1
|
Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin. Toxicon 2014; 92:113-22. [PMID: 25449100 DOI: 10.1016/j.toxicon.2014.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/01/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022]
Abstract
Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity.
Collapse
|
2
|
Simonato M, Morbiato L, Zorzi V, Caccin P, Fernández J, Massimino ML, Polverino de Laureto P, Tonello F. Production in Escherichia coli, folding, purification and characterization of notexin with wild type sequence and with N-terminal and catalytic site mutations. Toxicon 2014; 88:11-20. [DOI: 10.1016/j.toxicon.2014.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022]
|
3
|
Kao PH, Chiou YL, Chen YJ, Lin SR, Chang LS. Guanidination of notexin promotes its phospholipase A(2) activity-independent fusogenicity on vesicles with lipid-supplied negative curvature. Toxicon 2011; 59:47-58. [PMID: 22030836 DOI: 10.1016/j.toxicon.2011.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/27/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
To address the requirement of phospholipase A(2) (PLA(2)) activity in membrane fusion events and membrane perturbation activity of notexin and guanidinated notexin (Gu-notexin), the present study was conducted. Notexin and Gu-notexin did not show PLA(2) activity after the removal of Ca(2+) with EDTA. Metal-free notexin and Gu-notexin were found to induce membrane leakage and fusion of phospholipid vesicles. Fusogenic activity of native and modified notexin correlated positively with their membrane-damaging activity underlying the deprivation of PLA(2) activity. Compared with Ca(2+)-bound Gu-notexin, fusogenicity of metal-free Gu-notexin was notably increased by incorporation of cholesterol, cholesterol sulfate, phosphatidylethanolamine, α-tocopherol and phosphatidic acid that supplied negative curvature into phospholipid bilayer. The ability of Gu-notexin to induce membrane fusion of vesicles with lipid-supplied negative curvature was higher than that of notexin regardless of the absence or presence of Ca(2+). Consistently, metal-free Gu-notexin markedly induced membrane fusion of red blood cells (RBCs) compared with metal-free notexin, and fusion activity of metal-free Gu-notexin on cholesterol-depleted RBCs notably reduced. Compared with notexin, Gu-notexin highly induced uptake of calcein-loaded phosphatidylcholine (PC)/cholesterol and PC/cholesterol sulfate vesicles by K562 cells in the presence of EDTA. Taken together, our data suggest that notexin and Gu-notexin could induce vesicle leakage and fusion via a PLA(2) activity-independent mechanism, and guanidination promotes PLA(2) activity-independent fusogenicity of notexin on vesicles with lipid-supplied negative curvature.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | |
Collapse
|
4
|
Kao PH, Chiou YL, Lin SR, Chang LS. Guanidination of notexin alters its membrane-damaging activity in response to sphingomyelin and cholesterol. J Biosci 2010; 35:583-93. [DOI: 10.1007/s12038-010-0067-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Chen KC, Chang LS. Notexin upregulates Fas and FasL protein expression of human neuroblastoma SK-N-SH cells through p38 MAPK/ATF-2 and JNK/c-Jun pathways. Toxicon 2009; 55:754-61. [PMID: 19944115 DOI: 10.1016/j.toxicon.2009.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
Notechis scutatus scutatus notexin induced an increase in Fas and FasL protein expression of human neuroblastoma SK-N-SH cells in a dose- and time-dependent manner. Moreover, notexin treatment upregulated transcription of Fas/FasL mRNA. Downregulation of FADD blocked notexin-induced procaspase-8 degradation and cleavage of Bid and rescued viability of notexin-treated cells. Upon exposure to notexin, activation of JNK and p38 MAPK was observed in SK-N-SH cells. Notexin-induced upregulation of Fas and FasL was suppressed by SB202190 (p38 MAPK inhibitor) and S600125 (JNK inhibitor). Downregulation of p38alpha MAPK and JNK1 by siRNA proved that upregulation of Fas/FasL was related to p38alpha MAPK and JNK1 activation. Notexin treatment evoked p38alpha MAPK-mediated ATF-2 phosphorylation and JNK1-mediated c-Jun phosphorylation. Knockdown of c-Jun and ATF-2 by siRNA or overexpression of dominant-negative c-Jun and ATF-2 revealed that both c-Jun and ATF-2 were crucial for Fas/FasL upregulation. Taken together, our data indicate that notexin-induced upregulation of Fas and FasL is triggered by p38 MAPK/ATF-2 and JNK/c-Jun signaling pathways in SK-N-SH cells.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | |
Collapse
|
6
|
Chen KC, Liu WH, Kao PH, Chang LS. Calcium-stimulated mitogen-activated protein kinase activation elicits Bcl-xL downregulation and Bak upregulation in notexin-treated human neuroblastoma SK-N-SH cells. J Cell Physiol 2009; 222:177-86. [PMID: 19780038 DOI: 10.1002/jcp.21934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Notechis scutatus scutatus notexin induced apoptotic death of SK-N-SH cells accompanied with downregulation of Bcl-xL, upregulation of Bak, mitochondrial depolarization, and ROS generation. Upon exposure to notexin, Ca(2+)-mediated JNK and p38 MAPK activation were observed in SK-N-SH cells. Production of ROS was a downstream event followed by Ca(2+)-mediated mitochondrial alteration. Notexin-induced cell death, mitochondrial depolarization, and ROS generation were suppressed by SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor). Moreover, phospho-p38 MAPK and phospho-JNK were proved to be involved in Bcl-xL degradation, and overexpression of Bcl-xL attenuated the cytotoxic effect of notexin. Bak upregulation was elicited by p38 MAPK-mediated ATF-2 activation and JNK-mediated c-Jun activation. Suppression of Bak upregulation by ATF-2 siRNA or c-Jun siRNA attenuated notexin-evoked mitochondrial depolarization and rescued viability of notexin-treated cells. Taken together, our data indicate that notexin-induced apoptotic death of SK-N-SH cells is mediated through mitochondrial alteration triggering by Ca(2+)-evoked p38 MAPK/ATF-2 and JNK/c-Jun signaling pathways.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
7
|
Kao PH, Lin SR, Chang LS. Phospholipase A2 activity-independent membrane-damaging effect of notexin. Toxicon 2007; 50:952-9. [PMID: 17889218 DOI: 10.1016/j.toxicon.2007.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 11/28/2022]
Abstract
To elucidate whether the phospholipase A(2) (PLA(2)) activity of notexin was exclusively associated with the manifestation of its pharmacological activities, the interaction of notexin with phospholipid liposomes was explored by fluorescence and CD measurement underlying the conditions of depriving its PLA(2) activity. Although a higher membrane-damaging activity was noted with Ca(2+)-bound notexin, abolishment of PLA(2) activity by EDTA and Sr(2+) could not diminish the membrane-damaging activity of notexin. Fluorescence-quenching studies and CD measurement indicated that Ca(2+)-bound, Sr(2+)-bound or metal-free notexin did not adopt the same conformation upon binding with phospholipids. Regardless of the presence of Ca(2+), Sr(2+) or EDTA, self-quenching assay with rhodamine-labeled notexin revealed that the toxin pertained to form oligomer when it bound with liposomes. Although Lys-modified notexin retained full PLA(2) activity, a notable decrease in membrane-damaging activity was observed. These results indicate that notexin could directly cause a leakage of membrane via a PLA(2) activity-independent manner, and implicate that another biological event contributes to the activity of notexin in vivo.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | |
Collapse
|
8
|
Chang LS, Cheng YC, Chen CP. Modification of Lys-6 and Lys-65 Affects the Structural Stability of Taiwan Cobra Phospholipase A2. Protein J 2006; 25:127-34. [PMID: 16862455 DOI: 10.1007/s10930-006-0004-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To assess whether chemical modification of phospholipase A(2) (PLA(2)) enzymes may affect their fine structure and consequently alter their enzymatic activity, the present study was carried out. Both Lys-6 and Lys-65 in the Taiwan cobra (Naja naja atra) PLA(2) were selectively modified with trinitrobenzene sulfonate and pyridoxal-5'-phosphate (PLP), respectively. Incorporation of either trinitrophenylated (TNP) or PLP groups on Lys-6 and Lys-65 caused a drop in PLA(2) activity, but the Ca(2+)-binding ability and global conformation of modified derivatives were not significantly different from that of native enzyme. A distinct enhancement of stability was observed with native PLA(2) when thermal unfolding was conducted in the presence of 20 mM Ca(2+). Conformational transition induced by guanidine hydrochloride was also attenuated by the addition of Ca(2+). Conversely, a marked decrease in the structural stability was noted with modified derivatives, and the enhancing effect of Ca(2+) pronouncedly decreased. Together with the finding that the incorporated TNP and PLP groups did not equally affect enzymatic activity and structural stability of PLA(2), our data suggest that an alteration in the fine structure owing to the incorporated groups should contribute to the observed decrease in PLA(2) activity.
Collapse
Affiliation(s)
- Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
9
|
Chu YP, Cheng YC, Yang CC, Chang LS. The structural events associated with the binding of divalent cations to β-bungarotoxin. Toxicon 2005; 45:139-45. [PMID: 15626362 DOI: 10.1016/j.toxicon.2004.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
In order to address the mechanism why the Ca2+ was crucial for the manifestation of the phospholipase A2 (PLA2) activity of beta-bungarotoxin (beta-BuTx), four divalent cations were used to assess their influences on the catalytic activity and the fine structures of beta-BuTx. Substitution Mg2+ or Sr2+ for Ca2+ in the substrate solution was found to cause a decrease in the PLA2 activity to approximately 15 or 6% of that in the presence of Ca2+. However, only marginally detectable PLA2 activity was observed with the addition of Ba2+. The nonpolarity of 8-anilinonaphthalene-1-sulfonate (ANS)-binding site of beta-BuTx markedly increased with the binding of cations to beta-BuTx. The negative ellipticity noted with the CD spectra of beta-BuTx increased upon the binding of cations too. With the exception of Ba2+, the order of the ability of cations to enhance the intensity of ANS fluorescence or increase the increment of negative ellipticity was Sr2+ > Ca2+ > Mg2+, which was the same order as the increase in their atomic radii. However, the energy transfer from Trp fluorescence emission to ANS was most effective upon the addition of Ca2+. Moreover, the extent of glutaraldehyde crosslinking between A chain and B chain decreased in the presence of cations. Nevertheless, the binding affinities of beta-BuTx for the four cations were similar. These results, together with the findings that the ANS molecule binds at the active site of the A chain in beta-BuTx, suggest that the binding of Ca2+ to beta-BuTx induces subtly conformational changes occurred at the active site for exerting the activity of beta-BuTx. Moreover, the change in the gross conformation induced by the binding of Ca2+ may affect the interaction between A chain and B chain, and consequently the activity of beta-BuTx as well.
Collapse
Affiliation(s)
- Yuan-Ping Chu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
| | | | | | | |
Collapse
|
10
|
Chang LS, Chu YP, Cheng YC, Liou JC, Yang CC. Lys-64 of the A chain is involved in the enzymatic activity and neurotoxic effect of β-bungarotoxin. Toxicon 2005; 45:179-85. [PMID: 15626367 DOI: 10.1016/j.toxicon.2004.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/28/2004] [Indexed: 11/19/2022]
Abstract
Two beta-bungarotoxin isotoxins BM12 and BM13 were isolated from Bungarus multicinctus (Taiwan banded krait) venom by sequential chromatography on ion-exchange and reverse phase columns. The two toxins have the same A chain, but different B chains. Different phospholipase A2 activity and different potencies in inhibiting the spontaneous enhancement of spontaneous synaptic current frequency and muscle contraction were observed for BM12 and BM13. Nevertheless, modification of Lys-64 in the A chain of BM12 and BM13 similarly reduced in their phospholipase A2 activity and toxicity. The modified derivatives retained their affinity with Ca2+ and their conformation as deduced by CD. These results suggest that Lys-64 of the A chain is involved in the phospholipase A2 activity and in the neurotoxic effect of beta-bungarotoxin.
Collapse
Affiliation(s)
- Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
11
|
Chang LS, Wu PF, Liou JC, Chiang-Lin WH, Yang CC. Chemical modification of arginine residues of Notechis scutatus scutatus notexin. Toxicon 2004; 44:491-7. [PMID: 15450923 DOI: 10.1016/j.toxicon.2004.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 06/07/2004] [Indexed: 11/16/2022]
Abstract
Notexin, a presynaptic phospholipase A2 (PLA2) neurotoxin isolated from Notechis scutatus scutatus venom, was inactivated by arginine-specific reagents, phenylglyoxal and 1,2-cyclohexanedione. Kinetic analyses of the modification reaction revealed that the inactivation of notexin followed pseudo-first order kinetics and the loss of PLA2 activity was correlated with the incorporation of one molecule of modification reagent per toxin molecule. However, the results of amino acid analysis and sequence determination revealed that two arginine residues at positions 43 and 79 of notexin were modified simultaneously. Modification of the arginine residues was accompanied with a decrease in the ability to inhibit the indirectly evoked contraction of chick biventer cervicis muscle and bind with synaptic membranes. The secondary structure of the toxin molecule did not significantly change after modification with phenylglyoxal as revealed by the CD spectra. The modified derivative retained its affinity for Ca2+, indicating that the modified arginine residues did not participate in Ca2+ -binding. Together with the notion that Arg-43 and Arg-79 of notexin are located in the proximity of its catalytic site and toxic site, respectively, our results suggest that modification of Arg-43 and Arg-79 should differently contribute to the observed decrease in the PLA2 activity and neurotoxic effect of notexin.
Collapse
Affiliation(s)
- Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Number 70, Lien-Hai Road Kaohsiung 804, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
12
|
Liou JC, Cheng YC, Kang KH, Chu YP, Yang CC, Chang LS. Both A chain and B chain of β-bungarotoxin are functionally involved in the facilitation of spontaneous transmitter release in Xenopus nerve–muscle cultures. Toxicon 2004; 43:341-6. [PMID: 15033334 DOI: 10.1016/j.toxicon.2004.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 01/13/2004] [Indexed: 11/28/2022]
Abstract
In the present study, Xenopus nerve-muscle cultures were used to explore the functional roles of A chain (a phospholipase A(2) subunit) and B chain (a non-phospholipase A(2) subunit) of Bungarus multicinctus beta-bungarotoxin. It was found that beta-bungarotoxin induced an increment of the frequency of spontaneous synaptic currents (SSCs) in the nerve-muscle cultures. Modification of beta-bungarotoxin with pyridoxal-5'-phosphate or substitution of Ca(2+) with Ba(2+) in buffer abolished the phospholipase A(2) activity of beta-bungarotoxin and the facilitatory phase of SSC as well. Antibodies that were directed specifically against A chain or B chain effectively inhibited phospholipase A(2) activity, and as a consequence the SSC frequency was not greatly different from the control rate. These results suggest that both A and B chains are indispensable parts of beta-bungarotoxin for inducing the facilitation of SSC frequency with Xenopus nerve-muscle cultures.
Collapse
Affiliation(s)
- Jau-Cheng Liou
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The protein content of many snake venoms often includes one or more phospholipases A2 (PLA2). In recent years a growing number of venoms from snakes of Agkistrodon, Bothrops and Trimeresurus species have been shown to contain a catalytically inactive PLA2-homologue in which the highly conserved aspartic acid at position 49 (Asp49) is substituted by lysine (Lys49). Although demonstrating little or no catalytic activity, these Lys49-PLA2s disrupt membranes by a Ca2+-independent mechanism of action. In addition, this family of PLA2s demonstrates myotoxic and cytolytic pharmacological activities, however the structural bases underlying these functional properties are poorly understood. Through the application of X-ray crystallography in combination with biophysical and bioinformatics techniques, we are studying structure/function relationships of Lys49-PLA2s. We here present results of a systematic X-ray crystallographic and amino acid sequence analysis study of Lys49 PLA2s and propose a model to explain the Ca2+-independent membrane damaging activity.
Collapse
Affiliation(s)
- R J Ward
- Department of Physics, IBILCE-UNESP, Sao Jose do Rio Preto SP, Brazil
| | | | | |
Collapse
|