lower acute toxicity and higher antifungal efficacy in the model of mice candidosis sepsis compared with that of AmB (1). Thus, the discovered amphamide is a promising drug candidate for the second generation of polyene antibiotics and is also prospective for in-depth preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Anna N. Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - George V. Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Elena B. Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Elena P. Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Ivan D. Treshchalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | | | - Evgeny E. Bykov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg, 194064, Russia
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, 199021, Russia
- D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, 125047, Russia
| |
Collapse
|
9
|
Zakharova AA, Efimova SS, Yuskovets VN, Yakovlev IP, Sarkisyan ZM, Ostroumova OS. 1,3-Thiazine, 1,2,3,4-Dithiadiazole, and Thiohydrazide Derivatives Affect Lipid Bilayer Properties and Ion-Permeable Pores Induced by Antifungals. Front Cell Dev Biol 2020; 8:535. [PMID: 32695784 PMCID: PMC7339130 DOI: 10.3389/fcell.2020.00535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Over the past decade, thiazines, thiadiazoles, and thiohydrazides have attracted increasing attention due to their sedative, antimicrobial, antiviral, antifungal, and antitumor activities. The clinical efficacy of such drugs, as well as the possibility of developing resistance to antimicrobials, will depend on addressing a number of fundamental problems, including the role of membrane lipids during their interaction with plasma membranes. The effects of the eight 1,3- thiazine-, 1,2,3,4- dithiadiazole-, and thiohydrazide-related compounds on the physical properties of model lipid membranes and the effects on reconstituted ion channels induced by the polyene macrolide antimycotic nystatin and antifungal cyclic lipopeptides syringomycin E and fengycin were observed. We found that among the tested agents, the fluorine-containing compound N′-(3,5-difluorophenyl)-benzenecarbothiohydrazide (C6) was the most effective at increasing the electric barrier for anion permeation into the hydrophobic region of the membrane and reducing the conductance of anion-permeable syringomycin pores. A decrease in the membrane boundary potential with C6 adsorption also facilitated the immersion of positively charged syringomycin molecules into the lipid bilayer and increases the pore-forming ability of the lipopeptide. Using differential scanning microcalorimetry, we showed that C6 led to disordering of membrane lipids, possibly by potentiating positive curvature stress. Therefore, we used C6 as an agonist of antifungals forming the pores that are sensitive to membrane curvature stress and lipid packing, i.e., nystatin and fengycin. The dramatic increase in transmembrane current induced by syringomycin E, nystatin, and fengycin upon C6 treatment suggests its potential in combination therapy for treating invasive fungal infections.
Collapse
Affiliation(s)
- Anastasiia A Zakharova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Valeriy N Yuskovets
- Department of Organic Chemistry, Saint-Petersburg State Chemical Pharmaceutical University, Saint Petersburg, Russia
| | - Igor P Yakovlev
- Department of Organic Chemistry, Saint-Petersburg State Chemical Pharmaceutical University, Saint Petersburg, Russia
| | - Zara M Sarkisyan
- Department of General and Medical Chemistry, Saint-Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
10
|
Palacios-Serrato E, Araiza-Olivera D, Jiménez-Sánchez A. Fluorescent Probe for Transmembrane Dynamics during Osmotic Effects. Anal Chem 2020; 92:3888-3895. [DOI: 10.1021/acs.analchem.9b05390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Eva Palacios-Serrato
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Coyoacán, Ciudad de México 04510, Mexico
| | - Daniela Araiza-Olivera
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Coyoacán, Ciudad de México 04510, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
11
|
Yamamoto T, Umegawa Y, Tsuchikawa H, Hanashima S, Matsumori N, Funahashi K, Seo S, Shinoda W, Murata M. The Amphotericin B-Ergosterol Complex Spans a Lipid Bilayer as a Single-Length Assembly. Biochemistry 2019; 58:5188-5196. [PMID: 31793296 DOI: 10.1021/acs.biochem.9b00835] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphotericin B (AmB) is a polyene macrolide antibiotic clinically used as an antifungal drug. Its preferential complexation with ergosterol (Erg), the major sterol of fungal membranes, leads to the formation of a barrel-stave-like ion channel across a lipid bilayer. To gain a better understanding of the mechanism of action, the mode of lipid bilayer spanning provides essential information. However, because of the lack of methodologies to observe it directly, it has not been revealed for the Erg-containing channel assembly for many years. In this study, we disclosed that the AmB-Erg complex spans a lipid bilayer with a single-molecule length, using solid-state nuclear magnetic resonance (NMR) experiments. Paramagnetic relaxation enhancement by Mn2+ residing near the surface of lipid bilayers induced the depth-dependent decay of 13C NMR signals for individual carbon atoms of AmB. We found that both terminal segments, the 41-COOH group and C38-C40 methyl groups, come close to the lipid bilayer surfaces, suggesting that the AmB-Erg complex spans a palmitoyloleoylphosphatidylcholine (POPC) bilayer with a single-molecule length. Molecular dynamics simulation experiments further confirmed the stabilization of the AmB-Erg complex as a single-length spanning complex. These results provide experimental evidence of the single-length complex incorporated in the membrane by making thinner a POPC-Erg bilayer that mimics fungal membranes.
Collapse
Affiliation(s)
- Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan.,Department of Chemistry, Graduate School of Science , Kyushu University , Fukuoka 819-0395 , Japan
| | - Kosuke Funahashi
- Department of Materials Chemistry , Nagoya University , Nagoya 464-8603 , Japan
| | - Sangjae Seo
- Department of Materials Chemistry , Nagoya University , Nagoya 464-8603 , Japan
| | - Wataru Shinoda
- Department of Materials Chemistry , Nagoya University , Nagoya 464-8603 , Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
12
|
Goswami P, Ghiya BC, Kumar V, Rekha S, Mehta RD. Comparison of Efficacy of Two Different Concentrations of Intralesional Amphotericin B in the Treatment of Cutaneous Leishmaniasis; A Randomized Controlled Trial. Indian Dermatol Online J 2019; 10:627-631. [PMID: 31807440 PMCID: PMC6859770 DOI: 10.4103/idoj.idoj_470_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction: Cutaneous leishmaniasis is a vector borne disease caused by Leishmania major and Leishmania tropica. Bikaner is an endemic pocket for cutaneous leishmaniasis caused by Leishmania tropica. Materials and Methods: A prospective study was done to evaluate the efficacy of different concentrations of intralesional amphotericin B as a treatment modality for cutaneous leishmaniasis in Bikaner, Rajasthan, India from January 2016 to June 2017. Fifty patients were randomized into two groups, A and B. Twenty-five patients from group A, received intralesionl amphotericin B (2.5 mg/ml) 0.5 ml/cm2, weekly for 8 weeks. Another group of 25 patients were treated by intralesional amphotericin B (5.0 mg/ml) weekly for same period. The cases were followed-up for response, side effects, and recurrence of disease. Results: The results at the end of 8 weeks, showed complete response in 18 (72%) patients, partial response in 5 (20%) and 2 (8%) patients were non responders in group A. In group B, complete response was observed in 14 (56%), partial response in 7 (28%) patients and 4 (16%) patients did not show response. The difference was statistically insignificant (P > 0.05). No side effects were observed in both groups. Conclusion: The difference between the efficacy of 5 mg/ml and 2.5 mg/ml concentrations of Amphotericin B injections was found to be statistically insignificant. So, weekly injections of amphotericin B looks promising, however, larger sample size is required to assess the efficacy of both concentrations in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Pooja Goswami
- Department of Dermatology, Venereology and Leprosy, Sardar Patel Medical College, Bikaner, Rajasthan, India
| | - B C Ghiya
- Department of Dermatology, Venereology and Leprosy, Sardar Patel Medical College, Bikaner, Rajasthan, India
| | - Vineet Kumar
- Department of Dermatology, Venereology and Leprosy, Sardar Patel Medical College, Bikaner, Rajasthan, India
| | - S Rekha
- Department of Dermatology, Venereology and Leprosy, Sardar Patel Medical College, Bikaner, Rajasthan, India
| | - R D Mehta
- Department of Dermatology, Venereology and Leprosy, Sardar Patel Medical College, Bikaner, Rajasthan, India
| |
Collapse
|
13
|
Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. The pore-forming action of polyenes: From model membranes to living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:418-430. [DOI: 10.1016/j.bbamem.2018.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023]
|
14
|
Efimova SS, Chulkov EG, Ostroumova OS. Lipid-mediated mode of action of local anesthetics on lipid pores induced by polyenes, peptides and lipopeptides. Colloids Surf B Biointerfaces 2018. [PMID: 29525621 DOI: 10.1016/j.colsurfb.2018.02.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of local anesthetics (LAs), namely, lidocaine (LDC), prilocaine (PLC), mepivacaine (MPV), bupivacaine (BPV), procaine (PC), and tetracaine (TTC), on the steady-state transmembrane conductance induced by the cis-side addition of the antifungal polyene macrolide antibiotic, nystatin (NYS), in planar lipid bilayers were studied. The addition of TTC to model membranes comprising DOPC and cholesterol (33 mol%) led to a nearly twenty-fold increase in the steady-state NYS-induced membrane conductance. BPV slightly enhanced the channel-forming activity of polyene. LDC, PLC, MPV, and PC did not affect the NYS-induced transmembrane current. We concluded that the effects of LAs on the channel-forming activity of NYS were in agreement with their effects on the elastic properties of model membranes. The ability of aminoamide LAs to promote calcein leakage from large unilamellar DOPC-vesicles was decreased in the following order: BPV >> LDC ≈ PLC ≈ MPV. LDC, PLC, and MPV produced a graded leakage of fluorescent marker from liposomes, up to 10-13%. A initial sharp jump in fluorescence after the introduction of BPV was attributed to the solubilization of liposomes and the formation of mixed DOPC:BPV-micelles. Differential scanning microcalorimetry (DSC) of large unilamellar DPPC-vesicles showed that the main transition temperature (Tm) is continuously decreased upon increasing concentrations of TTC. A sharp drop in the enthalpy of the transition at higher TTC concentrations indicated a formation of anesthetic/lipid mixed micelles. In contrast to TTC, PC slightly decreased Tm, broadened the DSC signal and did not provoke vesicle-to-micelle transition. Both the calcein leakage and DSC data together with the results of measurements of threshold voltages that are required to cause the lipid bilayer breakdown might indicate an alteration in the curvature lipid packing stress, induced by BPV and TTC. The data presented here lend support to a lipid-mediated mode of LAs action on NYS pores via an alteration in curvature stress near the trans-mouth. Similar results were obtained for several lipid pores, formed by polyene amphotericin B, lipopeptide syringomycin E, and the peptides magainin and melittin. This finding further developed the concept of non-specific regulation of lipid pores by LAs. In conclusion, the combination of nystatin with LAs could be a novel treatment for efficient therapy of superficial and mucosal candidiasis.
Collapse
Affiliation(s)
- Svetlana S Efimova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia.
| | - Evgeny G Chulkov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
15
|
Iwamoto M, Sumino A, Shimada E, Kinoshita M, Matsumori N, Oiki S. Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3. Sci Rep 2017; 7:10782. [PMID: 28883505 PMCID: PMC5589915 DOI: 10.1038/s41598-017-11135-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022] Open
Abstract
Amphidinol 3 (AM3) is an anti-fungal polyene extracted from a marine dinoflagellate. Here, we examined the ion channel activity and membrane-embedded structure of AM3 using a lipid bilayer method and atomic force microscopy (AFM). AM3 exhibited large-conductance (~1 nS) and non-selective single-channel activity only when sterols were present in the membrane leaflet of the AM3-added side. The variable conductance suggests the formation of a multimeric barrel-stave pore. At high AM3 concentrations, giant-conductance “jumbo” channels (~40 nS) emerged. AFM revealed a thicker raft-like membrane phase with the appearance of a wrinkled surface, in which phase pores (diameter: ~10 nm) were observed. The flip-flop of ergosterol occurred only after the appearance of the jumbo channel, indicating that the jumbo channel induced a continuity between the outer and inner leaflets of the membrane: a feature characteristic of toroidal-like pores. Thus, AM3 forms different types of sterol-aided polymorphic channels in a concentration dependent manner.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Ayumi Sumino
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan.,High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.,Bio-AFM frontier Research Center, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Eri Shimada
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
16
|
dos Santos AG, Marquês JT, Carreira AC, Castro IR, Viana AS, Mingeot-Leclercq MP, de Almeida RFM, Silva LC. The molecular mechanism of Nystatin action is dependent on the membrane biophysical properties and lipid composition. Phys Chem Chem Phys 2017; 19:30078-30088. [DOI: 10.1039/c7cp05353c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nystatin-induced membrane permeabilization is related to its effects on membrane properties and organization.
Collapse
Affiliation(s)
- A. G. dos Santos
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - J. T. Marquês
- CQB – Centre for Chemistry and Biochemistry, Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - A. C. Carreira
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - I. R. Castro
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - A. S. Viana
- CQB – Centre for Chemistry and Biochemistry, Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - M.-P. Mingeot-Leclercq
- FACM/LDRI-UCL – Cellular and Molecular Pharmacology unit of the Louvain Drug Research Institute
- Université Catholique de Louvain
- B-1200 Bruxelles
- Belgium
| | - R. F. M. de Almeida
- CQB – Centre for Chemistry and Biochemistry, Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - L. C. Silva
- iMed.ULisboa – Research Institute for Medicines
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
17
|
Zemljič Jokhadar Š, Božič B, Kristanc L, Gomišček G. Osmotic Effects Induced by Pore-Forming Agent Nystatin: From Lipid Vesicles to the Cell. PLoS One 2016; 11:e0165098. [PMID: 27788169 PMCID: PMC5082891 DOI: 10.1371/journal.pone.0165098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
The responses of Chinese hamster ovary epithelial cells, caused by the pore-forming agent nystatin, were investigated using brightfield and fluorescence microscopy. Different phenomena, i.e., the detachment of cells, the formation of blebs, the occurrence of “cell-vesicles” and cell ruptures, were observed. These phenomena were compared to those discovered in giant lipid vesicles. A theoretical model, based on the osmotic effects that occur due to the size-discriminating nystatin transmembrane pores in lipid vesicles, was extended with a term that considers the conservation of the electric charge density in order to describe the cell’s behavior. The increase of the cellular volume was predicted and correlated with the observed phenomena.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: spela
| | - Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Kristanc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Gomišček
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
The Role of Signaling via Aqueous Pore Formation in Resistance Responses to Amphotericin B. Antimicrob Agents Chemother 2016; 60:5122-9. [PMID: 27381391 DOI: 10.1128/aac.00878-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug resistance studies have played an important role in the validation of antibiotic targets. In the case of the polyene antibiotic amphotericin B (AmB), such studies have demonstrated the essential role that depletion of ergosterol plays in the development of AmB-resistant (AmB-R) organisms. However, AmB-R strains also occur in fungi and parasitic protozoa that maintain a normal level of ergosterol at the plasma membrane. Here, I review evidence that shows not only that there is increased protection against the deleterious consequences of AmB-induced ion leakage across the membrane in these resistant pathogens but also that a set of events are activated that block the cell signaling responses that trigger the oxidative damage produced by the antibiotic. Such signaling events appear to be the consequence of a membrane-thinning effect that is exerted upon lipid-anchored Ras proteins by the aqueous pores formed by AmB. A similar membrane disturbance effect may also explain the activity of AmB on mammalian cells containing Toll-like receptors. These resistance mechanisms expand our current understanding of the role that the formation of AmB aqueous pores plays in triggering signal transduction responses in both pathogens and host immune cells.
Collapse
|
19
|
Chulkov EG, Ostroumova OS. Phloretin modulates the rate of channel formation by polyenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:289-94. [DOI: 10.1016/j.bbamem.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
|
20
|
Gavello D, Vandael D, Gosso S, Carbone E, Carabelli V. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. J Physiol 2015; 593:4835-53. [PMID: 26282459 DOI: 10.1113/jp271078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect and, as such, exerts a relevant action on the adipo-adrenal axis. Leptin has a dual action on adrenal mouse chromaffin cells both at rest and during stimulation. At rest, the adipokine inhibits the spontaneous firing of most cells by enhancing the probability of BK channel opening through the phosphoinositide 3-kinase signalling cascade. This inhibitory effect is absent in db(-) /db(-) mice deprived of Ob receptors. During sustained stimulation, leptin preserves cell excitability by generating well-adapted action potential (AP) trains of lower frequency and broader width and increases catecholamine secretion by increasing the size of the ready-releasable pool and the rate of vesicle release. In conclusion, leptin dampens AP firing at rest but preserves AP firing and enhances catecholamine release during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release. ABSTRACT Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect. Besides being expressed in the hypothalamus and hippocampus, leptin receptors (ObRs) are also present in chromaffin cells of the adrenal medulla. In the present study, we report the effect of leptin on mouse chromaffin cell (MCC) functionality, focusing on cell excitability and catecholamine secretion. Acute application of leptin (1 nm) on spontaneously firing MCCs caused a slowly developing membrane hyperpolarization followed by complete blockade of action potential (AP) firing. This inhibitory effect at rest was abolished by the BK channel blocker paxilline (1 μm), suggesting the involvement of BK potassium channels. Single-channel recordings in 'perforated microvesicles' confirmed that leptin increased BK channel open probability without altering its unitary conductance. BK channel up-regulation was associated with the phosphoinositide 3-kinase (PI3K) signalling cascade because the PI3K specific inhibitor wortmannin (100 nm) fully prevented BK current increase. We also tested the effect of leptin on evoked AP firing and Ca(2+) -driven exocytosis. Although leptin preserves well-adapted AP trains of lower frequency, APs are broader and depolarization-evoked exocytosis is increased as a result of the larger size of the ready-releasable pool and higher frequency of vesicle release. The kinetics and quantal size of single secretory events remained unaltered. Leptin had no effect on firing and secretion in db(-) /db(-) mice lacking the ObR gene, confirming its specificity. In conclusion, leptin exhibits a dual action on MCC activity. It dampens AP firing at rest but preserves AP firing and increases catecholamine secretion during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - David Vandael
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy.,Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Sara Gosso
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| |
Collapse
|
21
|
Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah STA, Caffrey M, Maturana AD, Ishitani R, Nureki O. Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Nat Commun 2014; 5:5374. [PMID: 25367295 PMCID: PMC4241985 DOI: 10.1038/ncomms6374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Magnesium is the most abundant divalent cation in living cells and is crucial to several biological processes. MgtE is a Mg(2+) channel distributed in all domains of life that contributes to the maintenance of cellular Mg(2+) homeostasis. Here we report the high-resolution crystal structures of the transmembrane domain of MgtE, bound to Mg(2+), Mn(2+) and Ca(2+). The high-resolution Mg(2+)-bound crystal structure clearly visualized the hydrated Mg(2+) ion within its selectivity filter. Based on those structures and biochemical analyses, we propose a cation selectivity mechanism for MgtE in which the geometry of the hydration shell of the fully hydrated Mg(2+) ion is recognized by the side-chain carboxylate groups in the selectivity filter. This is in contrast to the K(+)-selective filter of KcsA, which recognizes a dehydrated K(+) ion. Our results further revealed a cation-binding site on the periplasmic side, which regulate channel opening and prevents conduction of near-cognate cations.
Collapse
Affiliation(s)
- Hironori Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Motoyuki Hattori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keitaro Yamashita
- SR Life Science Instrumentation Unit, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Syed T. A. Shah
- Membrane Structural and Functional Biology Group, School of Medicine, and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine, and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Andrés D. Maturana
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Chulkov EG, Efimova SS, Schagina LV, Ostroumova OS. Direct visualization of solid ordered domains induced by polyene antibiotics in giant unilamellar vesicles. Chem Phys Lipids 2014; 183:204-7. [DOI: 10.1016/j.chemphyslip.2014.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
|
23
|
Kristanc L, Božič B, Gomišček G. The role of sterols in the lipid vesicle response induced by the pore-forming agent nystatin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2635-45. [DOI: 10.1016/j.bbamem.2014.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/03/2014] [Accepted: 05/16/2014] [Indexed: 01/20/2023]
|
24
|
Chulkov EG, Schagina LV, Ostroumova OS. Membrane dipole modifiers modulate single-length nystatin channels via reducing elastic stress in the vicinity of the lipid mouth of a pore. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:192-9. [PMID: 25223717 DOI: 10.1016/j.bbamem.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/13/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
The polyene antifungal antibiotic nystatin confers its biological activity by forming pores in the membranes of target cells. Exposure of only one side of the membrane to nystatin is more relevant than two-side exposure because in vivo antibiotic molecules initially interact with cell membrane from the exterior side. The effect of flavonoids and styryl dyes on the steady-state conductance induced by a cis-side addition of nystatin was investigated by using electrophysiological measurements on artificial membranes. The assessment of changes in membrane dipole potential by dipole modifiers was carried out by their influence on K(+)-nonactin (K(+)-valinomycin) current. The alterations of the phase segregation scenario induced by nystatin and flavonoids were observed via confocal fluorescence microscopy. The introduction of phloretin, phlorizin, biochanin A, myricetin, quercetin, taxifolin, genistin, genistein, and RH 421 leads to a significant increase in the nystatin-induced steady-state transmembrane current through membranes composed of a mixture of DOPC, cholesterol and sphingomyelin (57:33:10 mol%). Conversely, daidzein, catechin, trihydroxyacetophenone, and RH 237 do not affect the transmembrane current. Three possible mechanisms that explain the observed results are discussed: changes in the membrane dipole potential, alterations of the phase separation within the lipid bilayer, and influences of the dipole modifiers on the formation of the lipid mouth of the polyene pore. Most likely, changes in the monolayer curvature in the vicinity of trans-mouth of a nystatin single-length channel prevail over alterations of dipole potential of membrane and the phase segregation scenarios induced by dipole modifiers.
Collapse
Affiliation(s)
- Evgeny G Chulkov
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia.
| | - Ludmila V Schagina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia
| | - Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia
| |
Collapse
|
25
|
Shatursky OY, Romanenko OV, Himmelreich NH. Long open amphotericin channels revealed in cholesterol-containing phospholipid membranes are blocked by thiazole derivative. J Membr Biol 2014; 247:211-29. [PMID: 24402241 DOI: 10.1007/s00232-013-9626-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
The action of antifungal drug, amphotericin B (AmB), on solvent-containing planar lipid bilayers made of sterols (cholesterol, ergosterol) and synthetic C14-C18 tail phospholipids (PCs) or egg PC has been investigated in a voltage-clamp mode. Within the range of PCs tested, a similar increase was achieved in the lifetime of one-sided AmB channels in cholesterol- and ergosterol-containing membranes with the C16 tail PC, DPhPC at sterol/DPhPC molar ratio ≤1. The AmB channel lifetimes decreased only at sterol/DPhPC molar ratio >1 that occurred with sterol/PC molar ratio of target cell membranes at a pathological state. These data obtained on bilayer membranes two times thicker than one-sided AmB channel length are consistent with the accepted AmB pore-forming mechanism, which is associated with membrane thinning around AmB-sterol complex in the lipid rafts. Our results show that AmB can create cytotoxic (long open) channels in cholesterol membrane with C14-C16 tail PCs and nontoxic (short open) channels with C17-C18 tail PCs as the lifetime of one-sided AmB channel depends on ~2-5 Å difference in the thickness of sterol-containing C16 and C18 tail PC membranes. The reduction in toxic AmB channels efficacy can be required at the drug administration because C16 tails in native membrane PCs occur almost as often as C18 tails. The comparative analysis of AmB channel blocking by tetraethylammonium chloride, tetramethylammonium chloride and thiazole derivative of vitamin B1, 3-decyloxycarbonylmethyl-4-methyl-5-(2-hydroxyethyl) thiazole chloride (DMHT), has proved that DMHT is a comparable substitute for both tetraalkylammonia that exhibits a much higher affinity.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- Department of Neurochemistry, Palladin Institute of Biochemistry, Leontovich Str., 9, Kiev, 01601, Ukraine,
| | | | | |
Collapse
|
26
|
Matsuoka S. [Structural study on small molecules in biological solid samples by using solid state NMR]. YAKUGAKU ZASSHI 2012; 132:969-78. [PMID: 23023412 DOI: 10.1248/yakushi.132.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many small molecule drugs have molecular targets that are non-crystalline and insoluble biological matrices, such as proteins embedded in lipid membrane, cell membranes, and cell walls. To understand the action mechanisms, it is essential to determine the binding structure with atomic-level resolution. Although solution nuclear magnetic resonance (NMR) and X-ray crystallography have been used to determine molecular structures of cell membrane and membrane proteins, these methods are unable to reproduce the complexity of biological systems because either solubilization or crystallization of target molecules is requisite. For structural studies of insoluble non-crystalline biological samples, so-called "biological solids", high resolution distance measurements using solid-state NMR are indispensable techniques, of which rotational-echo double-resonance (REDOR) is one of the most widely used methods. In this paper, a brief introduction to REDOR NMR and its applications to structural studies on the antifungal amphotericin B-membrane phospholipid complex and a structural elucidation of photorespiration metabolites in plant cells without extraction or isolation is provided.
Collapse
Affiliation(s)
- Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Affiliation(s)
- Marco Colombini
- Department of Biology,
University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
28
|
Kristanc L, Svetina S, Gomišček G. Effects of the pore-forming agent nystatin on giant phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:636-44. [DOI: 10.1016/j.bbamem.2011.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/09/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
29
|
Ishibashi H, Moorhouse AJ, Nabekura J. Perforated Whole-Cell Patch-Clamp Technique: A User’s Guide. SPRINGER PROTOCOLS HANDBOOKS 2012. [DOI: 10.1007/978-4-431-53993-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Chattopadhyay A, Jafurulla M. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem Biophys Res Commun 2011; 416:7-12. [PMID: 22100811 DOI: 10.1016/j.bbrc.2011.11.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/04/2011] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis (VL) is caused by various species of the genus Leishmania. Internalization of Leishmania into host cells is facilitated by a large number of receptors, and therefore no panacea is available for the treatment of leishmaniasis. We previously demonstrated the requirement of host membrane cholesterol in the entry of Leishmania into macrophages by cholesterol depletion using methyl-β-cyclodextrin (MβCD). We recently showed that leishmanial infection is inhibited upon sequestration of host membrane cholesterol using amphotericin B (AmB), considered as the best existing drug against VL. The reason for the antileishmanial activity of AmB is generally believed to be its ability to bind ergosterol in parasite membranes. Our recent results offer the opportunity to reexamine the mechanism behind the effectiveness of current AmB-based therapeutic strategies to treat leishmaniasis. We propose here a novel mechanism in which the effectiveness of AmB treatment could be partly based on its ability to sequester cholesterol in the host membrane, thereby abrogating macrophage-parasite interaction.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad 500 007, India.
| | | |
Collapse
|
31
|
Cohen BE. Amphotericin B membrane action: role for two types of ion channels in eliciting cell survival and lethal effects. J Membr Biol 2010; 238:1-20. [PMID: 21085940 DOI: 10.1007/s00232-010-9313-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/20/2010] [Indexed: 01/25/2023]
Abstract
The formation of aqueous pores by the polyene antibiotic amphotericin B (AmB) is at the basis of its fungicidal and leishmanicidal action. However, other types of nonlethal and dose-dependent biphasic effects that have been associated with the AmB action in different cells, including a variety of survival responses, are difficult to reconcile with the formation of a unique type of ion channel by the antibiotic. In this respect, there is increasing evidence indicating that AmB forms nonaqueous (cation-selective) channels at concentrations below the threshold at which aqueous pores are formed. The main foci of this review will be (1) to provide a summary of the evidence supporting the formation of cation-selective ion channels and aqueous pores by AmB in lipid membrane models and in the membranes of eukaryotic cells; (2) to discuss the influence of membrane parameters such as thickness fluctuations, the type of sterol present and the existence of sterol-rich specialized lipid raft microdomains in the formation process of such channels; and (3) to develop a cell model that serves as a framework for understanding how the intracellular K(+) and Na(+) concentration changes induced by the cation-selective AmB channels enhance multiple survival response pathways before they are overcome by the more sustained ion fluxes, Ca(2+)-dependent apoptotic events and cell lysis effects that are associated with the formation of AmB aqueous pores.
Collapse
Affiliation(s)
- B Eleazar Cohen
- Division of External Activities, National Institute of Allergy and Infectious Diseases, 6700B Rockledge Drive, Bethesda, MD 20982, USA.
| |
Collapse
|
32
|
Récamier KS, Hernández-Gómez A, González-Damián J, Ortega-Blake I. Effect of Membrane Structure on the Action of Polyenes: I. Nystatin Action in Cholesterol- and Ergosterol-Containing Membranes. J Membr Biol 2010; 237:31-40. [DOI: 10.1007/s00232-010-9304-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 08/27/2010] [Indexed: 11/27/2022]
|
33
|
Matsuoka S, Inoue M. Application of REDOR NMR in natural product chemistry. Chem Commun (Camb) 2009:5664-75. [DOI: 10.1039/b910230b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Batishchev OV, Indenbom AV. Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal–Mueller technique. Bioelectrochemistry 2008; 74:22-5. [DOI: 10.1016/j.bioelechem.2008.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 01/05/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
35
|
Hartsel SC, Hatch C, Ayenew W. How does Amphotericin B Work?: Studies on Model Membrane Systems. J Liposome Res 2008. [DOI: 10.3109/08982109309150727] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Asandei A, Luchian T. Ion selectivity, transport properties and dynamics of amphotericin B channels studied over a wide range of acidity changes. Colloids Surf B Biointerfaces 2008; 67:99-106. [PMID: 18804968 DOI: 10.1016/j.colsurfb.2008.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/16/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Amphotericin B (AmB) is an antifungal antibiotic which, despite the severe side effects, is still used for the treatment of systemic fungal infections. Herein we studied the influence of pH upon the selectivity and the transport properties of AmB channels inserted in reconstituted, ergosterol-containing zwitterionic lipid membranes. Our electrophysiology experiments carried out on single and multiple AmB channels prove that at pH 2.8 these channels are anion selective, whereas at neutral and alkaline pH's (pH 7 and pH 11) they become cation selective. We attribute this to the pH-dependent ionization state of the carboxyl and amino groups present at the mouth of AmB molecules. Surprisingly, our data reveal that the single-molecule ionic conductance of AmB channels varies in a non-monotonic fashion with pH changes, which we attribute to the pH-dependent variation of the surface and dipole membrane potential. We demonstrate that when added only from one side of the membrane, in symmetrical salt solutions across the membrane and low pH values, AmB channels display a strong rectifying behavior, and their insertion is strongly favored when positive potentials are present on the side of their addition.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru I. Cuza University, Faculty of Physics, Laboratory of Biophysics & Medical Physics, Boulevard King Carol I, No. 11, Iasi, R-700506, Romania
| | | |
Collapse
|
37
|
Slatin SL, Finkelstein A, Kienker PK. Anomalous proton selectivity in a large channel: colicin A. Biochemistry 2008; 47:1778-88. [PMID: 18205407 DOI: 10.1021/bi701900x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some of the bactericidal proteins known as colicins exert their toxic action by forming a large, nonselective channel in the inner membrane of target bacteria. The structure of this channel is unknown. It conducts large ions but has a much smaller conductance than would be expected for a channel of its deduced size. Here we report that the colicin channel, particularly the colicin A channel, is selective for protons over other cations (and anions) by many orders of magnitude. This was deduced from measurements of reversal potentials in pH gradients across planar lipid bilayers containing these channels. For example, in symmetric 0.1 M KCl with a pH 5/pH 8 gradient across the membrane, the reversal potential of colicin A is -21 mV, rather than 0. Such a result would be unremarkable for a narrow channel but is beyond explanation by current understanding of permeation for a channel of its diameter. For this reason, we re-examined the issue of the diameter of the channel lumen and confirmed that the lumen is indeed "too large" ( approximately 10 A) to select for protons by the amount that we measure. We are thus compelled to propose that an unorthodox mechanism is at work in this protein.
Collapse
Affiliation(s)
- Stephen L Slatin
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
38
|
|
39
|
Matsuoka S, Ikeuchi H, Umegawa Y, Matsumori N, Murata M. Membrane interaction of amphotericin B as single-length assembly examined by solid state NMR for uniformly 13C-enriched agent. Bioorg Med Chem 2006; 14:6608-14. [PMID: 16782343 DOI: 10.1016/j.bmc.2006.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 11/29/2022]
Abstract
The membrane interaction of amphotericin B (AmB), one of the most important anti-fungal drugs, was investigated by solid state NMR measurements of uniformly 13C-enriched AmB, which was prepared by the culture of the drug-producing microorganism in the presence of [u-13C6]glucose. All the 13C NMR signals of AmB upon binding to DLPC membrane were successfully assigned on the basis of the 13C-13C correlation spectrum. 13C-31P RDX (Rotational-Echo Double Resonance for X-clusters) experiments clearly revealed the REDOR dephasing effects for carbon atoms residing in the both terminal parts, whereas no dephasing was observed for the middle parts including polyolefinic C20-C33 and hydroxyl-bearing C8/C9 parts. These observations suggest that AmB binds to DLPC membrane with a high affinity to the phospholipid and spans the membrane with a single molecular length.
Collapse
Affiliation(s)
- Shigeru Matsuoka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
40
|
Wiehart UIM, Rautenbach M, Hoppe HC. Selective lysis of erythrocytes infected with the trophozoite stage of Plasmodium falciparum by polyene macrolide antibiotics. Biochem Pharmacol 2006; 71:779-90. [PMID: 16436272 DOI: 10.1016/j.bcp.2005.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/10/2005] [Accepted: 12/14/2005] [Indexed: 11/20/2022]
Abstract
The continuous increase in strains of the human malaria parasite Plasmodium falciparum resistant to most front-line antimalarial compounds is reason for grave clinical concern. The search for new drugs led us to investigate a number of membrane active polyene macrolide antibiotics, such as amphotericin B, nystatin, filipin and natamycin. The interaction of these compounds with sterols in bilayer cell membranes can lead to cell damage and ultimately cell lysis. The malaria parasite modifies the host erythrocyte membrane by changing the protein and lipid composition and thus the infected cell could be a selective target for membrane active compounds. We found that erythrocytes infected with the trophozoite stage of P. falciparum were particularly susceptible to lysis by amphotericin B (Fungizone) and, to a lesser extent, nystatin, as determined by ELISA and various microscopy assays. Liposomal amphotericin B (AmBisome) displayed a similar specificity for parasitised erythrocytes, but complete lysis required a longer incubation period. In contrast, filipin and natamycin did not distinguish between normal and parasite-infected erythrocytes, but lysed both at similar concentrations. In addition, when added to ring-stage cultures, the amphotericin B preparations and nystatin produced a marked disruption in parasite morphology in less than 2 h without an accompanying permeabilisation of the infected host cell, suggesting a second plasmodicidal mode of action. The results imply that selected polyene macrolide antibiotics or their derivatives could find application in the treatment of severe malaria caused by of P. falciparum.
Collapse
Affiliation(s)
- Ursula I M Wiehart
- Division of Pharmacology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Medical School Observatory, 7925 Cape Town, South Africa
| | | | | |
Collapse
|
41
|
Baginski M, Cybulska B, Gruszecki WI. Chapter 9 Interaction of Polyene Macrolide Antibiotics with Lipid Model Membranes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(05)03009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
42
|
Stark G. Functional consequences of oxidative membrane damage. J Membr Biol 2005; 205:1-16. [PMID: 16245038 DOI: 10.1007/s00232-005-0753-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/19/2005] [Indexed: 12/12/2022]
Abstract
The interaction of reactive oxygen species with biological membranes is known to produce a great variety of different functional modifications. Part of these modifications may be classified as direct effects. They are due to direct interaction of the reactive species with the molecular machinery under study with a subsequent chemical and functional modification of these molecules. An important part of the observed functional modifications are, however, indirect effects. They are the consequence of an oxidative modification of the environment of biological macromolecules. Lipid peroxidation-via its generation of chemically reactive products-contributes to the loss of cellular functions through the inactivation of membrane enzymes and even of cytoplasmic (i.e., water soluble) proteins. Oxidation of membrane lipids may, however, also increase the efficiency of membrane functions. This was observed for a series of transport systems. Lipid peroxidation was accompanied by activation of certain types of ion channels and ion carriers. The effect is due to an increase of the polarity of the membrane interior by accumulation of polar oxidation products. The concomitant change of the dielectric constant, which may be detected via the increase of the membrane capacitance, facilitates the opening of membrane channels and lowers the inner membrane barrier for the movement of ions across the membrane. The predominant effect, however, at least at a greater extent of lipid peroxidation, is the inhibition of membrane functions. The strong increase of the leak conductance contributes to the depolarization of the membrane potential, it destroys the barrier properties of the membrane and it may finally lead, via an increase of cytoplasmic Ca(2+) concentration, to cell death. The conclusions were derived from experiments performed with different systems: model systems in planar lipid membranes, native ion channels either reconstituted in lipid membranes or investigated in their natural environment by the patch-clamp method, and two important ion pumps, the Na/K-ATPase and the sarcoplasmic reticulum (SR) Ca-ATPase.
Collapse
Affiliation(s)
- G Stark
- Department of Biology, University of Konstanz, Box M638, D-78457 Konstanz, Germany.
| |
Collapse
|
43
|
Miñones J, Conde O, Dynarowicz-Łątka P, Casas M. Penetration of amphotericin B into DOPC monolayers containing sterols of cellular membranes. Colloids Surf A Physicochem Eng Asp 2005. [DOI: 10.1016/j.colsurfa.2005.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Tagawa A, Mezzacasa A, Hayer A, Longatti A, Pelkmans L, Helenius A. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. ACTA ACUST UNITED AC 2005; 170:769-79. [PMID: 16129785 PMCID: PMC2171342 DOI: 10.1083/jcb.200506103] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using total internal reflection fluorescence microscopy (TIR-FM), fluorescence recovery after photobleaching (FRAP), and other light microscopy techniques, we analyzed the dynamics, the activation, and the assembly of caveolae labeled with fluorescently tagged caveolin-1 (Cav1). We found that when activated by simian virus 40 (SV40), a non-enveloped DNA virus that uses caveolae for cell entry, the fraction of mobile caveolae was dramatically enhanced both in the plasma membrane (PM) and in the caveosome, an intracellular organelle that functions as an intermediate station in caveolar endocytosis. Activation also resulted in increased microtubule (MT)-dependent, long-range movement of caveolar vesicles. We generated heterokaryons that contained GFP- and RFP-tagged caveolae by fusing cells expressing Cav1-GFP and -RFP, respectively, and showed that even when activated, individual caveolar domains underwent little exchange of Cav1. Only when the cells were subjected to transient cholesterol depletion, did the caveolae domain exchange Cav1. Thus, in contrast to clathrin-, or other types of coated transport vesicles, caveolae constitute stable, cholesterol-dependent membrane domains that can serve as fixed containers through vesicle traffic. Finally, we identified the Golgi complex as the site where newly assembled caveolar domains appeared first.
Collapse
Affiliation(s)
- Akiko Tagawa
- Swiss Federal Institute of Technology (ETH) Zürich, ETH-Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Matsuoka S, Ikeuchi H, Matsumori N, Murata M. Dominant formation of a single-length channel by amphotericin B in dimyristoylphosphatidylcholine membrane evidenced by 13C-31P rotational echo double resonance. Biochemistry 2005; 44:704-10. [PMID: 15641796 DOI: 10.1021/bi049001k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(13)C-Labeled amphotericin B (AmB) was prepared by feeding the producing organism Streptomyces nodosus with [3-(13)C]propionate. The REDOR experiments for dimyristoylphosphatidylcholine (DMPC) membrane using the (13)C-labeled AmB showed the prominent dephasing effects between the phosphate group in PC and C41 carboxyl carbon in the polar head. In addition, C39/C40 methyl carbons also gave rise to the significant reduction of their (13)C NMR signals, implying that both terminal parts of AmB reside close to the surface of the DMPC membrane. Conversely, the same REDOR experiments with use of distearoylphosphatidylcholine (DSPC) showed no dephasing for the C39/C40 methyl signals while a marked reduction of the C41 carbonyl signal was again observed. These findings should be most reasonably accounted for by the notion that AmB can span across the DMPC membrane with a single-length interaction but cannot span the DSPC membrane due to its greater thickness. To our knowledge, the results provide the first direct spectroscopic evidence for the formation of a single-length channel across a biomembrane, which was previously suggested by channel current recording experiments.
Collapse
Affiliation(s)
- Shigeru Matsuoka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
46
|
Coutinho A, Silva L, Fedorov A, Prieto M. Cholesterol and ergosterol influence nystatin surface aggregation: relation to pore formation. Biophys J 2004; 87:3264-76. [PMID: 15315952 PMCID: PMC1304795 DOI: 10.1529/biophysj.104.044883] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nystatin interaction with liposomes mimicking fungal and mammalian membranes (ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) large unilamellar vesicles, respectively) was studied by fluorescence spectroscopy. The activity of this antibiotic was also measured using a pyranine fluorescence detected K+/H+ exchange assay. Nystatin mean fluorescence lifetime varied with the antibiotic concentration and ergosterol content (0-30 mol%) of the lipid vesicles. It sharply increased from 5 to 37 ns upon reaching 100 molecules per liposome, reporting nystatin oligomerization in the membrane. Concomitantly, spectral alterations typical of excitonic coupling were detected and there was a pronounced increase in the initial rate of pore formation by nystatin. These findings suggest that nystatin exerts its antibiotic activity via a two-stage mechanism: at low antibiotic concentrations, surface-adsorbed monomeric antibiotic molecules perturb the lipid packing, changing the permeability properties of the ergosterol-rich liposomes. Upon reaching a critical threshold, nystatin mode of action switches to the classical model of transmembrane aqueous channel formation. In the presence of cholesterol-containing POPC liposomes, neither nystatin spectroscopic properties, nor the kinetics of K+ efflux varied with the antibiotic concentration suggesting that in this case the first stage of antibiotic mode of action always prevails or the assemblies formed by nystatin and cholesterol are very loose.
Collapse
Affiliation(s)
- Ana Coutinho
- Centro de Química-Física Molecular, Instituto Superior Técnico, P-1049-001 Lisbon, Portugal.
| | | | | | | |
Collapse
|
47
|
Venegas B, González-Damián J, Celis H, Ortega-Blake I. Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys J 2004; 85:2323-32. [PMID: 14507696 PMCID: PMC1303457 DOI: 10.1016/s0006-3495(03)74656-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amphotericin B is an antibiotic that forms ion channels in the membrane of a host cell. The change in permeability produced by these channels is greatly improved by sterols; nevertheless, the single channel conductivity remains invariant. Hence, it is proposed that sterols do not act directly, but rather through the modulation of the membrane phase. We look at the formation of these channels in the bacterial membrane to determine the mechanism of its known antibiotic resistance. We found that channels can indeed be formed in this membrane, but a substantial amount of amphotericin B is required. We also study the effects of the antibiotic concentration needed for channel expression as well as the dynamics of channels affected by both sterol and temperature in phosphatidylcholine membranes. The results support the idea that membrane structure is a determining factor in the action of the antibiotic.
Collapse
Affiliation(s)
- Berenice Venegas
- Centro de Ciencias Físicas, UNAM, 62251 Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
48
|
Craven M, Sergeant GP, Hollywood MA, McHale NG, Thornbury KD. Modulation of spontaneous Ca2+-activated Cl- currents in the rabbit corpus cavernosum by the nitric oxide-cGMP pathway. J Physiol 2004; 556:495-506. [PMID: 14766939 PMCID: PMC1664941 DOI: 10.1113/jphysiol.2003.058628] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The whole-cell perforated patch clamp technique was used to study membrane currents in isolated rabbit corpus cavernosum smooth muscle cells. Depolarization from -80 mV to the range -40 to -10 mV evoked a nifedipine-sensitive Ca(2+) current that was followed by a slower inward current that activated over several hundred milliseconds. The slow current reversed near the Cl(-) equilibrium potential (E(Cl)) and was reduced by anthracene-9-carboxylic acid (A9C; 1 mm) and niflumic acid (100 microm), suggesting that it was a Ca(2+)-activated Cl(-) current. When held constantly at -60 mV, over 70% of cells fired spontaneous transient inward currents (STICs), the amplitudes of which were reduced by A9C and niflumic acid. STICs reversed near E(Cl) in a symmetrical Cl(-) gradient and when [Cl(-)](o) was substituted with glutamate or I(-), the reversal potential shifted to more positive or more negative values, respectively, confirming that STICs were mediated by Cl(-) channels. STICS were also blocked by cyclopiazonic acid, 2-aminoethoxydiphenyl borate (2-APB) and 2-nitro-4-carboxyl-N,N-diphenylcarbamate (NCDC), suggesting that they depended on IP(3)-mediated Ca(2+)-release from the sarcoplasmic reticulum. Modulation by the NO-cGMP pathway was investigated by applying nitrosocysteine, 3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole (YC-1), and 8-bromo cGMP, all three of which abolished STIC activity. YC-1 also reduced noradrenaline-evoked inward currents, but had no effect on similar currents evoked by caffeine, suggesting that cGMP selectively inhibited IP(3)-mediated Ca(2+) release. We propose that Ca(2+)-activated Cl(-) currents underlie detumescent tone in the corpus cavernosum, and that modulation of this mechanism by the NO-cGMP pathway is important during penile erection.
Collapse
Affiliation(s)
- M Craven
- Smooth Muscle Group, Department of Physiology, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
49
|
Groll AH, Mickiene D, Petraitis V, Petraitiene R, Alfaro RM, King C, Piscitelli SC, Walsh TJ. Comparative drug disposition, urinary pharmacokinetics, and renal effects of multilamellar liposomal nystatin and amphotericin B deoxycholate in rabbits. Antimicrob Agents Chemother 2004; 47:3917-25. [PMID: 14638502 PMCID: PMC296179 DOI: 10.1128/aac.47.12.3917-3925.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The comparative drug dispositions, urinary pharmacokinetics, and effects on renal function of multilamellar liposomal nystatin (LNYS; Nyotran) and amphotericin B deoxycholate (DAMB; Fungizone) were studied in rabbits. Drug concentrations were determined by high-performance liquid chromatography as total concentrations of LNYS and DAMB. In comparison to a standard dose of 1 mg of DAMB/kg of body weight, therapeutic dosages of LNYS, i.e., 2, 4, and 6 mg/kg, resulted in escalating maximum concentrations (Cmax) (17 to 56 microg/ml for LNYS versus 3.36 microg/ml for DAMB; P<0.001) and values for the area under the concentration-time curve from 0 to 24 h (AUC(0-24)) (17 to 77 microg.h/ml for LNYS versus 12 microg.h/ml for DAMB; P<0.001) in plasma but a significantly faster total clearance from plasma (0.117 to 0.080 liter/h/kg for LNYS versus 0.055 liter/h/kg for DAMB; P=0.013) and a < or =8-fold-smaller volume of distribution at steady state (P=0.002). Urinary drug concentration data revealed a > or =10-fold-higher Cmax (16 to 10 microg/ml for LNYS versus 0.96 microg/ml for DAMB; P=0.015) and a 4- to 7-fold-greater AUC(0-24) (63 to 35 microg.h/ml for LNYS versus 8.9 microg.h/ml for DAMB; P=0.015) following the administration of LNYS, with a dose-dependent decrease in the dose-normalized AUC(0-24) in urine (P=0.001) and a trend toward a dose-dependent decrease in renal clearance. Except for the kidneys, the mean concentrations of LNYS in liver, spleen, and lung 24 h after dosing were severalfold lower than those after administration of DAMB (P, <0.002 to <0.001). Less than 1% each of the total dose of LNYS was recovered from the kidneys, liver, spleen, and lungs; in contrast, a quarter of the total dose was recovered from the livers of DAMB-treated animals. LNYS had dose-dependent effects on glomerular filtration and distal, but not proximal, renal tubular function which did not exceed those of DAMB at the highest investigated dosage of 6 mg/kg. The results of this experimental study demonstrate fundamental differences in the dispositions of LNYS and DAMB. Based on its enhanced urinary exposure, LNYS may offer a therapeutic advantage in systemic fungal infections involving the upper and lower urinary tracts that require therapy with antifungal polyenes.
Collapse
Affiliation(s)
- Andreas H Groll
- Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Silva L, Coutinho A, Fedorov A, Prieto M. Solution conformation of a nitrobenzoxadiazole derivative of the polyene antibiotic nystatin: a FRET study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2003; 72:17-26. [PMID: 14644562 DOI: 10.1016/j.jphotobiol.2003.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nystatin is a polyene antibiotic frequently applied in the treatment of topical fungal infections. In this work, a 7-nitrobenz-2-oxa-1,3-diazole (NBD) hexanoyl amide derivative of nystatin was synthesized and its detailed photophysical characterization is presented. The average conformation of the labelled antibiotic in tetrahydrofuran, ethanol and methanol was determined by intramolecular (tetraene to NBD) fluorescence resonance energy transfer measurements. At variance with the literature [Can. J. Chem. 63 (1985) 77-85], it was concluded that there is no need to invoke a solvent-dependent conformational equilibrium between extended and closed conformers of the antibiotic, because the mean tetraene-to-NBD separating distance was found to remain constant (approximately 18 A) in all the solvents studied. In addition, the large solvent dependence of the fluorescence anisotropy observed for the non-derivatized nystatin, was rationalized on the basis of the prolate ellipsoidal geometry of the molecule. It was concluded that the rod shaped and amphipathic antibiotic remains monomeric in different solvents within the concentration range studied (2-20 microM).
Collapse
Affiliation(s)
- Liana Silva
- Centro de Química-Física Molecular, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisbon, Portugal
| | | | | | | |
Collapse
|