1
|
Kumar S, Kain V, Sitasawad SL. Cardiotoxicity of calmidazolium chloride is attributed to calcium aggravation, oxidative and nitrosative stress, and apoptosis. Free Radic Biol Med 2009; 47:699-709. [PMID: 19497364 DOI: 10.1016/j.freeradbiomed.2009.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/05/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
The intracellular calcium concentration ([Ca](i)) regulates cell viability and contractility in myocardial cells. Elevation of the [Ca](i) level occurs by entry of calcium ions (Ca(2+)) through voltage-dependent Ca(2+) channels in the plasma membrane and release of Ca(2+) from the sarcoplasmic reticulum. Calmidazolium chloride (CMZ), a subgroup II calmodulin antagonist, blocks L-type calcium channels as well as voltage-dependent Na(+) and K(+) channel currents. This study elaborates on the events that contribute to the cytotoxic effects of CMZ on the heart. We hypothesized that apoptotic cell death occurs in the cardiac cells through calcium accumulation, production of reactive oxygen species, and the cytochrome c-mediated PARP activation pathway. CMZ significantly increased the production of superoxide (O(2)(*-)) and nitric oxide (NO) as detected by FACS and confocal microscopy. CMZ induced mitochondrial damage by increasing the levels of intracellular calcium, lowering the mitochondrial membrane potential, and thereby inducing cytochrome c release. Apoptotic cell death was observed in H9c2 cells exposed to 25 microM CMZ for 24 h. This is the first report that elaborates on the mechanism of CMZ-induced cardiotoxicity. CMZ causes apoptosis by decreasing mitochondrial activity and contractility indices and increasing oxidative and nitrosative stress, ultimately leading to cell death via an intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Sandeep Kumar
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune 411007, Maharashtra, India
| | | | | |
Collapse
|
2
|
Meira DD, Marinho-Carvalho MM, Teixeira CA, Veiga VF, Da Poian AT, Holandino C, de Freitas MS, Sola-Penna M. Clotrimazole decreases human breast cancer cells viability through alterations in cytoskeleton-associated glycolytic enzymes. Mol Genet Metab 2005; 84:354-62. [PMID: 15781197 DOI: 10.1016/j.ymgme.2004.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/22/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. Glycolysis is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. Clotrimazole is an anti-fungal azole derivative recently recognized as a calmodulin antagonist with promising anti-cancer effect. Here, we show that clotrimazole induced morphological and functional alterations on human breast cancer derived cell line, MCF-7. The drug decreased cell viability in a dose- and time-dependent manner, exhibiting an IC50 of 88.6+/-5.3 microM and a t0.5 of 89.7+/-7.2 min, with 50 microM clotrimazole. Morphological changes were evident as observed by scanning electron microscopy, which revealed the completely loss of protrusion responsible for cell adhesion after a 180 min of treatment with 50 microM clotrimazole. Giemsa stained cells observed by optical microscopy show morphological alterations and a marked nuclear condensation. These changes occurred in parallel to the detachment of the glycolytic enzymes, 6-phosphofructo-1-kinase and aldolase, from cytoskeleton. After a 45 min treatment with 50 microM clotrimazole, the remaining activities in a cytoskeleton enriched fraction was 16.4+/-3.6% and 41.0+/-15.6% of control for 6-phosphofructo-1-kinase and aldolase, respectively. Immunocytochemistry experiments revealed a decrease in the co-localization of 6-phosphofructo-1-kinase and F-actin after clotrimazole treatment, suggesting the site of detachment of the enzymes. Altogether, our results support evidence for apoptotic events that might be started by clotrimazole involving inhibition of glycolytic flux in MCF-7 cells and makes this drug a promising agent in the fight against human breast cancer.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Dept. Fármacos, Fac. Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Penso J, Beitner R. Clotrimazole decreases glycolysis and the viability of lung carcinoma and colon adenocarcinoma cells. Eur J Pharmacol 2003; 451:227-35. [PMID: 12242083 DOI: 10.1016/s0014-2999(02)02103-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycolysis is known to be the primary energy source in most cancer cells. We investigated here the effect of clotrimazole (1-(alpha-2-chlorotrityl)imidazole), the antifungal azole derivative, which was recently recognized as calmodulin antagonist, on the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis, and on ATP content and cell viability in LL/2 Lewis lung carcinoma cells and CT-26 colon adenocarcinoma cells. We found that clotrimazole induced a significant, dose- and time-dependent reduction in the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate, ATP, and cell viability. These findings suggest that clotrimazole causes a reduction in glycolysis and ATP levels, which eventually leads to cell destruction after 3 h of treatment. Since cell proliferation was also reported to be inhibited by calmodulin antagonists, this substance is most promising agent in treatment of cancer by inhibiting both cell proliferation and the glycolytic supply of ATP required for cancer cell growth.
Collapse
Affiliation(s)
- Julia Penso
- Health Sciences Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
4
|
Penso J, Beitner R. Detachment of glycolytic enzymes from cytoskeleton of Lewis lung carcinoma and colon adenocarcinoma cells induced by clotrimazole and its correlation to cell viability and morphology. Mol Genet Metab 2002; 76:181-8. [PMID: 12126931 DOI: 10.1016/s1096-7192(02)00046-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. Glycolysis is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. We report here that clotrimazole (l-(alpha-2-chlorotrityl)imidazole), the antifungal azole derivative, which was recently recognized as calmodulin antagonist, induced a dose-dependent detachment of the glycolytic enzymes, phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) and aldolase (D-fructose-l,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13), from cytoskeleton of LL/2 Lewis lung carcinoma cells and CT-26 colon adenocarcinoma cells. The detachment of glycolytic enzymes from cytoskeleton would reduce the provision of local ATP, in the vicinity of the cytoskeleton membrane, and would also affect cytoskeleton structure and cell shape. We show here that clotrimazole decreased the viability of LL/2 Lewis lung carcinoma cells and CT-26 colon adenocarcinoma cells. After 3h of incubation with clotrimazole, complete cell destruction was detected. Ultrastructural cell damage was manifested by disintegration of the outer membrane by scanning electron microscopy (SEM). The detachment of glycolytic enzymes from cytoskeleton, induced by clotrimazole, preceded the decrease in cell viability, which indicates that this is an early effect and not a result of cell death. Since the cytoskeleton is being recognized as an important modulator of cell function, proliferation, differentiation, and neoplasia, detachment of the glycolytic enzymes from cytoskeleton induced by clotrimazole, as well as its reported inhibitory action on cell proliferation, makes this drug the most promising agent in the treatment of cancer.
Collapse
Affiliation(s)
- Julia Penso
- Health Sciences Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | |
Collapse
|
5
|
Blondelle SE, Crooks E, Aligué R, Agell N, Bachs O, Esteve V, Tejero R, Celda B, Pastor MT, Pérez-Payá E. Novel, potent calmodulin antagonists derived from an all-D hexapeptide combinatorial library that inhibit in vivo cell proliferation: activity and structural characterization. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:148-62. [PMID: 10784031 DOI: 10.1034/j.1399-3011.2000.00162.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calmodulin is known to bind to various amphipathic helical peptide sequences, and the calmodulin-peptide binding surface has been shown to be remarkably tolerant sterically. D-Amino acid peptides, therefore, represent potential nonhydrolysable intracellular antagonists of calmodulin. In the present study, synthetic combinatorial libraries have been used to develop novel D-amino acid hexapeptide antagonists to calmodulin-regulated phosphodiesterase activity. Five hexapeptides were identified from a library containing over 52 million sequences. These peptides inhibited cell proliferation both in cell culture using normal rat kidney cells and by injection via the femoral vein following partial hepatectomy of rat liver cells. These hexapeptides showed no toxic effect on the cells. Despite their short length, the identified hexapeptides appear to adopt a partial helical conformation similar to other known calmodulin-binding peptides, as shown by CD spectroscopy in the presence of calmodulin and NMR spectroscopy in DMSO. The present peptides are the shortest peptide calmodulin antagonists reported to date showing potential in vivo activity.
Collapse
Affiliation(s)
- S E Blondelle
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Glass-Marmor L, Beitner R. Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists. Eur J Pharmacol 1997; 328:241-8. [PMID: 9218707 DOI: 10.1016/s0014-2999(97)83051-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycolysis, which is the primary energy source in cancer cells, is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. We have previously found that different calmodulin antagonists decrease the levels of allosteric activators of glycolysis, and reduce ATP content and cell viability in B16 melanoma cells. Here we report of a novel, additional, mechanism of action of calmodulin antagonists in melanoma cells. We show that these drugs cause a detachment of the glycolytic enzymes, phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) and aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13), from cytoskeleton of B16 melanoma cells. This effect was dose- and time-dependent, and preceded the decrease in cell viability. The detachment of glycolytic enzymes from cytoskeleton would reduce the provision of local ATP, in the vicinity of the cytoskeleton-membrane and would affect cytoskeleton structure. Since the cytoskeleton is being recognized as an important modulator of cell function, proliferation, differentiation and neoplasia, detachment of the glycolytic enzymes from cytoskeleton induced by calmodulin antagonists, as well as their reported inhibitory action on cell proliferation, make these drugs most promising agents in treatment of cancer.
Collapse
Affiliation(s)
- L Glass-Marmor
- Health Sciences Research Center, Department of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
7
|
Glass-Marmor L, Morgenstern H, Beitner R. Calmodulin antagonists decrease glucose 1,6-bisphosphate, fructose 1,6-bisphosphate, ATP and viability of melanoma cells. Eur J Pharmacol 1996; 313:265-71. [PMID: 8911923 DOI: 10.1016/0014-2999(96)00526-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycolysis is known to be the primary energy source in cancer cells. We investigated here the effect of four different calmodulin antagonists: thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), CGS 9343B (1,3-dihydro-1-[1-[(4-methyl-4H,6H-pyrrolo[1,2-a] [4,1]-benzoxazepin-4-yl)methyl]-4-piperidinyl]-2 H-benzimidazol-2-one (1:1) maleate), clotrimazole (1-(alpha-2-chlorotrityl)imidazole) and bifonazole (1-(alpha-biphenyl-4-ylbenzyl)imidazole), on the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis, and on ATP content and cell viability in B16 melanoma cells. We found that all four substances significantly reduced the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate and ATP, in a dose- and time-dependent manner. Cell viability was reduced in a close correlation with the fall in ATP. The decrease in glucose 1,6-bisphosphate and fructose 1,6-bisphosphate did not result from the cytotoxic effects of the calmodulin antagonists, since their content was already reduced before any cytotoxic effect was observed. These findings suggest that the fall in the levels of the two signal molecules of glycolysis, induced by the calmodulin antagonists, causes a reduction in glycolysis and ATP levels, which eventually leads to cell death. Since cell proliferation was also reported to be inhibited by calmodulin antagonists, these substances are most promising agents in treatment of cancer by inhibiting both cell proliferation and the glycolytic supply of ATP required for cell growth.
Collapse
Affiliation(s)
- L Glass-Marmor
- Department of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
8
|
Williams CL, Phelps SH, Porter RA. Expression of Ca2+/calmodulin-dependent protein kinase types II and IV, and reduced DNA synthesis due to the Ca2+/calmodulin-dependent protein kinase inhibitor KN-62 (1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenyl piperazine) in small cell lung carcinoma. Biochem Pharmacol 1996; 51:707-15. [PMID: 8615909 DOI: 10.1016/s0006-2952(95)02393-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Because changes in intracellular Ca2+ affect progression through the mitotic cell cycle, we investigated the role of Ca2+-binding proteins in regulating cell cycle progression. Evidence was found demonstrating that the activation of Ca2+/calmodulin-dependent protein kinase (CaM kinase) inhibits cell cycle progression in small cell lung carcinoma (SCLC) cells. We also demonstrated that SCLC cells express both CaM kinase type II (CaMKII) and CaM kinase type IV (CaMKIV). Five independent SCLC cell lines expressed proteins reactive with antibody to the CaMKII beta subunit, but none expressed detectable proteins reactive with antibody to the CaMKII alpha subunit. All SCLC cell lines tested expressed both the alpha and beta isoforms of CaMKIV. Immunoprecipitation of CaMKII from SCLC cells yielded multiple proteins that autophosphorylated in the presence of Ca2+ / calmodulin. Autophosphorylation was inhibited by the CaMKII(281-302) peptide, which corresponds to the CaMKII autoinhibitory domain, and by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), a specific CaM kinase antagonist. Influx of Ca2+ through voltage-gated Ca2+ channels stimulated phosphorylation of CaMKII in SCLC cells, and this was inhibited by KN-62. Incubation of SCLC cells of KN-62 potently inhibited DNA synthesis, and slowed progression through S phase. Similar anti-proliferative effects of KN-62 occurred in SK-N-SH human neuroblastoma cells, which express both CaMKII and CaMKIV, and in K562 human chronic myelogenous leukemia cells, which express CaMKII but not CaMKIV. The expression of both CaMKII and CaMKIV by SCLC cells, and the sensitivity of these cells to the anti-proliferative effects of KN-62, suggest a role for CaM kinase in regulating SCLC proliferation.
Collapse
Affiliation(s)
- C L Williams
- Molecular Pharmacology Laboratory, Guthrie Research Institute, Sayre, PA 18840, USA
| | | | | |
Collapse
|
9
|
Koren-Schwartzer N, Chen-Zion M, Ben-Porat H, Beitner R. Serotonin-induced decrease in brain ATP, stimulation of brain anaerobic glycolysis and elevation of plasma hemoglobin; the protective action of calmodulin antagonists. GENERAL PHARMACOLOGY 1994; 25:1257-62. [PMID: 7875554 DOI: 10.1016/0306-3623(94)90147-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. Injection of serotonin (5-hydroxytryptamine) to rats, induced a dramatic fall in brain ATP level, accompanied by an increase in P(i). Concomitant to these changes, the activity of cytosolic phosphofructokinase, the rate-limiting enzyme of glycolysis, was significantly enhanced. Stimulation of anaerobic glycolysis was also reflected by a marked increase in lactate content in brain. 2. Brain glucose 1,6-bisphosphate level was decreased, whereas fructose 2,6-bisphosphate was unaffected by serotonin. 3. All these serotonin-induced changes in brain, which are characteristic for cerebral ischemia, were prevented by treatment with the calmodulin (CaM) antagonists, trifluoperazine or thioridazine. 4. Injection of serotonin also induced a marked elevation of plasma hemoglobin, reflecting lysed erythrocytes, which was also prevented by treatment with the CaM antagonists. 5. The present results suggest that CaM antagonists may be effective drugs in treatment of many pathological conditions and diseases in which plasma serotonin levels are known to increase.
Collapse
|
10
|
Tusell JM, Barrón S, Serratosa J. Anticonvulsant activity of delta-HCH, calcium channel blockers and calmodulin antagonists in seizures induced by lindane and other convulsant drugs. Brain Res 1993; 622:99-104. [PMID: 7694769 DOI: 10.1016/0006-8993(93)90807-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The anticonvulsant activity of delta-HCH and of a calmodulin antagonist, W-7 were investigated on convulsions induced in mice by lindane (ED100 100 mg/kg), by GABAergic antagonists PTZ (ED100 60 mg/kg) and PTX(ED100 4 mg/kg), by calcium channel agonist BAY-K-8644 (ED100 5 mg/kg), by two agonists of excitatory amino acid receptors, kainic acid (ED100 80 mg/kg) and NMDA (ED100 160 mg/kg and by the atypical benzodiazepine Ro 5-4864 (ED100 40 mg/kg). The anticonvulsant activity of a voltage-dependent calcium channel antagonist, nifedipine was also investigated on convulsions induced by Ro 5-4864, BAY-K-8644, kainic acid and NMDA. delta-HCH antagonized lindane- and BAY-K-8644-induced convulsions (ED50 231 (172-309) mg/kg and 148 (142-154) mg/kg, respectively) and at concentrations up to 300 mg/kg failed to antagonize Ro 5-4864, kainic acid and NMDA convulsions. In contrast delta-HCH potentiated PTX-induced seizures. Nifedipine antagonized BAY-K-8644- and kainic acid-induced convulsions (ED50 6.5 (4.3-9.7) mg/kg and 30 (13-70) mg/kg but at concentrations up to 20 mg/kg failed to antagonize Ro 5-4864 and 25% of protection was observed on NMDA-induced convulsions at the highest dose (20 mg/kg). The ED50 of W-7 to antagonize convulsions induced by lindane and BAY-K-8644 were 12 (8-19) mg/kg and 49 (29-85) mg/kg, respectively. Some anticonvulsant effect was observed against PTZ and NMDA but without any dose-dependent anticonvulsant activity. W-7 did not protect against PTX and kainic acid convulsions and 30% of protection was observed against convulsions at the highest dose of W-7 (75 mg/kg).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Tusell
- Department of Neurochemistry, CSIC, Barcelona, Spain
| | | | | |
Collapse
|