1
|
Borselli D, Blanchet M, Bolla JM, Muth A, Skruber K, Phanstiel O, Brunel JM. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria. Chembiochem 2017; 18:276-283. [PMID: 28098416 PMCID: PMC5299527 DOI: 10.1002/cbic.201600532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram‐negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU‐N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer‐membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de‐energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance.
Collapse
Affiliation(s)
- Diane Borselli
- Aix-Marseille Université, IRBA, TMCD2 UMR-MD1, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Marine Blanchet
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean-Michel Bolla
- Aix-Marseille Université, IRBA, TMCD2 UMR-MD1, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Aaron Muth
- Department of Medical Education, University of Central Florida, 12722 Research Parkway, Orlando, FL, 32826-3227, USA
| | - Kristen Skruber
- Department of Medical Education, University of Central Florida, 12722 Research Parkway, Orlando, FL, 32826-3227, USA
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, 12722 Research Parkway, Orlando, FL, 32826-3227, USA
| | - Jean Michel Brunel
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli Calmettes, Aix-Marseille Université, UM 105, Inserm, U1068, 27 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| |
Collapse
|
2
|
Apoptosis as a specific biomarker of diazinon toxicity in NTera2-D1 cells. Chem Biol Interact 2010; 187:299-303. [DOI: 10.1016/j.cbi.2010.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 11/22/2022]
|
3
|
Formation of complement membrane attack complex in mammalian cerebral cortex evokes seizures and neurodegeneration. J Neurosci 2003. [PMID: 12574424 DOI: 10.1523/jneurosci.23-03-00955.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The complement system consists of >30 proteins that interact in a carefully regulated manner to destroy invading bacteria and prevent the deposition of immune complexes in normal tissue. This complex system can be activated by diverse mechanisms proceeding through distinct pathways, yet all converge on a final common pathway in which five proteins assemble into a multimolecular complex, the membrane attack complex (MAC). The MAC inserts into cell membranes to form a functional pore, resulting in ion flux and ultimately osmotic lysis. Immunohistochemical evidence of the MAC decorating neurons in cortical gray matter has been identified in multiple CNS diseases, yet the deleterious consequences, if any, of MAC deposition in the cortex of mammalian brain in vivo are unknown. Here we demonstrate that the sequential infusion of individual proteins of the membrane attack pathway (C5b6, C7, C8, and C9) into the hippocampus of awake, freely moving rats induced both behavioral and electrographic seizures as well as cytotoxicity. The onset of seizures occurred during or shortly after the infusion of C8/C9. Neither seizures nor cytotoxicity resulted from the simultaneous infusion of all five proteins premixed in vitro. The requirement for the sequential infusion of all five proteins together with the temporal relationship of seizure onset to infusions of C8/C9 implies that the MAC was formed in vivo and triggered both seizures and cytotoxicity. Deposition of the complement MAC in cortical gray matter may contribute to epileptic seizures and cell death in diverse diseases of the human brain.
Collapse
|
4
|
Nielsen CH, Marquart HV, Prodinger WM, Leslie RG. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes. Immunology 2001; 104:418-22. [PMID: 11899427 PMCID: PMC1783324 DOI: 10.1046/j.1365-2567.2001.01325.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5 convertase and consequent formation of membrane attack complexes (MAC). Deposition of C3 fragments and MAC was assessed on human peripheral B lymphocytes in the presence of 30% autologous serum containing 4.4 mM MgCl2/20 mM EGTA, which abrogates the classical pathway of complement without affecting the alternative pathway. Blockade of the CR2 ligand-binding site with the monoclonal antibody FE8 resulted in 56 +/- 13% and 71 +/- 9% inhibition of the C3-fragment and MAC deposition, respectively, whereas the monoclonal antibody HB135, directed against an irrelevant CR2 epitope, had no effect. Blockade of the CR1 binding site with the monoclonal antibody 3D9 also resulted in a minor reduction in MAC deposition, while FE8 and 3D9, in combination, markedly reduced deposition of both C3 fragments (91 +/- 5%) and C9 (95 +/- 3%). The kinetics of C3-fragment and MAC deposition, as well as the dependence of both processes on CR2, indicate that MAC formation is a consequence of alternative pathway activation.
Collapse
Affiliation(s)
- C H Nielsen
- Department of Immunology and Microbiology, Institute of Medical Biology, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
5
|
Zhao XJ, Zhao J, Zhou Q, Sims PJ. Identity of the residues responsible for the species-restricted complement inhibitory function of human CD59. J Biol Chem 1998; 273:10665-71. [PMID: 9553129 DOI: 10.1074/jbc.273.17.10665] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-anchored glycoprotein CD59 inhibits assembly of the C5b-9 membrane attack complex (MAC) of human complement. This inhibitory function of CD59 is markedly selective for MAC assembled from human complement components C8 and C9, and CD59 shows little inhibitory function toward MAC assembled from rabbit and many other non-primate species. We have used this species selectivity of CD59 to identify the residues regulating its complement inhibitory function: cDNA of rabbit CD59 was cloned and used to express human/rabbit CD59 chimeras in murine SV-T2 cells. Plasma membrane expression of each CD59 chimera was quantified by use of a 5'-TAG peptide epitope, and each construct was tested for its ability to inhibit assembly of functional MAC from human versus rabbit C8 and C9. These experiments revealed that the species selectivity of CD59 is entirely determined by sequence contained between residues 42 and 58 of the human CD59 polypeptide, whereas chimeric substitution outside this peptide segment has little effect on the MAC inhibitory function of CD59. Substitution of human CD59 residues 42-58 into rabbit CD59 resulted in a molecule that was functionally indistinguishable from native human CD59, whereas the complementary construct (corresponding residues of rabbit CD59 substituted into human CD59) was functionally indistinguishable from rabbit CD59. Based on the solved solution structure of CD59, these data suggest that selectivity for human C8 and C9 resides in a cluster of closely spaced side chains on the surface of CD59 contributed by His44, Asn48, Asp49, Thr51, Thr52, Arg55, and Glu58 of the polypeptide.
Collapse
Affiliation(s)
- X J Zhao
- Blood Research Institute, the Blood Center, Milwaukee, Wisconsin 53201-2178, USA
| | | | | | | |
Collapse
|
6
|
Husler T, Lockert DH, Sims PJ. Role of a disulfide-bonded peptide loop within human complement C9 in the species-selectivity of complement inhibitor CD59. Biochemistry 1996; 35:3263-9. [PMID: 8605162 DOI: 10.1021/bi952862w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C9 component of the C5b-9 membrane attack complex (MAC), thereby protecting human cells from lysis by human complement. The complement-inhibitory activity of CD59 is species-selective, and is most effective toward C9 derived from human or other primate plasma. The species-selective activity of CD59 was recently used to map the segment of human C9 that is recognized by this MAC inhibitor, using recombinant rabbit/human C9 chimeras that retain lytic function within the MAC [Husler, T., Lockert, D. H., Kaufman, K. M., Sodetz, J. M., & Sims, P. J. (1995) J. Biol. Chem. 270,3483-3486]. These experiments suggested that the CD59 recognition domain was contained between residues 334 and 415 in human C9. By analyzing the species-selective lytic activity of recombinant C9 with chimeric substitutions internal to this segment, we now demonstrate that the site in human C9 uniquely recognized by CD59 is centered on those residues contained between C9 Cys359/Cys384, with an additional contribution by residues C-terminal to this segment. Consistent with its role as a CD59 recognition domain, CD59 specifically bound a human C9-derived peptide corresponding to residues 359-384, and antibody (Fab) raised against this C9-derived peptide inhibited the lytic activity of human MAC. Mutant human C9 in which Ala was substituted for Cys359/384 was found to express normal lytic activity and to be fully inhibited by CD59. This suggests that the intrachain Cys359/Cys384 disulfide bond within C9 is not required to maintain the conformation of this segment of C9 for interaction with CD59.
Collapse
Affiliation(s)
- T Husler
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee, 53233, USA
| | | | | |
Collapse
|
7
|
Lockert DH, Kaufman KM, Chang CP, Hüsler T, Sodetz JM, Sims PJ. Identity of the segment of human complement C8 recognized by complement regulatory protein CD59. J Biol Chem 1995; 270:19723-8. [PMID: 7544344 DOI: 10.1074/jbc.270.34.19723] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C5b-9 membrane attack complex (MAC), thereby protecting human cells from lysis by human complement. The inhibitory function of CD59 derives from its capacity to interact with both the C8 and C9 components of MAC, preventing assembly of membrane-inserted C9 polymer. MAC-inhibitory activity of CD59 is species-selective and is most effective when both C8 and C9 derive from human or other primate plasma. Rabbit C8 and C9, which can substitute for human C8 and C9 in MAC, mediate virtually unrestricted lysis of human cells expressing CD59. In order to identify the segment of human C8 that is recognized by CD59, recombinant peptides containing human or rabbit C8 sequence were expressed in Escherichia coli and purified. CD59 was found to specifically bind to a peptide corresponding to residues 334-385 of the human C8 alpha-subunit, and to require a disulfide bond between Cys345 and Cys369. No specific binding was observed to the corresponding sequence from rabbit C8 alpha (residues 334-386). To obtain functional evidence that this segment of human C8 alpha is selectively recognized by CD59, recombinant C8 proteins were prepared by co-transfecting COS-7 cells with human/rabbit chimeras of the C8 alpha cDNA, and cDNAs encoding the C8 beta and C8 gamma chains. Hemolytic activity of MAC formed with chimeric C8 was analyzed using target cells reconstituted with CD59. These experiments confirmed that CD59 recognizes a conformationally sensitive epitope that is within a segment of human C8 alpha internal to residues 320-415. Our data also suggest that optimal interaction of CD59 with this segment of human C8 alpha is influenced by N-terminal flanking sequence in C8 alpha and by human C8 beta, but is unaffected by C8 gamma.
Collapse
Affiliation(s)
- D H Lockert
- Blood Research Institute, Blood Center of Southeastern Wisconsin, Milwaukee 53233, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hüsler T, Lockert DH, Kaufman KM, Sodetz JM, Sims PJ. Chimeras of human complement C9 reveal the site recognized by complement regulatory protein CD59. J Biol Chem 1995; 270:3483-6. [PMID: 7533152 DOI: 10.1074/jbc.270.8.3483] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C9 component of the C5b-9 membrane attack complex, thereby protecting human cells from lysis by human complement. The complement-inhibitory activity of CD59 is species-selective and is most effective toward C9 derived from human or other primate plasma. By contrast, rabbit C9, which can substitute for human C9 in the membrane attack complex, mediates unrestricted lysis of human cells. To identify the peptide segment of human C9 that is recognized by CD59, rabbit C9 cDNA clones were isolated, characterized, and used to construct hybrid cDNAs for expression of full-length human/rabbit C9 chimeras in COS-7 cells. All resulting chimeras were hemolytically active, when tested against chicken erythrocytes bearing C5b-8 complexes. Assays performed in the presence or absence of CD59 revealed that this inhibitor reduced the hemolytic activity of those chimeras containing human C9 sequence between residues 334-415, irrespective of whether the remainder of the protein contained human or rabbit sequence. By contrast, when this segment of C9 contained rabbit sequence, lytic activity was unaffected by CD59. These data establish that human C9 residues 334-415 contain the site recognized by CD59, and they suggest that sequence variability within this segment of C9 is responsible for the observed species-selective inhibitory activity of CD59.
Collapse
Affiliation(s)
- T Hüsler
- Blood Research Institute, Southeastern Wisconsin, Milwaukee, 53201-2178
| | | | | | | | | |
Collapse
|
9
|
Chang CP, Hüsler T, Zhao J, Wiedmer T, Sims PJ. Identity of a peptide domain of human C9 that is bound by the cell-surface complement inhibitor, CD59. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47211-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Wiedmer T, Sims PJ. Effect of complement proteins C5b-9 on blood platelets. Evidence for reversible depolarization of membrane potential. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39556-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|