1
|
Hu J, Venturi E, Sigalas C, Murayama T, Nishi M, Takeshima H, Sitsapesan R. The biophysical properties of TRIC-A and TRIC-B and their interactions with RyR2. J Gen Physiol 2023; 155:e202113070. [PMID: 37756589 PMCID: PMC10522464 DOI: 10.1085/jgp.202113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Trimeric intracellular cation channels (TRIC-A and TRIC-B) are thought to provide counter-ion currents to enable charge equilibration across the sarco/endoplasmic reticulum (SR) and nuclear membranes. However, there is also evidence that TRIC-A may interact directly with ryanodine receptor type 1 (RyR1) and 2 (RyR2) to alter RyR channel gating. It is therefore possible that the reverse is also true, where the presence of RyR channels is necessary for fully functional TRIC channels. We therefore coexpressed mouse TRIC-A or TRIC-B with mouse RyR2 in HEK293 cells to examine if after incorporating membrane vesicles from these cells into bilayers, the presence of TRIC affects RyR2 function, and to characterize the permeability and gating properties of the TRIC channels. Importantly, we used no purification techniques or detergents to minimize damage to TRIC and RyR2 proteins. We found that both TRIC-A and TRIC-B altered the gating behavior of RyR2 and its response to cytosolic Ca2+ but that TRIC-A exhibited a greater ability to stimulate the opening of RyR2. Fusing membrane vesicles containing TRIC-A or TRIC-B into bilayers caused the appearance of rapidly gating current fluctuations of multiple amplitudes. The reversal potentials of bilayers fused with high numbers of vesicles containing TRIC-A or TRIC-B revealed both Cl- and K+ fluxes, suggesting that TRIC channels are relatively non-selective ion channels. Our results indicate that the physiological roles of TRIC-A and TRIC-B may include direct, complementary regulation of RyR2 gating in addition to the provision of counter-ion currents of both cations and anions.
Collapse
Affiliation(s)
- Jianshu Hu
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Miyuki Nishi
- Department of Biological Chemistry, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
2
|
Guo L, Mao Q, He J, Liu X, Piao X, Luo L, Hao X, Yu H, Song Q, Xiao B, Fan D, Gao Z, Jia Y. Disruption of ER ion homeostasis maintained by an ER anion channel CLCC1 contributes to ALS-like pathologies. Cell Res 2023; 33:497-515. [PMID: 37142673 PMCID: PMC10313822 DOI: 10.1038/s41422-023-00798-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/14/2023] [Indexed: 05/06/2023] Open
Abstract
Although anion channel activities have been demonstrated in sarcoplasmic reticulum/endoplasmic reticulum (SR/ER), their molecular identities and functions remain unclear. Here, we link rare variants of Chloride Channel CLIC Like 1 (CLCC1) to amyotrophic lateral sclerosis (ALS)-like pathologies. We demonstrate that CLCC1 is a pore-forming component of an ER anion channel and that ALS-associated mutations impair channel conductance. CLCC1 forms homomultimers and its channel activity is inhibited by luminal Ca2+ but facilitated by phosphatidylinositol 4,5-bisphosphate (PIP2). We identified conserved residues D25 and D181 in CLCC1 N-terminus responsible for Ca2+ binding and luminal Ca2+-mediated inhibition on channel open probability and K298 in CLCC1 intraluminal loop as the critical PIP2-sensing residue. CLCC1 maintains steady-state [Cl-]ER and [K+]ER and ER morphology and regulates ER Ca2+ homeostasis, including internal Ca2+ release and steady-state [Ca2+]ER. ALS-associated mutant forms of CLCC1 increase steady-state [Cl-]ER and impair ER Ca2+ homeostasis, and animals with the ALS-associated mutations are sensitized to stress challenge-induced protein misfolding. Phenotypic comparisons of multiple Clcc1 loss-of-function alleles, including ALS-associated mutations, reveal a CLCC1 dosage dependence in the severity of disease phenotypes in vivo. Similar to CLCC1 rare variations dominant in ALS, 10% of K298A heterozygous mice developed ALS-like symptoms, pointing to a mechanism of channelopathy dominant-negatively induced by a loss-of-function mutation. Conditional knockout of Clcc1 cell-autonomously causes motor neuron loss and ER stress, misfolded protein accumulation, and characteristic ALS pathologies in the spinal cord. Thus, our findings support that disruption of ER ion homeostasis maintained by CLCC1 contributes to ALS-like pathologies.
Collapse
Affiliation(s)
- Liang Guo
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaoling Liu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xuejiao Piao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Li Luo
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China
| | - Xiaoxu Hao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Hanzhi Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Song
- School of Medicine, Tsinghua University, Beijing, China
| | - Bailong Xiao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- School of Medicine, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China.
| |
Collapse
|
3
|
Campbell EP, Abushawish AA, Valdez LA, Bell MK, Haryono M, Rangamani P, Bloodgood BL. Electrical signals in the ER are cell type and stimulus specific with extreme spatial compartmentalization in neurons. Cell Rep 2023; 42:111943. [PMID: 36640310 PMCID: PMC10033362 DOI: 10.1016/j.celrep.2022.111943] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a tortuous organelle that spans throughout a cell with a continuous membrane containing ion channels, pumps, and transporters. It is unclear if stimuli that gate ER ion channels trigger substantial membrane potential fluctuations and if those fluctuations spread beyond their site of origin. Here, we visualize ER membrane potential dynamics in HEK cells and cultured rat hippocampal neurons by targeting a genetically encoded voltage indicator specifically to the ER membrane. We report the existence of clear cell-type- and stimulus-specific ER membrane potential fluctuations. In neurons, direct stimulation of ER ryanodine receptors generates depolarizations that scale linearly with stimulus strength and reach tens of millivolts. However, ER potentials do not spread beyond the site of receptor activation, exhibiting steep attenuation that is exacerbated by intracellular large conductance K+ channels. Thus, segments of ER can generate large depolarizations that are actively restricted from impacting nearby, contiguous membrane.
Collapse
Affiliation(s)
- Evan P Campbell
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ahmed A Abushawish
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lauren A Valdez
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miriam K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Melita Haryono
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Brenda L Bloodgood
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Macías Á, González-Guerra A, Moreno-Manuel AI, Cruz FM, Gutiérrez LK, García-Quintáns N, Roche-Molina M, Bermúdez-Jiménez F, Andrés V, Vera-Pedrosa ML, Martínez-Carrascoso I, Bernal JA, Jalife J. Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen-Tawil syndrome type 1. NATURE CARDIOVASCULAR RESEARCH 2022; 1:900-917. [PMID: 39195979 PMCID: PMC11358039 DOI: 10.1038/s44161-022-00145-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2024]
Abstract
Andersen-Tawil syndrome type 1 (ATS1) is associated with life-threatening arrhythmias of unknown mechanism. In this study, we generated and characterized a mouse model of ATS1 carrying the trafficking-deficient mutant Kir2.1Δ314-315 channel. The mutant mouse recapitulates the electrophysiological phenotype of ATS1, with QT prolongation exacerbated by flecainide or isoproterenol, drug-induced QRS prolongation, increased vulnerability to reentrant arrhythmias and multifocal discharges resembling catecholaminergic polymorphic ventricular tachycardia (CPVT). Kir2.1Δ314-315 cardiomyocytes display significantly reduced inward rectifier K+ and Na+ currents, depolarized resting membrane potential and prolonged action potentials. We show that, in wild-type mouse cardiomyocytes and skeletal muscle cells, Kir2.1 channels localize to sarcoplasmic reticulum (SR) microdomains, contributing to intracellular Ca2+ homeostasis. Kir2.1Δ314-315 cardiomyocytes exhibit defective SR Kir2.1 localization and function, as intact and permeabilized Kir2.1Δ314-315 cardiomyocytes display abnormal spontaneous Ca2+ release events. Overall, defective Kir2.1 channel function at the sarcolemma and the SR explain the life-threatening arrhythmias in ATS1 and its overlap with CPVT.
Collapse
Affiliation(s)
- Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
O'Brien F, Eberhardt D, Witschas K, El‐Ajouz S, Iida T, Nishi M, Takeshima H, Sitsapesan R, Venturi E. Enhanced activity of multiple TRIC-B channels: an endoplasmic reticulum/sarcoplasmic reticulum mechanism to boost counterion currents. J Physiol 2019; 597:2691-2705. [PMID: 30907436 PMCID: PMC6567852 DOI: 10.1113/jp277241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/20/2019] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS There are two subtypes of trimeric intracellular cation (TRIC) channels but their distinct single-channel properties and physiological regulation have not been characterized. We examined the differences in function between native skeletal muscle sarcoplasmic reticulum (SR) K+ -channels from wild-type (WT) mice (where TRIC-A is the principal subtype) and from Tric-a knockout (KO) mice that only express TRIC-B. We find that lone SR K+ -channels from Tric-a KO mice have a lower open probability and gate more frequently in subconducting states than channels from WT mice but, unlike channels from WT mice, multiple channels gate with high open probability with a more than six-fold increase in activity when four channels are present in the bilayer. No evidence was found for a direct gating interaction between ryanodine receptor and SR K+ -channels in Tric-a KO SR, suggesting that TRIC-B-TRIC-B interactions are highly specific and may be important for meeting counterion requirements during excitation-contraction coupling in tissues where TRIC-A is sparse or absent. ABSTRACT The trimeric intracellular cation channels, TRIC-A and TRIC-B, represent two subtypes of sarcoplasmic reticulum (SR) K+ -channel but their individual functional roles are unknown. We therefore compared the biophysical properties of SR K+ -channels derived from the skeletal muscle of wild-type (WT) or Tric-a knockout (KO) mice. Because TRIC-A is the major TRIC-subtype in skeletal muscle, WT SR will predominantly contain TRIC-A channels, whereas Tric-a KO SR will only contain TRIC-B channels. When lone SR K+ -channels were incorporated into bilayers, the open probability (Po) of channels from Tric-a KO mice was markedly lower than that of channels from WT mice; gating was characterized by shorter opening bursts and more frequent brief subconductance openings. However, unlike channels from WT mice, the Po of SR K+ -channels from Tric-a KO mice increased as increasing channel numbers were present in the bilayer, driving the channels into long sojourns in the fully open state. When co-incorporated into bilayers, ryanodine receptor channels did not directly affect the gating of SR K+ -channels, nor did the presence or absence of SR K+ -channels influence ryanodine receptor activity. We suggest that because of high expression levels in striated muscle, TRIC-A produces most of the counterion flux required during excitation-contraction coupling. TRIC-B, in contrast, is sparsely expressed in most cells and, although lone TRIC-B channels exhibit low Po, the high Po levels reached by multiple TRIC-B channels may provide a compensatory mechanism to rapidly restore K+ gradients and charge differences across the SR of tissues containing few TRIC-A channels.
Collapse
Affiliation(s)
- Fiona O'Brien
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - Sam El‐Ajouz
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Tsunaki Iida
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | | | - Elisa Venturi
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Zsolnay V, Fill M, Gillespie D. Sarcoplasmic Reticulum Ca 2+ Release Uses a Cascading Network of Intra-SR and Channel Countercurrents. Biophys J 2019; 114:462-473. [PMID: 29401443 DOI: 10.1016/j.bpj.2017.11.3775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
In muscle, Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is mediated through the ryanodine receptors (RyRs) and sustained by countercurrents that keep the SR membrane potential near 0 mV. Likewise, Ca2+ reuptake by the sarco/endoplasmic reticulum Ca2+ ATPase pump requires countercurrent. Although evidence has suggested that TRIC K+ channels and/or RyR K+ influx provide these countercurrents, the exact sources have not yet been determined. We used an equivalent circuit compartment model of a cardiac SR, the surrounding cytosol, and the dyadic cleft to probe the sources of countercurrent during a complete cardiac cycle. By removing and relocating TRIC K+ channels, as well as limiting when they are active, we explored the various possible sources of SR countercurrent under many conditions. Our simulations indicate that no single channel type is essential for countercurrent. Rather, a cascading network of countercurrents is present with anion fluxes within the SR redistributing charges throughout the full SR volume. This allows ion channels in the entire SR membrane, far from the Ca2+ fluxes through the RyRs in the junctional SR and sarco/endoplasmic reticulum Ca2+ ATPase pump in the nonjunctional SR, to mediate countercurrents that support Ca2+ release and reuptake. This multifactorial network of countercurrents allows Ca2+ release to be remarkably robust.
Collapse
Affiliation(s)
- Vilmos Zsolnay
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois; The Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois
| | - Dirk Gillespie
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
7
|
Structural basis for activity of TRIC counter-ion channels in calcium release. Proc Natl Acad Sci U S A 2019; 116:4238-4243. [PMID: 30770441 DOI: 10.1073/pnas.1817271116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trimeric intracellular cation (TRIC) channels are thought to provide counter-ion currents that facilitate the active release of Ca2+ from intracellular stores. TRIC activity is controlled by voltage and Ca2+ modulation, but underlying mechanisms have remained unknown. Here we describe high-resolution crystal structures of vertebrate TRIC-A and TRIC-B channels, both in Ca2+-bound and Ca2+-free states, and we analyze conductance properties in structure-inspired mutagenesis experiments. The TRIC channels are symmetric trimers, wherein we find a pore in each protomer that is gated by a highly conserved lysine residue. In the resting state, Ca2+ binding at the luminal surface of TRIC-A, on its threefold axis, stabilizes lysine blockage of the pores. During active Ca2+ release, luminal Ca2+ depletion removes inhibition to permit the lysine-bearing and voltage-sensing helix to move in response to consequent membrane hyperpolarization. Diacylglycerol is found at interprotomer interfaces, suggesting a role in metabolic control.
Collapse
|
8
|
Melzer W. No voltage change at skeletal muscle SR membrane during Ca 2+ release-just Mermaids on acid. J Gen Physiol 2018; 150:1055-1058. [PMID: 29970411 PMCID: PMC6080887 DOI: 10.1085/jgp.201812084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Melzer highlights new work confirming that the sarcoplasmic reticulum transmembrane voltage changes little during Ca2+ release Calcium ions control multiple physiological functions by binding to extracellular and intracellular targets. One of the best-studied Ca2+-dependent functions is contraction of smooth and striated muscle tissue, which results from Ca2+ ligation to calmodulin and troponin C, respectively. Ca2+ signaling typically involves flux of the ion across membranes via specifically gated channel proteins. Because calcium ions are charged, they possess the ability to generate changes in the respective transmembrane voltage. Ca2+-dependent voltage alterations of the surface membrane are easily measured using microelectrodes. A well-known example is the characteristic plateau phase of the action potential in cardiac ventricular cells that results from the opening of voltage-gated L-type Ca2+ channels. Ca2+ ions are also released from intracellular storage compartments in many cells, but these membranes are not accessible to direct voltage recording with microelectrodes. In muscle, for example, release of Ca2+ from the sarcoplasmic reticulum (SR) to the myoplasm constitutes a flux that is considerably larger than the entry flux from the extracellular space. Whether this flux is accompanied by a voltage change across the SR membrane is an obvious question of mechanistic importance and has been the subject of many investigations. Because the tiny spaces enclosed by the SR membrane are inaccessible to microelectrodes, alternative methods have to be applied. In a study by Sanchez et al. (2018. J. Gen. Physiol.https://doi.org/10.1085/jgp.201812035) in this issue, modern confocal light microscopy and genetically encoded voltage probes targeted to the SR were applied in a new approach to search for changes in the membrane potential of the SR during Ca2+ release.
Collapse
Affiliation(s)
- Werner Melzer
- Institut für Angewandte Physiologie, Universität Ulm, Ulm, Germany
| |
Collapse
|
9
|
Structural basis for conductance through TRIC cation channels. Nat Commun 2017; 8:15103. [PMID: 28524849 PMCID: PMC5477506 DOI: 10.1038/ncomms15103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
Mammalian TRICs function as K+-permeable cation channels that provide counter ions for Ca2+ handling in intracellular stores. Here we describe the structures of two prokaryotic homologues, archaeal SaTRIC and bacterial CpTRIC, showing that TRIC channels are symmetrical trimers with transmembrane pores through each protomer. Each pore holds a string of water molecules centred at kinked helices in two inverted-repeat triple-helix bundles (THBs). The pores are locked in a closed state by a hydrogen bond network at the C terminus of the THBs, which is lost when the pores assume an open conformation. The transition between the open and close states seems to be mediated by cation binding to conserved residues along the three-fold axis. Electrophysiology and mutagenesis studies show that prokaryotic TRICs have similar functional properties to those of mammalian TRICs and implicate the three-fold axis in the allosteric regulation of the channel. Trimeric intracellular cation channels (TRICs) elicit K+ currents to counteract luminal negative potential during Ca2+ release from intracellular stores. Here the authors present structures of prokaryotic TRICs in their open and closed states, obtaining molecular insight into TRICs' function.
Collapse
|
10
|
Abstract
Sarcoplasmic reticulum (SR) K+ channels are voltage-regulated channels that are thought to be actively gating when the membrane potential across the SR is close to zero as is expected physiologically. A characteristic of SR K+ channels is that they gate to subconductance open states but the relevance of the subconductance events and their contribution to the overall current flowing through the channels at physiological membrane potentials is not known. We have investigated the relationship between subconductance and full conductance openings and developed kinetic models to describe the voltage sensitivity of channel gating. Because there may be two subtypes of SR K+ channels (TRIC-A and TRIC-B) present in most tissues, to conduct our study on a homogeneous population of SR K+ channels, we incorporated SR vesicles derived from Tric-a knockout mice into artificial membranes to examine the remaining SR K+ channel (TRIC-B) function. The channels displayed very low open probability (Po) at negative potentials (≤0 mV) and opened predominantly to subconductance open states. Positive holding potentials primarily increased the frequency of subconductance state openings and thereby increased the number of subsequent transitions into the full open state, although a slowing of transitions back to the sublevels was also important. We investigated whether the subconductance gating could arise as an artifact of incomplete resolution of rapid transitions between full open and closed states; however, we were not able to produce a model that could fit the data as well as one that included multiple distinct current amplitudes. Our results suggest that the apparent subconductance openings will provide most of the K+ flux when the SR membrane potential is close to zero. The relative contribution played by openings to the full open state would increase if negative charge developed within the SR thus increasing the capacity of the channel to compensate for ionic imbalances.
Collapse
|
11
|
Reconstitution of lysosomal ion channels into artificial membranes. Methods Cell Biol 2015. [PMID: 25665448 DOI: 10.1016/bs.mcb.2014.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ion channels that are located on intracellular organelles have always posed challenges for biophysicists seeking to measure their ion conduction, selectivity, and gating kinetics. Unlike cell surface ion channels, intracellular ion channels cannot be accessed for biophysical single-channel recordings using the patch-clamp technique while remaining in a physiological setting. Disruption of the cell is always necessary and hence experiments inevitably have a certain "artificial" nature about them. This drawback is turned to considerable advantage if the internal membranes containing the channels of interest can be isolated or if the channels can be purified because they can then be incorporated into artificial membranes of controlled composition. This approach guarantees a tight but flexible control over the biophysical and biochemical environment of the ion channel molecules. This includes the lipid composition of the membrane and the ionic solutions on both sides of the channel, thus allowing the conductance properties of the channel to be accurately measured. Since the influence of multiple unknown regulators of channel function (that could be present within the physiological membrane or in cytosolic, or intraorganelle compartments) is removed, the identification and characterization of physiological and pharmacological regulators that directly affect channel gating can also be achieved. This cannot be performed in a cellular environment. These techniques have typically been used to study the properties of channels located on endoplasmic/sarcoplasmic reticulum (ER/SR) membranes but in this chapter we describe how the techniques are also suited for ion channels of the acidic lysosomal and endolysosomal Ca(2+) stores.
Collapse
|
12
|
Miller C. In the beginning: a personal reminiscence on the origin and legacy of ClC-0, the 'Torpedo Cl(-) channel'. J Physiol 2015; 593:4085-90. [PMID: 25433078 DOI: 10.1113/jphysiol.2014.286260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/21/2014] [Indexed: 11/08/2022] Open
Abstract
This unapologetically subjective essay recalls the Torpedo Cl(-) channel in the years when it had neither a molecular identity nor proper name (ClC-0), and membership in a large superfamily. I discuss the circumstances surrounding its discovery and subsequent research through the 1980s that revealed its unusual molecular architecture and other strange mechanistic characteristics.
Collapse
Affiliation(s)
- Christopher Miller
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| |
Collapse
|
13
|
Takeshima H, Venturi E, Sitsapesan R. New and notable ion-channels in the sarcoplasmic/endoplasmic reticulum: do they support the process of intracellular Ca²⁺ release? J Physiol 2014; 593:3241-51. [PMID: 26228553 DOI: 10.1113/jphysiol.2014.281881] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/10/2014] [Indexed: 12/11/2022] Open
Abstract
Intracellular Ca(2+) release through ryanodine receptor (RyR) and inositol trisphosphate receptor (IP3 R) channels is supported by a complex network of additional proteins that are located in or near the Ca(2+) release sites. In this review, we focus, not on RyR/IP3 R, but on other ion-channels that are known to be present in the sarcoplasmic/endoplasmic reticulum (ER/SR) membranes. We review their putative physiological roles and the evidence suggesting that they may support the process of intracellular Ca(2+) release, either indirectly by manipulating ionic fluxes across the ER/SR membrane or by directly interacting with a Ca(2+) -release channel. These channels rarely receive scientific attention because of the general lack of information regarding their biochemical and/or electrophysiological characteristics makes it difficult to predict their physiological roles and their impact on SR Ca(2+) fluxes. We discuss the possible role of SR K(+) channels and, in parallel, detail the known biochemical and biophysical properties of the trimeric intracellular cation (TRIC) proteins and their possible biological and pathophysiological roles in ER/SR Ca(2+) release. We summarise what is known regarding Cl(-) channels in the ER/SR and the non-selective cation channels or putative 'Ca(2+) leak channels', including mitsugumin23 (MG23), pannexins, presenilins and the transient receptor potential (TRP) channels that are distributed across ER/SR membranes but which have not yet been fully characterised functionally.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Elisa Venturi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | |
Collapse
|
14
|
Guo T, Nani A, Shonts S, Perryman M, Chen H, Shannon T, Gillespie D, Fill M. Sarcoplasmic reticulum K(+) (TRIC) channel does not carry essential countercurrent during Ca(2+) release. Biophys J 2014; 105:1151-60. [PMID: 24010658 DOI: 10.1016/j.bpj.2013.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/17/2013] [Accepted: 07/15/2013] [Indexed: 01/30/2023] Open
Abstract
The charge translocation associated with sarcoplasmic reticulum (SR) Ca(2+) efflux is compensated for by a simultaneous SR K(+) influx. This influx is essential because, with no countercurrent, the SR membrane potential (Vm) would quickly (<1 ms) reach the Ca(2+) equilibrium potential and SR Ca(2+) release would cease. The SR K(+) trimeric intracellular cation (TRIC) channel has been proposed to carry the essential countercurrent. However, the ryanodine receptor (RyR) itself also carries a substantial K(+) countercurrent during release. To better define the physiological role of the SR K(+) channel, we compared SR Ca(2+) transport in saponin-permeabilized cardiomyocytes before and after limiting SR K(+) channel function. Specifically, we reduced SR K(+) channel conduction 35 and 88% by replacing cytosolic K(+) for Na(+) or Cs(+) (respectively), changes that have little effect on RyR function. Calcium sparks, SR Ca(2+) reloading, and caffeine-evoked Ca(2+) release amplitude (and rate) were unaffected by these ionic changes. Our results show that countercurrent carried by SR K(+) (TRIC) channels is not required to support SR Ca(2+) release (or uptake). Because K(+) enters the SR through RyRs during release, the SR K(+) (TRIC) channel most likely is needed to restore trans-SR K(+) balance after RyRs close, assuring SR Vm stays near 0 mV.
Collapse
Affiliation(s)
- Tao Guo
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
16
|
Venturi E, Matyjaszkiewicz A, Pitt SJ, Tsaneva-Atanasova K, Nishi M, Yamazaki D, Takeshima H, Sitsapesan R. TRIC-B channels display labile gating: evidence from the TRIC-A knockout mouse model. Pflugers Arch 2013; 465:1135-48. [PMID: 23467973 PMCID: PMC3732801 DOI: 10.1007/s00424-013-1251-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/24/2013] [Accepted: 02/11/2013] [Indexed: 11/25/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum (SR) and nuclear membranes contain two related cation channels named TRIC-A and TRIC-B. In many tissues, both subtypes are co-expressed, making it impossible to distinguish the distinct single-channel properties of each subtype. We therefore incorporated skeletal muscle SR vesicles derived from Tric-a-knockout mice into bilayers in order to characterise the biophysical properties of native TRIC-B without possible misclassification of the channels as TRIC-A, and without potential distortion of functional properties by detergent purification protocols. The native TRIC-B channels were ideally selective for cations. In symmetrical 210 mM K+, the maximum (full) open channel level (199 pS) was equivalent to that observed when wild-type SR vesicles were incorporated into bilayers. Analysis of TRIC-B gating revealed complex and variable behaviour. Four main sub-conductance levels were observed at approximately 80 % (161 pS), 60 % (123 pS), 46 % (93 pS), and 30 % (60 pS) of the full open state. Seventy-five percent of the channels were voltage sensitive with Po being markedly reduced at negative holding potentials. The frequent, rapid transitions between TRIC-B sub-conductance states prevented development of reliable gating models using conventional single-channel analysis. Instead, we used mean-variance plots to highlight key features of TRIC-B gating in a more accurate and visually useful manner. Our study provides the first biophysical characterisation of native TRIC-B channels and indicates that this channel would be suited to provide counter current in response to Ca2+ release from the SR. Further experiments are required to distinguish the distinct functional properties of TRIC-A and TRIC-B and understand their individual but complementary physiological roles.
Collapse
Affiliation(s)
- Elisa Venturi
- School of Physiology & Pharmacology, NSQI and Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD UK
| | - Antoni Matyjaszkiewicz
- School of Physiology & Pharmacology, NSQI and Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD UK
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TR UK
- Bristol Centre for Complexity Sciences, University of Bristol, Bristol, BS8 1TR UK
| | - Samantha J. Pitt
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| | | | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences and Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8501 Japan
| | - Daiju Yamazaki
- Graduate School of Pharmaceutical Sciences and Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8501 Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences and Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8501 Japan
| | - Rebecca Sitsapesan
- School of Physiology & Pharmacology, NSQI and Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD UK
| |
Collapse
|
17
|
TRIC channels supporting efficient Ca2+ release from intracellular stores. Pflugers Arch 2012; 465:187-95. [DOI: 10.1007/s00424-012-1197-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 12/22/2022]
|
18
|
Leptihn S, Thompson JR, Ellory JC, Tucker SJ, Wallace MI. In vitro reconstitution of eukaryotic ion channels using droplet interface bilayers. J Am Chem Soc 2011; 133:9370-5. [PMID: 21591742 DOI: 10.1021/ja200128n] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to routinely study eukaryotic ion channels in a synthetic lipid environment would have a major impact on our understanding of how different lipids influence ion channel function. Here, we describe a straightforward, detergent-free method for the in vitro reconstitution of eukaryotic ion channels and ionotropic receptors into droplet interface bilayers and measure their electrical activity at both the macroscopic and single-channel level. We explore the general applicability of this method by reconstitution of channels from a wide range of sources including recombinant cell lines and native tissues, as well as preparations that are difficult to study by conventional methods including erythrocytes and mitochondria.
Collapse
Affiliation(s)
- Sebastian Leptihn
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Pitt SJ, Park KH, Nishi M, Urashima T, Aoki S, Yamazaki D, Ma J, Takeshima H, Sitsapesan R. Charade of the SR K+-channel: two ion-channels, TRIC-A and TRIC-B, masquerade as a single K+-channel. Biophys J 2010; 99:417-26. [PMID: 20643059 DOI: 10.1016/j.bpj.2010.04.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/08/2010] [Accepted: 04/23/2010] [Indexed: 11/27/2022] Open
Abstract
The presence of a sarcoplasmic reticulum (SR) K+-selective ion-channel has been known for >30 years yet the molecular identity of this channel has remained a mystery. Recently, an SR trimeric intracellular cation channel (TRIC-A) was identified but it did not exhibit all expected characteristics of the SR K+-channel. We show that a related SR protein, TRIC-B, also behaves as a cation-selective ion-channel. Comparison of the single-channel properties of purified TRIC-A and TRIC-B in symmetrical 210 mM K+ solutions, show that TRIC-B has a single-channel conductance of 138 pS with subconductance levels of 59 and 35 pS, whereas TRIC-A exhibits full- and subconductance open states of 192 and 129 pS respectively. We suggest that the K+-current fluctuations observed after incorporating cardiac or skeletal SR into bilayers, can be explained by the gating of both TRIC-A and TRIC-B channels suggesting that the SR K+-channel is not a single, distinct entity. Importantly, TRIC-A is regulated strongly by trans-membrane voltage whereas TRIC-B is activated primarily by micromolar cytosolic Ca2+ and inhibited by luminal Ca2+. Thus, TRIC-A and TRIC-B channels are regulated by different mechanisms, thereby providing maximum flexibility and scope for facilitating monovalent cation flux across the SR membrane.
Collapse
Affiliation(s)
- Samantha J Pitt
- Department of Physiology and Pharmacology and Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Single ion-channel current measurements from rat brain synaptosomes in planar lipid bilayers. Biophys J 2010; 45:60-2. [PMID: 19431566 DOI: 10.1016/s0006-3495(84)84108-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Beca S, Aschar-Sobbi R, Ponjevic D, Winkfein RJ, Kargacin ME, Kargacin GJ. Effects of monovalent cations on Ca2+ uptake by skeletal and cardiac muscle sarcoplasmic reticulum. Arch Biochem Biophys 2009; 490:110-7. [PMID: 19706285 DOI: 10.1016/j.abb.2009.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 11/30/2022]
Abstract
Ca(2+) transport by the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) is sensitive to monovalent cations. Possible K(+) binding sites have been identified in both the cytoplasmic P-domain and the transmembrane transport-domain of the protein. We measured Ca(2+) transport into SR vesicles and SERCA ATPase activity in the presence of different monovalent cations. We found that the effects of monovalent cations on Ca(2+) transport correlated in most cases with their direct effects on SERCA. Choline(+), however, inhibited uptake to a greater extent than could be accounted for by its direct effect on SERCA suggesting a possible effect of choline on compensatory charge movement during Ca(2+) transport. Of the monovalent cations tested, only Cs(+) significantly affected the Hill coefficient of Ca(2+) transport (n(H)). An increase in n(H) from approximately 2 in K(+) to approximately 3 in Cs(+) was seen in all of the forms of SERCA examined. The effects of Cs(+) on the maximum velocity of Ca(2+) uptake were also different for different forms of SERCA but these differences could not be attributed to differences in the putative K(+) binding sites of the different forms of the protein.
Collapse
Affiliation(s)
- Sanja Beca
- Department of Physiology and Biophysics, University of Calgary, Alta., Canada
| | | | | | | | | | | |
Collapse
|
24
|
Beca S, Pavlov E, Kargacin ME, Aschar-Sobbi R, French RJ, Kargacin GJ. Inhibition of a cardiac sarcoplasmic reticulum chloride channel by tamoxifen. Pflugers Arch 2008; 457:121-35. [PMID: 18458943 DOI: 10.1007/s00424-008-0510-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/25/2022]
Abstract
Anion and cation channels present in the sarcoplasmic reticulum (SR) are believed to be necessary to maintain the electroneutrality of SR membrane during Ca(2+) uptake by the SR Ca(2+) pump (SERCA). Here we incorporated canine cardiac SR ion channels into lipid bilayers and studied the effects of tamoxifen and other antiestrogens on these channels. A Cl(-) channel was identified exhibiting multiple subconductance levels which could be divided into two primary conductance bands. Tamoxifen decreases the time the channel spends in its higher, voltage-sensitive band and the mean channel current. The lower, voltage-insensitive, conductance band is not affected by tamoxifen, nor is a K(+) channel present in the cardiac SR preparation. By examining SR Ca(2+) uptake, SERCA ATPase activity, and SR ion channels in the same preparation, we also estimated SERCA transport current, SR Cl(-) and K(+) currents, and the density of SERCA, Cl(-), and K(+) channels in cardiac SR membranes.
Collapse
Affiliation(s)
- Sanja Beca
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Koepsell H. Methodological aspects of purification and reconstitution of transport proteins from mammalian plasma membranes. Rev Physiol Biochem Pharmacol 2006; 104:65-137. [PMID: 2940665 DOI: 10.1007/bfb0031013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
French RJ, Zamponi GW. Voltage-gated sodium and calcium channels in nerve, muscle, and heart. IEEE Trans Nanobioscience 2005; 4:58-69. [PMID: 15816172 DOI: 10.1109/tnb.2004.842500] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated ion channels are membrane proteins which underlie rapid electrical signals among neurons and the spread of excitation in skeletal muscle and heart. We outline some recent advances in the study of voltage-sensitive sodium and calcium channels. Investigations are providing insight into the changes in molecular conformation associated with open-closed gating of the channels, the mechanisms by which they allow only specific ion species to pass through and carry an electric current, and the pathological consequences of small perturbations in channel structure which result from genetic mutations. Determination of three-dimensional structures, coupled with molecular manipulations by site-directed mutagenesis, and parallel electrophysiological analyses of currents through the ion channels, are providing an understanding of the roles and function of these channels at an unprecedented level of molecular detail. Crucial to these advances are studies of bacterial homologues of ion channels from man and other eukaryotes, and the use of naturally occurring peptide toxins which target different ion channel types with exquisite specificity.
Collapse
Affiliation(s)
- Robert J French
- Department of Physiology and Biophysics, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | | |
Collapse
|
27
|
Kourie JI. Chloride channels in the sarcoplasmic reticulum of muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 68:263-300. [PMID: 9652173 DOI: 10.1016/s0079-6107(97)00029-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J I Kourie
- Department of Chemistry, Australian National University, Canberra City, Australia
| |
Collapse
|
28
|
Kamp F, Donoso P, Hidalgo C. Changes in luminal pH caused by calcium release in sarcoplasmic reticulum vesicles. Biophys J 1998; 74:290-6. [PMID: 9449329 PMCID: PMC1299381 DOI: 10.1016/s0006-3495(98)77786-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fast (milliseconds) Ca2+ release from sarcoplasmic reticulum is an essential step in muscle contraction. To electrically compensate the charge deficit generated by calcium release, concomitant fluxes of other ions are required. In this study we investigated the possible participation of protons as counterions during calcium release. Triad-enriched sarcoplasmic reticulum vesicles, isolated from rabbit fast skeletal muscle, were passively loaded with 1 mM CaCl2 and release was induced at pCa = 5.0 and pH = 7.0 in a stopped-flow fluorimeter. Accompanying changes in vesicular lumen pH were measured with a trapped fluorescent pH indicator (pyranin). Significant acidification (approximately 0.2 pH units) of the lumen occurred within the same time scale (t(1/2) = 0.75 s) as calcium release. Enhancing calcium release with ATP or the ATP analog 5'-adenylylimidodiphosphate (AMPPNP) produced >20-fold faster acidification rates. In contrast, when calcium release induced with calcium with or without AMPPNP was blocked by Mg2+, no acidification of the lumen was observed. In all cases, rate constants of luminal acidification corresponded with reported values of calcium release rate constants. We conclude that proton fluxes account for part (5-10%) of the necessary charge compensation during calcium release. The possible relevance of these findings to the physiology of muscle cells is discussed.
Collapse
Affiliation(s)
- F Kamp
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago
| | | | | |
Collapse
|
29
|
Picher M, Decrouy A, Rousseau E. Conducting and voltage-dependent behaviors of potassium ion channels reconstituted from diaphragm sarcoplasmic reticulum: comparison with the cardiac isoform. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1279:93-103. [PMID: 8624367 DOI: 10.1016/0005-2736(95)00239-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sarcoplasmic reticulum (SR) K+ channels from canine diaphragm were studied upon fusion of longitudinal and junctional membrane vesicles into planar lipid bilayers (PLB). The large-conductance cation selective channel (gamma(max) = 250 pS; Km = 33 mM) displays long-lasting open events which are much more frequent at positive than at negative voltages. A major subconducting state about 45% of the fully-open state current amplitude was occasionally observed at all voltages. The voltage-dependence of the open probability displays a sigmoid relationship that was fitted by the Boltzmann equation and expressed in terms of thermodynamic parameters, namely the free energy (delta Gi) and the effective gating charge (Zs): delta Gi = 0.27 kcal/mol and Zs = -1.19 in 250 mM potassium gluconate (K-gluconate). Kinetic analyses also confirmed the voltage-dependent gating behavior of this channel, and indicate the implication of at least two open and three closed states. The diaphragm SR K+ channel shares several biophysical properties with the cardiac isoform: g = 180 pS, delta Gi = 0.75 kcal/mol, Zs = -1.45 in 150 mM K-gluconate, and a similar sigmoid P(o)/voltage relationship. Little is known about the regulation of the diaphragm and cardiac SR K+ channels. The conductance and gating of these channels were not influenced by physiological concentrations of Ca2+ (0.1 microM-1 mM) or Mg2+ (0.25-1 mM), as well as by cGMP (25-100 microM), lemakalim (1-100 microM), glyburide (up to 10 microM) or charybdotoxin (45-200 nM), added either to the cis or to the trans chamber. The apparent lack of biochemical or pharmacological modulation of these channels implies that they are not related to any of the well characterized surface membrane K+ channels. On the other hand, their voltage sensitivity strongly suggests that their activity could be modulated by putative changes in SR membrane potential that might occur during calcium fluxes.
Collapse
Affiliation(s)
- M Picher
- Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke, Canada
| | | | | |
Collapse
|
30
|
Kourie JI, Laver DR, Junankar PR, Gage PW, Dulhunty AF. Characteristics of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophys J 1996; 70:202-21. [PMID: 8770199 PMCID: PMC1224921 DOI: 10.1016/s0006-3495(96)79564-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A comparison is made of two types of chloride-selective channel in skeletal muscle sarcoplasmic reticulum (SR) vesicles incorporated into lipid bilayers. The I/V relationships of both channels, in 250/50 mM Cl- (cis/trans), were linear between -20 and +60 mV (cis potential,) reversed near Ecl and had slope conductances of approximately 250 pS for the big chloride (BCl) channel and approximately 70 pS for the novel, small chloride (SCl) channel. The protein composition of vesicles indicated that both channels originated from longitudinal SR and terminal cisternae. BCl and SCl channels responded differently to cis SO4(2-) (30-70 mM), 4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid (8-80 microM) and to bilayer potential. The BCl channel open probability was high at all potentials, whereas SCl channels exhibited time-dependent activation and inactivation at negative potentials and deactivation at positive potentials. The duration and frequency of SCl channel openings were minimal at positive potentials and maximal at -40 mV, and were stationary during periods of activity. A substate analysis was performed using the Hidden Markov Model (S. H. Chung, J. B. Moore, L. Xia, L. S. Premkumar, and P. W. Gage, 1990, Phil. Trans. R. Soc. Lond. B., 329:265-285) and the algorithm EVPROC (evaluated here). SCl channels exhibited transitions between 5 and 7 conductance levels. BCl channels had 7-13 predominant levels plus many more short-lived substates. SCl channels have not been described in previous reports of Cl- channels in skeletal muscle SR.
Collapse
Affiliation(s)
- J I Kourie
- John Curtin School of Medical Research, Australian National University, Canberra City, Australia.
| | | | | | | | | |
Collapse
|
31
|
Townsend C, Rosenberg RL. Characterization of a chloride channel reconstituted from cardiac sarcoplasmic reticulum. J Membr Biol 1995; 147:121-36. [PMID: 8568849 DOI: 10.1007/bf00233541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have characterized a voltage-sensitive chloride channel from cardiac sarcoplasmic reticulum (SR) following reconstitution of porcine heart SR into planar lipid bilayers. In 250 mM KCl, the channel had a main conductance level of 130 pS and exhibited two substrates of 61 and 154 pS. The channel was very selective for Cl- over K+ or Na+ (PK+/PCl- = 0.012 and PNa+/PCl- approximately 0.040). It was permeable to several anions and displayed the following sequence of anion permeability: SCN- > I- > NO3- approximately Br- > Cl- > F- > HCOO-. Single-channel conductance saturated with increasing Cl- concentrations (Km = 900 mM and gamma max = 488 pS). Channel activity was voltage dependent, with an open probability ranging from approximately 1.0 around 0 mV to approximately 0.5 at +80 mV. From -20 to +80 mV, channel gating was time-independent. However, at voltages below -40 mV the channel entered a long-lasting closed state. Mean open times varied with voltage, from approximately 340 msec at -20 mV to approximately 6 msec at +80 mV, whereas closed times were unaffected. The channel was not Ca(2+)-dependent. Channel activity was blocked by disulfonic stilbenes, arylaminobenzoates, zinc, and cadmium. Single-channel conductance was sensitive to trans pH, ranging from approximately 190 pS at pH 5.5 to approximately 60 pS at pH 9.0. These characteristics are different from those previously described for Cl- channels from skeletal or cardiac muscle SR.
Collapse
Affiliation(s)
- C Townsend
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599-7365, USA
| | | |
Collapse
|
32
|
Wang J, Best PM. Characterization of the potassium channel from frog skeletal muscle sarcoplasmic reticulum membrane. J Physiol 1994; 477:279-90. [PMID: 7932219 PMCID: PMC1155628 DOI: 10.1113/jphysiol.1994.sp020190] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The sarcoplasmic reticulum (SR) membrane of skeletal muscle contains potassium channels which are thought to support charge neutralization during calcium release by providing a permeability pathway for counter-ion movement. To describe the behaviour of the SR K+ channel under physiological conditions, single channel activity was recorded from excised patches of SR membrane. Patches were made from membrane blebs extruded from contracted muscle fibres whose surface membranes had been removed previously by mechanical dissection. 2. The channel was active over a large voltage range from -80 to +100 mV. The current-voltage relationship of the channel was linear over most of this voltage range (slope conductance equal to 60 pS in 130 mM potassium), but showed rectification at voltages below -50 mV. 3. The activity of the channel (number of state transitions per unit time) was greater at positive voltages than at negative voltages. Analysis of dwell-time distributions showed that the time spent in the open state is best fitted by a double Gaussian, suggesting that the channel possesses both a long (l)- and a short (s)-lived open state with identical conductances. The dwell times for the two states were Ts = 0.3 ms and Tl = 2.6 ms at +90 mV and Ts = 0.1 ms and Tl = 15.1 ms at -40 mV. Thus, positive voltage decreased the long open time significantly which was consistent with the observed increase in channel activity at positive potentials. 4. The permeability sequence of the channel to various monovalent cations was deduced from the channel reversal potential under bi-ionic conditions and was found to be: K+ > Rb+ > Na+ > Cs+ > Li+. 5. Channel activity was reduced when the patch was perfused with 1,10-bis-guanidino-n-decane (BisG10), a drug reported to block the SR K+ channel with high affinity. The drug concentration necessary to reduce the open probability (P(o)) by 50% was 19.8 microM at -40 mV and 338.2 microM at +50 mV. The zero voltage dissociation constant (Kd) was calculated to be 48 microM. 6. Pharmacological agents known to affect surface membrane K+ channels, such as 0.5 mM Ba2+ or 3.0 mM 4-aminopyridine, were much less effective in blocking the channel than BisG10. Physiological calcium concentrations (pCa = 8.0 and 3.0) did not affect channel behaviour.4
Collapse
Affiliation(s)
- J Wang
- University of Illinois, Department of Physiology and Biophysics, Urbana 61801
| | | |
Collapse
|
33
|
Uyama Y, Muraki K, Walsh MP, Imaizumi Y, Watanabe M. Tetrahexylammonium ions increase Ca2+ sensitivity of contraction of guinea-pig ileal smooth muscle. Pflugers Arch 1994; 426:363-70. [PMID: 8015886 DOI: 10.1007/bf00388298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effects of tetraalkylammonium ions, having tetraalkyl chains of increasing length from ethyl to octyl, on inositol-trisphosphate (InsP3)-induced Ca2+ release and contractile mechanics were examined in guinea-pig skinned ileal smooth muscle longitudinal strips. Although tetrahexylammonium ions (THexA) appeared to be the most potent inhibitor of Ca2+ release among the tetraalkylammonium ions examined, an additional and more prominent effect was found, i.e., the contraction induced by Ca2+ release showed a large sustained component in the presence of THexA. Potentiation of the contraction by THexA (above 30 microM) was also observed in skinned fibers in which the sarcoplasmic reticulum function was destroyed by treatment with A23187. The potentiating effect of THexA was the most potent by far among the tetraalkylammonium ions examined and was elicited by Ca(2+)-dependent and GTP-binding-protein-independent mechanisms. The potentiation was not due to activation of myosin light-chain kinase. The selective inhibitors of myosin light-chain kinase, protein kinase C and calmodulin reduced THexA-induced potentiation of contraction only at concentrations above 30 microM, at which non-specific effects are likely. Furthermore, relaxation induced by changing pCa from 4.5 to 8.5 was not affected by 1 mM THexA, suggesting that the potentiating effect is not mainly due to inhibition of myosin light-chain phosphatase. In conclusion, ThexA sensitizes guinea-pig skinned ileal smooth muscle to Ca2+ in a structure-selective manner. This sensitization appears not to be mediated mainly by a GTP-binding protein, by activation of myosin light-chain kinase or protein kinase C, by enhanced Ca2+ binding to calmodulin, or by inhibition of myosin light-chain phosphatase.
Collapse
Affiliation(s)
- Y Uyama
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- B L Kagan
- Department of Psychiatry, University of California at Los Angeles School of Medicine 90024
| | | |
Collapse
|
35
|
Kawano S, Hiraoka M. Protein kinase A-activated chloride channel is inhibited by the Ca(2+)-calmodulin complex in cardiac sarcoplasmic reticulum. Circ Res 1993; 73:751-7. [PMID: 8396507 DOI: 10.1161/01.res.73.4.751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiac sarcoplasmic reticulum (SR) has several chloride (Cl-) channels, which may neutralize the charge across the SR membrane generated by Ca2+ movement. We recently reported a novel 116-picosiemen Cl- channel that is activated by protein kinase A-dependent phosphorylation in cardiac SR. This Cl- channel may serve as a target protein in the receptor-dependent regulation of cardiac excitation-contraction coupling. To understand further regulatory mechanisms, the effects of Ca2+ on the Cl- channel were studied using the planar lipid bilayer-vesicle fusion technique. In the presence of calmodulin (CaM, 0.1 mumol/L per microgram SR vesicles), Ca2+ (3 mumol/L to 1 mmol/L) added to the cis solution reduced the channel openings in a concentration-dependent fashion, whereas Ca2+ (1 nmol/L to 1 mmol/L) alone or CaM (0.1 to 1 mumol/L per microgram SR vesicles) with 1 nmol/L Ca2+ did not affect the channel activity. This inhibitory effect of Ca2+ in the presence of CaM was prevented by CaM inhibitors N-(6 aminohexyl)-5-chloro-1-naphthalenesulfonamide and calmidazolium but not by CaM kinase II inhibitor KN62. These results suggest that the Ca(2+)-CaM complex itself, but not CaM kinase II, is involved in this channel inhibition. Thus, the cardiac SR 116-picosiemen Cl- channel is regulated not only by protein kinase A-dependent phosphorylation but also by the cytosolic Ca(2+)-CaM complex. This is a novel second messenger-mediated regulation of Cl- channels in cardiac SR membrane.
Collapse
Affiliation(s)
- S Kawano
- Department of Cardiovascular Disease, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
36
|
Xu L, Jones R, Meissner G. Effects of local anesthetics on single channel behavior of skeletal muscle calcium release channel. J Gen Physiol 1993; 101:207-33. [PMID: 8384242 PMCID: PMC2216763 DOI: 10.1085/jgp.101.2.207] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effects of the two local anesthetics tetracaine and procaine and a quaternary amine derivative of lidocaine, QX314, on sarcoplasmic reticulum (SR) Ca2+ release have been examined by incorporating the purified rabbit skeletal muscle Ca2+ release channel complex into planar lipid bilayers. Recordings of potassium ion currents through single channels showed that Ca(2+)- and ATP-gated channel activity was reduced by the addition of the tertiary amines tetracaine and procaine to the cis (cytoplasmic side of SR membrane) or trans (SR lumenal) side of the bilayer. Channel open probability was lowered twofold at tetracaine and procaine concentrations of approximately 150 microM and 4 mM, respectively. Hill coefficients of 2.0 and greater indicated that the two drugs inhibited channel activity by binding to two or more cooperatively interacting sites. Unitary conductance of the K(+)-conducting channel was not changed by 1 mM tetracaine in the cis and trans chambers. In contrast, cis millimolar concentrations of the quaternary amine QX314 induced a fast blocking effect at positive holding potentials without an apparent change in channel open probability. A voltage-dependent block was observed at high concentrations (millimolar) of tetracaine, procaine, and QX314 in the presence of 2 microM ryanodine which induced the formation of a long open subconductance. Vesicle-45Ca2+ ion flux measurements also indicated an inhibition of the SR Ca2+ release channel by tetracaine and procaine. These results indicate that local anesthetics bind to two or more cooperatively interacting high-affinity regulatory sites of the Ca2+ release channel in or close to the SR membrane. Voltage-dependent blockade of the channel by QX314 in the absence of ryanodine, and by QX314, procaine and tetracaine in the presence of ryanodine, indicated one low-affinity site within the conduction pathway of the channel. Our results further suggest that tetracaine and procaine may primarily inhibit excitation-contraction coupling in skeletal muscle by binding to the high-affinity, regulatory sites of the SR Ca2+ release channel.
Collapse
Affiliation(s)
- L Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260
| | | | | |
Collapse
|
37
|
Affiliation(s)
- D Siemen
- Institut für Zoologie, Universität Regensburg, FRG
| |
Collapse
|
38
|
Allard B, Moutin MJ, Ronjat M. BisG10, a K+ channel blocker, affects the calcium release channel from skeletal muscle sarcoplasmic reticulum. FEBS Lett 1992; 314:81-4. [PMID: 1333418 DOI: 10.1016/0014-5793(92)81466-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The action of bisG10, a potent K+ channel inhibitor, was tested on the Ca2+ release from isolated sarcoplasmic reticulum vesicles of rabbit skeletal muscle. Using a rapid filtration technique, we found that the drug inhibited Ca(2+)-induced Ca2+ release elicited in the presence of extravesicular K+ as counter-ion. This inhibition was not reversed by the addition of valinomycin and still occurred when Cl- was used as co-ion, indicating that not only K+ channels are involved in the inhibiting effect. We found that bisG10 decreased the binding of ryanodine to sarcoplasmic reticulum vesicles, showing that bisG10 is able to block the sarcoplasmic reticulum Ca2+ release channel.
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables, URA 180 CNRS, Villeurbanne, France
| | | | | |
Collapse
|
39
|
Lewis TM, Dulhunty AF, Junankar PR, Stanhope C. Ultrastructure of sarcoballs on the surface of skinned amphibian skeletal muscle fibres. J Muscle Res Cell Motil 1992; 13:640-53. [PMID: 1283395 DOI: 10.1007/bf01738254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The formation of sarcoballs on the surface of skinned fibres from semitendinosus muscles of Xenopus laevis, and the sarcoplasmic reticulum content of the structures, have been studied using conventional electron microscopic techniques and immunoelectron microscopy. Examination of the fibres showed many membrane-bound blebs projecting from the surface in areas where vesicles of internal membranes (including sarcoplasmic reticulum, T-tubules and mitochondria) were clustered in interfilament spaces. The blebs varied in size from 1 micron to 150 microns and those with diameters > 10 microns are referred to as sarcoballs. Small blebs were often seen in close association with each other and might have fused during sarcoball formation. The interior of the sarcoball was filled with foam-like material made up of vesicles with diameters of 100 nm to 1.0 microns. The sarcoplasmic reticulum membrane content of the sarcoballs was evaluated using two monoclonal antibodies, one to the Ca2+ ATPase of the sarcoplasmic reticulum and the second to ryanodine receptor calcium release channels in the junctional-face membrane. The antibodies bound to some components of the surface and interior of the sarcoball, but not to mitochondrial-like structures and tubular vesicles. The results show that a large component of the sarcoball and its surface is derived from sarcoplasmic reticulum and suggest that mitochondria and T-tubules might also contribute membranes to the structures. Our hypothesis is that (a) blebs bud out from the surface of the skinned fibre following fusion of internal vesicles that are extruded along interfilament channels during unrestrained contractures, (b) blebs grow into sarcoballs by additional fusion of internal membrane vesicles and fusion of adjacent blebs, and (c) the sarcoball is a foam-like structure composed of bathing medium and membrane lipid (containing membrane proteins).
Collapse
Affiliation(s)
- T M Lewis
- Division of Neuroscience, John Curtin School of Medical Research, ANU, Canberra City, ACT, Australia
| | | | | | | |
Collapse
|
40
|
Abstract
Calcium conducting channels were studied in blebs of sarcoplasmic reticulum described by Stein & Palade (1988). The calcium channels had at least three conductance states (70 pS, 50 pS and 37 pS) and were weakly selective for calcium ions, with a permeability ratio Ca2+ to K+ of about 3.4. The open probability of the channel was strongly voltage dependent, decreasing at positive membrane voltages. 10 microM ryanodine and 5 microM ruthenium red had no effect on this channel; neither did millimolar concentrations of ATP, Mg2+, caffeine, and Ca2+, implying that the calcium conducting channels are not ryanodine receptors. Several calcium pump inhibitors--namely, vanadate, AlF4-, reactive red 120, and cyclopiazonic acid--had obvious effects on the calcium conducting channels, suggesting that the calcium conducting channel of SR membrane blebs is some form of the SR calcium pump.
Collapse
Affiliation(s)
- J Wang
- Department of Physiology, Rush Medical College, Chicago, Illinois 60612
| | | | | |
Collapse
|
41
|
Kawano S, Nakamura F, Tanaka T, Hiraoka M. Cardiac sarcoplasmic reticulum chloride channels regulated by protein kinase A. Circ Res 1992; 71:585-9. [PMID: 1323433 DOI: 10.1161/01.res.71.3.585] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In heart cells, several plasma membrane ion channels are targets for phosphorylation. However, it is not known whether sarcoplasmic reticulum (SR) ion channels, which are also essential in the regulation of cardiac function, are regulated by second-messenger systems. Here, we show that a Cl- channel in the cardiac SR membrane is activated by the catalytic subunit of protein kinase A (PKA). Purified cardiac heavy SR vesicles were incorporated into planar lipid bilayers. This channel spontaneously inactivated within a few minutes after the channel was incorporated into the bilayer. Mg-ATP (2-5 mM), but not the nonhydrolyzable ATP analogue 5'-adenylylimidodiphosphate, added to the cis solution prevented this spontaneous channel inactivation. After the inactivation process occurred, the catalytic subunit of PKA (with 0.05 mM Mg-ATP) reactivated this channel. These effects of Mg-ATP and PKA on the Cl- channel were prevented by an inhibitor of PKA. Thus, these results suggest that this SR Cl- channel is a novel target of PKA-dependent phosphorylation in cardiac muscle regulation.
Collapse
Affiliation(s)
- S Kawano
- Department of Cardiovascular Disease, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
42
|
The 30 S lobster skeletal muscle Ca2+ release channel (ryanodine receptor) has functional properties distinct from the mammalian channel proteins. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49618-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Tinker A, Lindsay AR, Williams AJ. Block of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by tetra-alkyl ammonium cations. J Membr Biol 1992; 127:149-59. [PMID: 1625325 DOI: 10.1007/bf00233287] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purified ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) membrane functions as a calcium-activated cation-selective channel under voltage-clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effects of the tetra-alkyl ammonium (TAA) cations, (CnH2n+1)4N+ and the trimethyl ammonium cations, ethyltrimethyl ammonium and propyltrimethyl ammonium, on potassium conductance through the receptor channel. Small TAA cations (n = 1-3) and the trimethyl ammonium derivatives act as asymmetric, voltage-dependent blockers of potassium current. Quantitative analysis of the voltage dependence of block indicates that the conduction pathway of the sheep cardiac SR ryanodine receptor channel contains two distinct sites for the interaction of these small organic cations. Sites are located at approximately 50% for tetramethyl ammonium (TMA+) and 90% for tetraethyl ammonium (TEA+) and tetrapropyl ammonium (TPrA+) of the voltage drop across the channel from the cytosolic face of the protein. The chemical substitution of an ethyl or propyl group for one of the methyl groups in TMA+ increases the voltage dependence of block to a level similar to that of TEA+ and TPrA+. The zero-voltage dissociation constant (Kb(0)) falls with the increasing number of methyl and methylene groups for those blockers acting 90% of the way across the voltage drop. This is interpreted as suggesting a hydrophobic binding site at this point in the conduction pathway. The degree of block increases as the concentration of small TAA cations is raised. The concentration dependence of tetraethyl ammonium block indicates that the cation interacts with a single site within the conduction pathway with a Km of 9.8 +/- 1.7 mM (mean +/- SD) at 40 mV. Larger TAA cations (n = 4-5) do not induce voltage-dependent block of potassium current of the form seen with the smaller TAA cations. These data support the contention that the sheep cardiac SR ryanodine receptor channel may be occupied by at most one ion at a time and suggest that a large proportion of the voltage drop falls over a relatively wide region of the conduction pathway.
Collapse
Affiliation(s)
- A Tinker
- Department of Cardiac Medicine, National Heart and Lung Institute, University of London, United Kingdom
| | | | | |
Collapse
|
44
|
Williams AJ. Ion conduction and discrimination in the sarcoplasmic reticulum ryanodine receptor/calcium-release channel. J Muscle Res Cell Motil 1992; 13:7-26. [PMID: 1313441 DOI: 10.1007/bf01738423] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A J Williams
- Department of Cardiac Medicine, University of London, UK
| |
Collapse
|
45
|
Allard B, Rougier O. Reappraisal of the role of sodium ions in excitation-contraction coupling in frog twitch muscle. J Muscle Res Cell Motil 1992; 13:117-25. [PMID: 1556167 DOI: 10.1007/bf01738435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tetanic and twitch tension were recorded on isolated frog twitch fibres under experimental conditions modifying the influx of sodium ions. In current clamp conditions replacing Li+ for Na+ did not modify the electrical activity but drastically decreased the plateau of tetanic tension. In voltage clamp conditions replacing Li+ for Na+ did not modify the inward currents but induced a marked decrease of the plateau of the tetanic tension for depolarizations between the activation threshold and the reversal potential of sodium current. Under veratridine treatment, during tetanic depolarization, a slow inward sodium (or lithium) current developed. This induced a parallel increase of the tetanic tension which was much more pronounced in sodium than in lithium containing solution. The twitch tension obtained during short depolarization was increased by greater than 100% during veratridine treatment with a sizeable decrease (40%) of the delay between the end of depolarization and the beginning of tension. All these results could be reproduced in calcium-free solution. Our data confirm that the entry of sodium ions (and to a lesser extent of lithium ions) is able to modulate the release of calcium from the sarcoplasmic reticulum (SR). We discuss these results in terms of a model where sodium ions entering the compartment between the tubular membrane and the SR junctional membrane carry counter charges through the SR K+ channels and help to maintain the SR Ca2+ release. This could occur in particular during a physiological tetanic contraction where the junctional compartment is probably filled with Na+ ions and depleted of K+ ions.
Collapse
Affiliation(s)
- B Allard
- Laboratoire de Physiologie des Eléments Excitables (CNRS UA 180), Université Claude Bernard Lyon I, Villeurbanne, France
| | | |
Collapse
|
46
|
Holmberg SR, Williams AJ. The calcium-release channel from cardiac sarcoplasmic reticulum: function in the failing and acutely ischaemic heart. Basic Res Cardiol 1992; 87 Suppl 1:255-68. [PMID: 1323262 DOI: 10.1007/978-3-642-72474-9_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Junctional SR membrane vesicles have been isolated from chronically failing human hearts explanted at transplant operations. Vesicles have been incorporated into artificial planar phospholipid bilayers and the activity of single calcium-release channels investigated under voltage-clamp conditions. The properties of these channels are similar to those previously reported from normal animal tissue and do not provide evidence that the function of individual calcium-release channels is altered in the failing heart. Using radio-labelled ryanodine binding as a specific marker for the calcium-release channel, we demonstrate that, in the sheep heart, ischaemia results in the degradation of the calcium-release channel. The activation of proteases and oxidant stress in the ischaemic and re-perfused post-ischaemic myocardium are likely mediators of cell injury. Using the protease trypsin and the photosensitisation of rose bengal to generate the reactive oxygen species (ROS) singlet oxygen and superoxide radicals we demonstrate a direct effect on the calcium-release channel in vitro. Exposure of junctional SR vesicles to trypsin or oxidant stress resulted in the progressive loss of specific ryanodine binding and the degradation of high molecular weight proteins identified by polyacrylamide gel electrophoresis. The activity of single channels was also modified during exposure to proteolysis or oxidant stress; an initial increase in channel opening was observed followed by irreversible loss of channel function. Degradation of specific proteins, such as the calcium-release channel, may contribute to contractile dysfunction in the ischaemic and reperfused post-ischaemic myocardium.
Collapse
Affiliation(s)
- S R Holmberg
- Department of Cardiology, Royal Sussex County Hospital, Brighton, East Sussex, England
| | | |
Collapse
|
47
|
Coronado R, Kawano S, Lee CJ, Valdivia C, Valdivia HH. Planar bilayer recording of ryanodine receptors of sarcoplasmic reticulum. Methods Enzymol 1992; 207:699-707. [PMID: 1326706 DOI: 10.1016/0076-6879(92)07051-o] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
|
49
|
Dulhunty AF. The voltage-activation of contraction in skeletal muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1992; 57:181-223. [PMID: 1603939 DOI: 10.1016/0079-6107(92)90024-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra City
| |
Collapse
|
50
|
Liu QY, Lai FA, Shen WK, Meissner G, Strauss HC. Reconstitution of the solubilized cardiac sarcoplasmic reticulum potassium channel. Identification of a putative Mr approximately 80 kDa polypeptide constituent. FEBS Lett 1991; 291:13-6. [PMID: 1936241 DOI: 10.1016/0014-5793(91)81092-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence has indicated that potassium ion movement through sarcoplasmic reticulum (SR) K+ channels is an important countercurrent for Ca2+ release from SR. We used Chaps-solubilized SR vesicles and sucrose density gradient centrifugation to identify components of the canine cardiac SR K+ channel. To overcome the difficulty of the absence of a high-affinity specific ligand, we have successfully applied the planar lipid bilayer reconstitution technique to identify and functionally assay for the solubilized SR K+ channel. We found that Chaps solubilization of the channel did not change the protein's functional properties. The cardiac SR K+ channel sediments as a 15-20S protein complex. A polypeptide of Mr approximately 80 kDa was found to specifically comigrate with the 15-20S gradient fractions and might be a major constituent of the cardiac SR K+ channel.
Collapse
Affiliation(s)
- Q Y Liu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|