1
|
Lozano-Huntelman NA, Cook E, Bullivant A, Ida N, Zhou A, Boyd S, Yeh PJ. Interactions within higher-order antibiotic combinations do not influence the rate of adaptation in bacteria. Evolution 2025; 79:875-882. [PMID: 39918979 PMCID: PMC12081359 DOI: 10.1093/evolut/qpaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
The prevalence and strength of antibiotic resistance has led to an ongoing battle between the development of new treatments and the evolution of resistance. Combining multiple drugs simultaneously is a potential solution for combating antibiotic resistance. However, this approach introduces new factors that must be considered, including the influence of drug interactions on the rate of resistance evolution. When antibiotics are used in combination, their effects can be additive, synergistic, or antagonistic. In this study, we investigated the effect of higher-order interactions involving 3 drugs on resistance evolution in Staphylococcus epidermidis. Previous studies have shown that synergistic interactions can increase the adaptation rate. However, the effects of higher-order interactions on rates of adaptation are unclear. We investigated the adaptation of Staphylococcus epidermidis to single-, 2-, and 3-drug environments to assess how interactions within drug combinations influence the rate of adaptation. We analyzed both the overall interaction and emergent interaction, the latter being a unique interaction that occurs in 3-drug combinations due to the presence of all three drugs, rather than simply strong pairwise interactions. Our results show that neither the overall interactions nor the emergent interactions affect adaptation rates.
Collapse
Affiliation(s)
- Natalie Ann Lozano-Huntelman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emoni Cook
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Austin Bullivant
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nick Ida
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - April Zhou
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sada Boyd
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pamela J Yeh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
2
|
Smirnova G, Tyulenev A, Sutormina L, Kalashnikova T, Samoilova Z, Muzyka N, Ushakov V, Oktyabrsky O. Effect of H 2S and cysteine homeostasis disturbance on ciprofloxacin sensitivity of Escherichia coli in cystine-free and cystine-fed minimal medium. Arch Microbiol 2024; 206:456. [PMID: 39495300 DOI: 10.1007/s00203-024-04185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Endogenous H2S has been proposed to be a universal defense mechanism against different antibiotics. Here, we studied the role of H2S transiently generated during ciprofloxacin (CF) treatment in M9 minimal medium with sulfate or produced by E. coli when fed with cystine. The cysM and mstA mutants did not produce H2S, while gshA generated more H2S in response to ciprofloxacin in cystine-free media. All mutants showed a reduced ability to maintain cysteine homeostasis under these conditions. We found no relationship between H2S generation, cysteine concentration and sensitivity to ciprofloxacin. Excess cysteine, which occurred during E. coli growth in cystine-fed media, triggered continuous H2S production, accelerated glutathione synthesis and cysteine export. This was accompanied by a twofold increase in ciprofloxacin tolerance in all strains except gshA, whose sensitivity increased 5-8-fold at high CF doses, indicating the importance of GSH in restoring the intracellular redox situation during growth in cystine-fed media.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia.
| | - Aleksey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Lyubov Sutormina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Tatyana Kalashnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Zoya Samoilova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Nadezda Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081, Perm, Russia
| |
Collapse
|
3
|
Gaspari S, Akkermans S, Akritidou T, Whelan R, Devine F, Van Impe JFM. Interference of gastrointestinal barriers with antibiotic susceptibility of foodborne pathogens: an in vitro case study of ciprofloxacin and tetracycline against Salmonella enterica and Listeria monocytogenes. Food Res Int 2024; 188:114491. [PMID: 38823842 DOI: 10.1016/j.foodres.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.
Collapse
Affiliation(s)
- Sotiria Gaspari
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Simen Akkermans
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Theodora Akritidou
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Rory Whelan
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium; School of Biological, Health and Sport Sciences, Technological University Dublin, Ireland
| | - Faye Devine
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium; School of Biological, Health and Sport Sciences, Technological University Dublin, Ireland
| | - Jan F M Van Impe
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium.
| |
Collapse
|
4
|
Tilanus A, Drusano G. Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis. Antibiotics (Basel) 2023; 12:1581. [PMID: 37998783 PMCID: PMC10668771 DOI: 10.3390/antibiotics12111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Certain classes of antibiotics show "concentration dependent" antimicrobial activity; higher concentrations result in increased bacterial killing rates, in contrast to "time dependent antibiotics", which show antimicrobial activity that depends on the time that antibiotic concentrations remain above the MIC. Aminoglycosides and fluoroquinolones are still widely used concentration-dependent antibiotics. These antibiotics are not hydrolyzed by beta-lactamases and are less sensitive to the inoculum effect, which can be defined as an increased MIC for the antibiotic in the presence of a relatively higher bacterial load (inoculum). In addition, they possess a relatively long Post-Antibiotic Effect (PAE), which can be defined as the absence of bacterial growth when antibiotic concentrations fall below the MIC. These characteristics make them interesting complementary antibiotics in the management of Multi-Drug Resistant (MDR) bacteria and/or (neutropenic) patients with severe sepsis. Global surveillance studies have shown that up to 90% of MDR Gram-negative bacteria still remain susceptible to aminoglycosides, depending on the susceptibility breakpoint (e.g., CLSI or EUCAST) being applied. This percentage is notably lower for fluoroquinolones but depends on the region, type of organism, and mechanism of resistance involved. Daily (high-dose) dosing of aminoglycosides for less than one week has been associated with significantly less nephro/oto toxicity and improved target attainment. Furthermore, higher-than-conventional dosing of fluoroquinolones has been linked to improved clinical outcomes. Beta-lactam antibiotics are the recommended backbone of therapy for severe sepsis. Since these antibiotics are time-dependent, the addition of a second concentration-dependent antibiotic could serve to quickly lower the bacterial inoculum, create PAE, and reduce Penicillin-Binding Protein (PBP) expression. Inadequate antibiotic levels at the site of infection, especially in the presence of high inoculum infections, have been shown to be important risk factors for inadequate resistance suppression and therapeutic failure. Therefore, in the early phase of severe sepsis, effort should be made to optimize the dose and quickly lower the inoculum. In this article, the authors propose a novel concept of "Inoculum Based Dosing" in which the decision for antibiotic dosing regimens and/or combination therapy is not only based on the PK parameters of the patient, but also on the presumed inoculum size. Once the inoculum has been lowered, indirectly reflected by clinical improvement, treatment simplification should be considered to further treat the infection.
Collapse
Affiliation(s)
- Alwin Tilanus
- Department of Infectious Diseases, Clinica Los Nogales, Calle 95 # 23-61, Bogota 110221, Colombia
| | - George Drusano
- Institute for Therapeutic Innovation, University of Florida, 6550 Sanger Road, Orlando, FL 32827, USA;
| |
Collapse
|
5
|
Smirnova G, Tyulenev A, Muzyka N, Ushakov V, Samoilova Z, Oktyabrsky O. Influence of Growth Medium Composition on Physiological Responses of Escherichia coli to the Action of Chloramphenicol and Ciprofloxacin. BIOTECH 2023; 12:43. [PMID: 37366791 DOI: 10.3390/biotech12020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The ability of hydrogen sulfide (H2S) to protect bacteria from bactericidal antibiotics has previously been described. The main source of H2S is the desulfurization of cysteine, which is either synthesized by cells from sulfate or transported from the medium, depending on its composition. Applying electrochemical sensors and a complex of biochemical and microbiological methods, changes in growth, respiration, membrane potential, SOS response, H2S production and bacterial survival under the action of bactericidal ciprofloxacin and bacteriostatic chloramphenicol in commonly used media were studied. Chloramphenicol caused a sharp inhibition of metabolism in all studied media. The physiological response of bacteria to ciprofloxacin strongly depended on its dose. In rich LB medium, cells retained metabolic activity at higher concentrations of ciprofloxacin than in minimal M9 medium. This decreased number of surviving cells (CFU) by 2-3 orders of magnitude in LB compared to M9 medium, and shifted optimal bactericidal concentration (OBC) from 0.3 µg/mL in M9 to 3 µg/mL in LB. Both drugs induced transient production of H2S in M9 medium. In media containing cystine, H2S was produced independently of antibiotics. Thus, medium composition significantly modifies physiological response of E. coli to bactericidal antibiotic, which should be taken into account when interpreting data and developing drugs.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Aleksey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Nadezda Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Zoya Samoilova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia
| |
Collapse
|
6
|
El-Dein MMN, El-Fallal AA, El-Sayed AKA, El-Esseily SR. Antimicrobial Activities of Ganoderma mbrekobenum Strain EGDA (Agaricomycetes) from Egypt. Int J Med Mushrooms 2023; 25:31-41. [PMID: 37824404 DOI: 10.1615/intjmedmushrooms.2023049502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ganoderma is a well-known genus of medicinal mushrooms. The biological activity of the fruiting bodies of G. mbrekobenum (previously identified as Ganoderma sp. EGDA, (AC: LN774971) is scarcely studied. The microorganisms including bacteria and fungi were chosen for screening of the antimicrobial activity produced by G. mbrekobenum strain EGDA. The bioactive compounds were extracted from aqueous, petroleum ether, chloroform, ethyl acetate, and methanol extracts. The higher antibacterial activity produced by methanol extract was against Bacillus subtilis and B. cereus (14.13 ± 0.12 mm, 13.03 ± 0.12 mm, respectively). Water fraction showed antibacterial effect against most of the test bacterial strains. The highest antifungal activity produced by methanol extract was against Fusarium oxysporum I and F. oxysporum f. sp. lycopersici (16.37 ± 0.03 mm 15.67 ± 0.19 mm, respectively). Gas chromatography/mass spectrometry analysis of the separated fractions revealed the identification of 46 compounds.
Collapse
Affiliation(s)
- Mahmoud M Nour El-Dein
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Amira A El-Fallal
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta City, Egypt
| | - Ahmed K A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta City, Egypt
| | - Shimaa R El-Esseily
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
7
|
Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137766. [PMID: 35805422 PMCID: PMC9265465 DOI: 10.3390/ijerph19137766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
The molecular/protein–protein docking and the index normalization method assisted by the entropy weight method were used to quantitatively evaluate the biodegradability of fluoroquinolones (FQs) under different biodegradation systems. Four biodegradability three-dimensional quantitative structure–activity relationship (3D-QSAR) models of FQs were constructed to design FQ derivatives with improved biodegradability. Through the evaluation of the environmental friendliness and functional properties, the FQ derivatives with high biodegradability, improved functionality, and environmental friendliness were screened. Moreover, four bio-enhanced degradation scenarios of FQs were set up according to the different temperatures and carbon–nitrogen ratio (C/N) in the sewage sludge composting stage, and the molecular dynamic (MD) simulation assisted by protein–protein docking was used to screen the external environmental factors that promote the degradation of FQs by thermophilic bacteria or group under different scenarios. Finally, MD simulation assisted by sampling method was used to validate and screen the application scheme of field measures to enhance the expression of antibacterial resistance of FQ derivatives in an agricultural soil environment after activated sludge land use. This study aims to provide theoretical support for the development of highly biodegradable FQ derivatives and the mitigation of potential risks that FQs may pose to the environment and humans through the food chain.
Collapse
|
8
|
Tyulenev AV, Smirnova GV, Muzyka NG, Oktyabrsky ON. Study of the early response of Escherichia coli lpcA and ompF mutants to ciprofloxacin. Res Microbiol 2022; 173:103954. [PMID: 35568342 DOI: 10.1016/j.resmic.2022.103954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
In most previous studies the sensitivity of Escherichia coli outer membrane mutants to ciprofloxacin (CF) was studied by MIC method. In the present work, the early response of these mutants to CF was studied using physiological and biochemical methods and electrochemical sensors. The use of sensors made it possible to monitor dissolved oxygen, potassium and extracellular sulfide continuously directly in growing cultures in real time. In the absence of CF, no significant differences were found between the mutants deficient in porin OmpF and lipopolysaccharide (LPS) and the parent. The only exception was 5-6 times higher extracellular glutathione and 1.5-3 times lower intracellular glutathione in the lpcA compared to the parent and the ompF. Ciprofloxacin inhibited growth, respiration, membrane potential and K+ consumption, which was less pronounced in both mutants compared to the parent. Changes in these parameters correlated with each other, but not with survival. A reversible increase in sulfide level was observed at 3 μg ml-1 CF in the parent, at 20 μg ml-1 CF in ompF and was absent in lpcA at all concentrations. The data obtained show that the use of electrochemical sensors can provide a more complete understanding of the early response of bacteria to CF.
Collapse
Affiliation(s)
- Alexey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Golev street 13, 614081 Perm, Russia.
| |
Collapse
|
9
|
Smirnova GV, Tyulenev AV, Muzyka NG, Oktyabrsky ON. Study of the contribution of active defense mechanisms to ciprofloxacin tolerance in Escherichia coli growing at different rates. Antonie Van Leeuwenhoek 2022; 115:233-251. [PMID: 35022927 DOI: 10.1007/s10482-021-01693-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
Using rpoS, tolC, ompF, and recA knockouts, we investigated their effect on the physiological response and lethality of ciprofloxacin in E. coli growing at different rates on glucose, succinate or acetate. We have shown that, regardless of the strain, the degree of changes in respiration, membrane potential, NAD+/NADH ratio, ATP and glutathione (GSH) strongly depends on the initial growth rate and the degree of its inhibition. The deletion of the regulator of the general stress response RpoS, although it influenced the expression of antioxidant genes, did not significantly affect the tolerance to ciprofloxacin at all growth rates. The mutant lacking TolC, which is a component of many E. coli efflux pumps, showed the same sensitivity to ciprofloxacin as the parent. The absence of porin OmpF slowed down the entry of ciprofloxacin into cells, prolonged growth and shifted the optimal bactericidal concentration towards higher values. Deficiency of RecA, a regulator of the SOS response, dramatically altered the late phase of the SOS response (SOS-dependent cell death), preventing respiratory inhibition and a drop in membrane potential. The recA mutation inverted GSH fluxes across the membrane and abolished ciprofloxacin-induced H2S production. All studied mutants showed an inverse linear relationship between logCFU ml-1 and the specific growth rate. Mutations shifted the plot of this dependence relative to the parental strain according to their significance for ciprofloxacin tolerance. The crucial role of the SOS system is confirmed by dramatic shift down of this plot in the recA mutant.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| |
Collapse
|
10
|
Seregina TA, Lobanov KV, Shakulov RS, Mironov AS. Enhancement of the Bactericidal Effect of Antibiotics by Inhibition of Enzymes Involved in Production of Hydrogen Sulfide in Bacteria. Mol Biol 2022; 56:638-648. [PMID: 36217334 PMCID: PMC9534473 DOI: 10.1134/s0026893322050120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
Abstract
Counteraction of the origin and distribution of multidrug-resistant pathogens responsible for intra-hospital infections is a worldwide issue in medicine. In this brief review, we discuss the results of our recent investigations, which argue that many antibiotics, along with inactivation of their traditional biochemical targets, can induce oxidative stress (ROS production), thus resulting in increased bactericidal efficiency. As we previously showed, hydrogen sulfide, which is produced in the cells of different pathogens protects them not only against oxidative stress but also against bactericidal antibiotics. Next, we clarified the interplay of oxidative stress, cysteine metabolism, and hydrogen sulfide production. Finally, demonstrated that small molecules, which inhibit a bacterial enzyme involved in hydrogen sulfide production, potentiate bactericidal antibiotics including quinolones, beta-lactams, and aminoglycosides against bacterial pathogens in in vitro and in mouse models of infection. These inhibitors also suppress bacterial tolerance to antibiotics by disrupting the biofilm formation and substantially reducing the number of persister bacteria, which survive the antibiotic treatment. We hypothesise that agents which limit hydrogen sulfide biosynthesis are effective tools to counteract the origin and distribution of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- T. A. Seregina
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - K. V. Lobanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - R. S. Shakulov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - A. S. Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| |
Collapse
|
11
|
Vlazaki M, Rossi O, Price DJ, McLean C, Grant AJ, Mastroeni P, Restif O. A data-based mathematical modelling study to quantify the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica during treatment and relapse. J R Soc Interface 2020; 17:20200299. [PMID: 32634369 DOI: 10.1098/rsif.2020.0299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic therapy has drastically reduced the mortality and sequelae of bacterial infections. From naturally occurring to chemically synthesized, different classes of antibiotics have been successfully used without detailed knowledge of how they affect bacterial dynamics in vivo. However, a proportion of patients receiving antimicrobial therapy develop recrudescent infections post-treatment. Relapsing infections are attributable to incomplete clearance of bacterial populations following antibiotic administration; the metabolic profile of this antibiotic-recalcitrant bacterial subpopulation, the spatio-temporal context of its emergence and the variance of antibiotic-bacterial interactions in vivo remain unclear. Here, we develop and apply a mechanistic mathematical model to data from a study comparing the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica serovar Typhimurium in murine infections. Using the inferential capacity of our model, we show that the antibiotic-recalcitrant bacteria following ampicillin, but not ciprofloxacin, treatment belong to a non-replicating phenotype. Aligning with previous studies, we independently estimate that the lymphoid tissues and spleen are important reservoirs of non-replicating bacteria. Finally, we predict that post-treatment, the progenitors of the non-growing and growing bacterial populations replicate and die at different rates. Ultimately, the liver, spleen and mesenteric lymph nodes are all repopulated by progenitors of the previously non-growing phenotype in ampicillin-treated mice.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - David J Price
- Centre of Epidemiology and Biostatistics, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.,The Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Callum McLean
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
12
|
Smirnova GV, Oktyabrsky ON. Relationship between Escherichia coli growth rate and bacterial susceptibility to ciprofloxacin. FEMS Microbiol Lett 2019; 365:4705891. [PMID: 29228224 DOI: 10.1093/femsle/fnx254] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/30/2017] [Indexed: 01/07/2023] Open
Abstract
The effect of Escherichia coli growth rate on its susceptibility to ciprofloxacin was investigated using bacteria grown on different carbon sources and harboring mutations in genes encoding tricarboxylic acid cycle enzymes. A 1-h treatment of the wild type (wt) grown on glucose, succinate, malate, α-ketoglutarate or acetate with 0.3 μg ml-1 ciprofloxacin decreased the number of surviving cells (CFU ml-1), 560, 110, 74, 62 and 5 times, respectively. Among the mutants tested, sucB strain, which grew 1.75 times slower than wt, was 7.4-fold more tolerant to 0.3 μg ml-1 of ciprofloxacin than wt. Strong inverse correlations between log(CFU ml-1) after 1-h exposure to 0.3 and 3.0 μg ml-1 ciprofloxacin and the specific growth rate prior to antibiotic treatment (r = - 0.93 and -0.96, respectively) were observed. Data from the current and previous studies on the inhibitory effect of ciprofloxacin on cultures exhibiting a wide range of growth rates (0.01-1.3 h-1) were collated. Statistical analysis revealed a significant inverse correlation between log(CFU ml-1) after exposure to 3.0 μg ml-1 of ciprofloxacin and the specific bacterial growth rate prior to antibiotic exposure (r = -0.92). These data may be used in a design of antibiotic treatment protocols.
Collapse
Affiliation(s)
- Galina V Smirnova
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Perm 614081, Russia
| | - Oleg N Oktyabrsky
- Laboratory of Physiology and Genetics of Microorganisms, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Perm 614081, Russia.,Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, Perm 614990, Russia
| |
Collapse
|
13
|
|
14
|
Suppression of Reactive Oxygen Species Accumulation Accounts for Paradoxical Bacterial Survival at High Quinolone Concentration. Antimicrob Agents Chemother 2018; 62:AAC.01622-17. [PMID: 29229642 DOI: 10.1128/aac.01622-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
When bacterial cells are exposed to increasing concentrations of quinolone-class antibacterials, survival drops, reaches a minimum, and then recovers, sometimes to 100%. Despite decades of study, events underlying this paradoxical high-concentration survival remain obscure. Since reactive oxygen species (ROS) have been implicated in antimicrobial lethality, conditions generating paradoxical survival were examined for diminished ROS accumulation. Escherichia coli cultures were treated with various concentrations of nalidixic acid, followed by measurements of survival, rate of protein synthesis, and ROS accumulation. The last measurement used a dye (carboxy-H2DCFDA) that fluoresces in the presence of ROS; fluorescence was assessed by microscopy (individual cells) and flow cytometry (batch cultures). High, nonlethal concentrations of nalidixic acid induced lower levels of ROS than moderate, lethal concentrations. Sublethal doses of exogenous hydrogen peroxide became lethal and eliminated the nalidixic acid-associated paradoxical survival. Thus, quinolone-mediated lesions needed for ROS-executed killing persist at high, nonlethal quinolone concentrations, thereby implicating ROS as a key factor in cell death. Chloramphenicol suppressed nalidixic acid-induced ROS accumulation and blocked lethality, further supporting a role for ROS in killing. Nalidixic acid also inhibited protein synthesis, with extensive inhibition at high concentrations correlating with lower ROS accumulation and paradoxical survival. A catalase deficiency, which elevated ROS levels, overcame the inhibitory effect of chloramphenicol on nalidixic acid-mediated killing, emphasizing the importance of ROS. The data collectively indicate that ROS play a dominant role in the lethal action of narrow-spectrum quinolone-class compounds; a drop in ROS levels accounted for the quinolone tolerance observed at very high concentrations.
Collapse
|
15
|
Gutierrez A, Jain S, Bhargava P, Hamblin M, Lobritz MA, Collins JJ. Understanding and Sensitizing Density-Dependent Persistence to Quinolone Antibiotics. Mol Cell 2017; 68:1147-1154.e3. [PMID: 29225037 DOI: 10.1016/j.molcel.2017.11.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/11/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022]
Abstract
Physiologic and environmental factors can modulate antibiotic activity and thus pose a significant challenge to antibiotic treatment. The quinolone class of antibiotics, which targets bacterial topoisomerases, fails to kill bacteria that have grown to high density; however, the mechanistic basis for this persistence is unclear. Here, we show that exhaustion of the metabolic inputs that couple carbon catabolism to oxidative phosphorylation is a primary cause of growth phase-dependent persistence to quinolone antibiotics. Supplementation of stationary-phase cultures with glucose and a suitable terminal electron acceptor to stimulate respiratory metabolism is sufficient to sensitize cells to quinolone killing. Using this approach, we successfully sensitize high-density populations of Escherichia coli, Staphylococcus aureus, and Mycobacterium smegmatis to quinolone antibiotics. Our findings link growth-dependent quinolone persistence to discrete impairments in respiratory metabolism and identify a strategy to kill non-dividing bacteria.
Collapse
Affiliation(s)
- Arnaud Gutierrez
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Saloni Jain
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02115, USA
| | - Prerna Bhargava
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Meagan Hamblin
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael A Lobritz
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Heterogeneity of Salmonella-host interactions in infected host tissues. Curr Opin Microbiol 2017; 39:57-63. [DOI: 10.1016/j.mib.2017.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 01/24/2023]
|
17
|
de Knegt GJ, van der Meijden A, de Vogel CP, Aarnoutse RE, de Steenwinkel JEM. Activity of moxifloxacin and linezolid against Mycobacterium tuberculosis in combination with potentiator drugs verapamil, timcodar, colistin and SQ109. Int J Antimicrob Agents 2017; 49:302-307. [PMID: 28162983 DOI: 10.1016/j.ijantimicag.2016.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/03/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023]
Abstract
Current treatment for tuberculosis (TB) is complicated by the emergence of multidrug resistant TB (MDR-TB). As a result, there is an urgent need for new powerful anti-TB regimens and novel strategies. In this study, we aimed to potentiate a moxifloxacin + linezolid backbone as treatment for MDR-TB with the efflux pump inhibitors verapamil and timcodar as well as with drugs that act on mycobacterial cell wall stability such as colistin and SQ109. Using a time-kill kinetics assay, the activities of moxifloxacin, linezolid, verapamil, timcodar, colistin and SQ109 as single drugs against Mycobacterium tuberculosis were evaluated. In addition, the activity of the moxifloxacin + linezolid backbone in combination with one of the potentiator drugs was assessed. As little as 0.125 mg/L moxifloxacin achieved 99% killing of M. tuberculosis after 6 days of exposure. Linezolid showed moderate killing but 99% killing was not achieved. Verapamil, timcodar and colistin only resulted in killing with the highest concentrations tested but 99% killing was not achieved. SQ109 resulted in complete elimination after 1 day of exposure to 256 mg/L and in 99% elimination after 6 days of exposure to 1 mg/L. Furthermore, colistin added to the moxifloxacin + linezolid backbone resulted in increased elimination, whereas verapamil, timcodar and SQ109 showed no added value to the backbone. This finding that colistin potentiates the activity of the moxifloxacin + linezolid backbone against M. tuberculosis suggests its potential role in further studies on the applicability of a moxifloxacin + linezolid treatment of MDR-TB.
Collapse
Affiliation(s)
- Gerjo J de Knegt
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Aart van der Meijden
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Corné P de Vogel
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Smirnova GV, Tyulenev AV, Muzyka NG, Peters MA, Oktyabrsky ON. Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli. Res Microbiol 2016; 168:64-73. [PMID: 27498196 DOI: 10.1016/j.resmic.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
An in-depth understanding of the physiological response of bacteria to antibiotic-induced stress is needed for development of new approaches to combatting microbial infections. Fluoroquinolone ciprofloxacin causes phase alterations in Escherichia coli respiration and membrane potential that strongly depend on its concentration. Concentrations lower than the optimal bactericidal concentration (OBC) do not inhibit respiration during the first phase. A dose higher than the OBC provokes immediate SOS-independent inhibition of respiration and growth that can contribute to a decreased SOS response and lowered susceptibility to high concentrations of ciprofloxacin. Cells retain their metabolic activity, membrane potential and accelerated K+ uptake and produce low levels of superoxide and H2O2 during the first phase. The time before initiation of the second phase is inversely correlated with the ciprofloxacin concentration. The second phase is SOS-dependent and characterized by respiratory inhibition, membrane depolarization, K+ and glutathione leakage and cessation of glucose consumption and may be considered as cell death. atpA, gshA and kefBkefC knockouts, which perturb fluxes of protons and K+, can modify the degree and duration of respiratory inhibition and potassium retention. Loss of K+ efflux channels KefB and KefC enhances the susceptibility of E. coli to ciprofloxacin.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Mikhail A Peters
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia; Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, Komsomolsky pr., 29, Perm, 614990, Russia.
| |
Collapse
|
19
|
Urinary Tract Physiological Conditions Promote Ciprofloxacin Resistance in Low-Level-Quinolone-Resistant Escherichia coli. Antimicrob Agents Chemother 2016; 60:4252-8. [PMID: 27139482 DOI: 10.1128/aac.00602-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli isolates carrying chromosomally encoded low-level-quinolone-resistant (LLQR) determinants are frequently found in urinary tract infections (UTIs). LLQR mutations are considered the first step in the evolutionary pathway producing high-level fluoroquinolone resistance. Therefore, their evolution and dissemination might influence the outcome of fluoroquinolone treatments of UTI. Previous studies support the notion that low urine pH decreases susceptibility to ciprofloxacin (CIP) in E. coli However, the effect of the urinary tract physiological parameters on the activity of ciprofloxacin against LLQR E. coli strains has received little attention. We have studied the activity of ciprofloxacin under physiological urinary tract conditions against a set of well-characterized isogenic E. coli derivatives carrying the most prevalent chromosomal mutations (ΔmarR, gyrA-S83L, gyrA-D87N, and parC-S80R and some combinations). The results presented here demonstrate that all the LLQR strains studied became resistant to ciprofloxacin (according to CLSI guidelines) under physiological conditions whereas the control strain lacking LLQR mutations did not. Moreover, the survival of some LLQR E. coli variants increased up to 100-fold after challenge with a high concentration of ciprofloxacin under UTI conditions compared to the results seen with Mueller-Hinton broth. These selective conditions could explain the high prevalence of LLQR mutations in E. coli Furthermore, our data strongly suggest that recommended methods for MIC determination produce poor estimations of CIP activity against LLQR E. coli in UTIs.
Collapse
|
20
|
Sandvik EL, Fazen CH, Henry TC, Mok WWK, Brynildsen MP. Non-Monotonic Survival of Staphylococcus aureus with Respect to Ciprofloxacin Concentration Arises from Prophage-Dependent Killing of Persisters. Pharmaceuticals (Basel) 2015; 8:778-92. [PMID: 26593926 PMCID: PMC4695809 DOI: 10.3390/ph8040778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a notorious pathogen with a propensity to cause chronic, non-healing wounds. Bacterial persisters have been implicated in the recalcitrance of S. aureus infections, and this motivated us to examine the persistence of S. aureus to ciprofloxacin, a quinolone antibiotic. Upon treatment of exponential phase S. aureus with ciprofloxacin, we observed that survival was a non-monotonic function of ciprofloxacin concentration. Maximal killing occurred at 1 µg/mL ciprofloxacin, which corresponded to survival that was up to ~40-fold lower than that obtained with concentrations ≥ 5 µg/mL. Investigation of this phenomenon revealed that the non-monotonic response was associated with prophage induction, which facilitated killing of S. aureus persisters. Elimination of prophage induction with tetracycline was found to prevent cell lysis and persister killing. We anticipate that these findings may be useful for the design of quinolone treatments.
Collapse
Affiliation(s)
- Elizabeth L Sandvik
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Christopher H Fazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Theresa C Henry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
21
|
Eagle Effect in Nonreplicating Persister Mycobacteria. Antimicrob Agents Chemother 2015; 59:7786-9. [PMID: 26349831 PMCID: PMC4649170 DOI: 10.1128/aac.01476-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022] Open
Abstract
We determined the microbicidal activities of antibacterials against nonreplicating Mycobacterium smegmatis grown in a starvation-based Loebel model for persistence. Whereas most drugs lost their activity, fluoroquinolones retained lethal potency. Dose-response characterizations showed a paradoxical more-drug-kills-less Eagle effect. Pretreatment of cultures with chloramphenicol blocked the lethal action of the gyrase inhibitors. These results suggest that fluoroquinolones at low concentrations trigger a protein synthesis-dependent cell death pathway and shut off this suicide pathway at elevated concentrations.
Collapse
|
22
|
Khan DD, Lagerbäck P, Cao S, Lustig U, Nielsen EI, Cars O, Hughes D, Andersson DI, Friberg LE. A mechanism-based pharmacokinetic/pharmacodynamic model allows prediction of antibiotic killing from MIC values for WT and mutants. J Antimicrob Chemother 2015; 70:3051-60. [DOI: 10.1093/jac/dkv233] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/07/2015] [Indexed: 11/13/2022] Open
|
23
|
Bessa LJ, Palmeira A, Gomes AS, Vasconcelos V, Sousa E, Pinto M, Martins da Costa P. Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus. Microb Drug Resist 2015; 21:404-15. [PMID: 25789724 DOI: 10.1089/mdr.2014.0162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extensive use of antimicrobials is leaving medicine with few effective therapeutic options to treat many infections due to the fact that many organisms developed resistance to commonly used drugs. It is therefore pertinent to search not only for new antimicrobials but also for compounds able to restore or potentiate the activity of existing antibiotics. We have screened a library consisting of 40 (thio)xanthone derivatives for antibacterial activity and possible synergistic effects when used in combination with antibiotics. Nine out of the 40 compounds exhibited antibacterial activity against Gram-positive bacteria. Two xanthone derivatives, 1-formyl-4-hydroxy-3-methoxy (7), 2-formyl-3-hydroxy-4-methoxyxanthone (8) and the thioxanthone derivative 1-((2-(diethylamino)ethyl)amino)-4-propoxythioxanthone (10) and its hydrochloride form 13, showed activity against a methicillin-resistant Staphylococcus aureus (MRSA) isolate with minimum inhibitory concentration (MIC) values lower than 256 μg/ml. Thioxanthone 10 demonstrated antibacterial activity and also synergy when combined with ampicillin and oxacillin against MRSA. Additionally, thioxanthone 1-(piperidin-1-yl)-4-propoxythioxanthone (9), despite not having antibacterial activity presented remarkable synergy with oxacillin against MRSA; the MIC of tioxanthone 9 and oxacillin when both were in combination were 128 and 8 μg/ml, respectively. Thioxanthones 9 and 10 were also found to be synergistic when both were combined. Subsequently, docking simulations between thioxanthones 9 and 10 and the allosteric domain of penicillin-binding protein 2A (PBP2A) were undertaken in AutoDock Vina. Both compounds had the ability to bind with an allosteric domain of PBP2A, which may explain their synergy with oxacillin. These two thioxanthone derivatives with different profiles may be promising tools for restoring the activity of oxacillin against MRSA.
Collapse
Affiliation(s)
- Lucinda J Bessa
- 1 Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal .,2 Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto , Porto, Portugal
| | - Andreia Palmeira
- 3 Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Universidade do Porto , Porto, Portugal
| | - Ana S Gomes
- 3 Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Universidade do Porto , Porto, Portugal
| | - Vitor Vasconcelos
- 2 Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto , Porto, Portugal .,4 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto , Porto, Portugal
| | - Emília Sousa
- 2 Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto , Porto, Portugal .,3 Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Universidade do Porto , Porto, Portugal
| | - Madalena Pinto
- 2 Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto , Porto, Portugal .,3 Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Universidade do Porto , Porto, Portugal
| | - Paulo Martins da Costa
- 1 Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal .,2 Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto , Porto, Portugal
| |
Collapse
|
24
|
Abstract
Ribosomal elongation factor 4 (EF4) is highly conserved among bacteria, mitochondria, and chloroplasts. However, the EF4-encoding gene, lepA, is nonessential and its deficiency shows no growth or fitness defect. In purified systems, EF4 back-translocates stalled, posttranslational ribosomes for efficient protein synthesis; consequently, EF4 has a protective role during moderate stress. We were surprised to find that EF4 also has a detrimental role during severe stress: deletion of lepA increased Escherichia coli survival following treatment with several antimicrobials. EF4 contributed to stress-mediated lethality through reactive oxygen species (ROS) because (i) the protective effect of a ΔlepA mutation against lethal antimicrobials was eliminated by anaerobic growth or by agents that block hydroxyl radical accumulation and (ii) the ΔlepA mutation decreased ROS levels stimulated by antimicrobial stress. Epistasis experiments showed that EF4 functions in the same genetic pathway as the MazF toxin, a stress response factor implicated in ROS-mediated cell death. The detrimental action of EF4 required transfer-messenger RNA (tmRNA, which tags truncated proteins for degradation and is known to be inhibited by EF4) and the ClpP protease. Inhibition of a protective, tmRNA/ClpP-mediated degradative activity would allow truncated proteins to indirectly perturb the respiratory chain and thereby provide a potential link between EF4 and ROS. The connection among EF4, MazF, tmRNA, and ROS expands a pathway leading from harsh stress to bacterial self-destruction. The destructive aspect of EF4 plus the protective properties described previously make EF4 a bifunctional factor in a stress response that promotes survival or death, depending on the severity of stress. Translation elongation factor 4 (EF4) is one of the most conserved proteins in nature, but it is dispensable. Lack of strong phenotypes for its genetic knockout has made EF4 an enigma. Recent biochemical work has demonstrated that mild stress may stall ribosomes and that EF4 can reposition stalled ribosomes to resume proper translation. Thus, EF4 protects cells from moderate stress. Here we report that EF4 is paradoxically harmful during severe stress, such as that caused by antimicrobial treatment. EF4 acts in a pathway that leads to excessive accumulation of reactive oxygen species (ROS), thereby participating in a bacterial self-destruction that occurs when cells cannot effectively repair stress-mediated damage. Thus, EF4 has two opposing functions—at low-to-moderate levels of stress, the protein is protective by allowing stress-paused translation to resume; at high-levels of stress, EF4 helps bacteria self-destruct. These data support the existence of a bacterial live-or-die response to stress.
Collapse
|
25
|
Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol 2014; 55:313-32. [PMID: 25251995 DOI: 10.1146/annurev-pharmtox-010814-124712] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We face an impending crisis in our ability to treat infectious disease brought about by the emergence of antibiotic-resistant pathogens and a decline in the development of new antibiotics. Urgent action is needed. This review focuses on a less well-understood aspect of antibiotic action: the complex metabolic events that occur subsequent to the interaction of antibiotics with their molecular targets and play roles in antibiotic lethality. Independent lines of evidence from studies of the action of bactericidal antibiotics on diverse bacteria collectively suggest that the initial interactions of drugs with their targets cannot fully account for the antibiotic lethality and that these interactions elicit the production of reactive oxidants including reactive oxygen species that contribute to bacterial cell death. Recent challenges to this concept are considered in the context of the broader literature of this emerging area of research. Possible ways that this new knowledge might be exploited to improve antibiotic therapy are also considered.
Collapse
Affiliation(s)
- Daniel J Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742;
| | | | | |
Collapse
|
26
|
Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 2014; 21:1-6. [PMID: 25078317 DOI: 10.1016/j.mib.2014.06.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
Bacteria are killed by a variety of lethal stressors, some of which promote a cascade of reactive oxygen species (ROS). Perturbations expected to alter ROS accumulation affect the lethal action of diverse antibacterials, leading to the hypothesis that killing by these agents can involve ROS-mediated self-destruction. Recent challenges to the hypothesis are considered, particularly with respect to complexities in assays that distinguish primary damage from the cellular response to that damage. Also considered are bifunctional factors that are protective at low stress levels but destructive at high levels. These considerations, plus new data, support an involvement of ROS in the lethal action of some antimicrobials and raise important questions concerning consumption of antioxidant dietary supplements during antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China; Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, NJ 07103, USA.
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
27
|
Abstract
The rise of resistant pathogens and chronic infections tolerant to antibiotics presents an unmet need for novel antimicrobial compounds. Identifying broad-spectrum leads is challenging due to the effective penetration barrier of Gram-negative bacteria, formed by an outer membrane restricting amphipathic compounds, and multidrug resistance (MDR) pumps. In chronic infections, pathogens are shielded from the immune system by biofilms or host cells, and dormant persisters tolerant to antibiotics are responsible for recalcitrance to chemotherapy with conventional antibiotics. We reasoned that the dual need for broad-spectrum and sterilizing compounds could be met by developing prodrugs that are activated by bacterium-specific enzymes and that these generally reactive compounds could kill persisters and accumulate over time due to irreversible binding to targets. We report the development of a screen for prodrugs, based on identifying compounds that nonspecifically inhibit reduction of the viability dye alamarBlue, and then eliminate generally toxic compounds by testing for cytotoxicity. A large pilot of 55,000 compounds against Escherichia coli produced 20 hits, 3 of which were further examined. One compound, ADC111, is an analog of a known nitrofuran prodrug nitrofurantoin, and its activity depends on the presence of activating enzymes nitroreductases. ADC112 is an analog of another known antimicrobial tilbroquinol with unknown mechanism of action, and ADC113 does not belong to an approved class. All three compounds had a good spectrum and showed good to excellent activity against persister cells in biofilm and stationary cultures. These results suggest that screening for overlooked prodrugs may present a viable platform for antimicrobial discovery.
Collapse
|
28
|
Irwin N, McCoy C, Carson L. Effect of pH on the in vitro
susceptibility of planktonic and biofilm-grown Proteus mirabilis
to the quinolone antimicrobials. J Appl Microbiol 2013; 115:382-9. [DOI: 10.1111/jam.12241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Affiliation(s)
- N.J. Irwin
- School of Pharmacy; Queen's University Belfast; Belfast UK
| | - C.P. McCoy
- School of Pharmacy; Queen's University Belfast; Belfast UK
| | - L. Carson
- School of Pharmacy; Queen's University Belfast; Belfast UK
| |
Collapse
|
29
|
Gerber GK, Onderdonk AB, Bry L. Inferring dynamic signatures of microbes in complex host ecosystems. PLoS Comput Biol 2012; 8:e1002624. [PMID: 22876171 PMCID: PMC3410865 DOI: 10.1371/journal.pcbi.1002624] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023] Open
Abstract
The human gut microbiota comprise a complex and dynamic ecosystem that profoundly affects host development and physiology. Standard approaches for analyzing time-series data of the microbiota involve computation of measures of ecological community diversity at each time-point, or measures of dissimilarity between pairs of time-points. Although these approaches, which treat data as static snapshots of microbial communities, can identify shifts in overall community structure, they fail to capture the dynamic properties of individual members of the microbiota and their contributions to the underlying time-varying behavior of host ecosystems. To address the limitations of current methods, we present a computational framework that uses continuous-time dynamical models coupled with Bayesian dimensionality adaptation methods to identify time-dependent signatures of individual microbial taxa within a host as well as across multiple hosts. We apply our framework to a publicly available dataset of 16S rRNA gene sequences from stool samples collected over ten months from multiple human subjects, each of whom received repeated courses of oral antibiotics. Using new diversity measures enabled by our framework, we discover groups of both phylogenetically close and distant bacterial taxa that exhibit consensus responses to antibiotic exposure across multiple human subjects. These consensus responses reveal a timeline for equilibration of sub-communities of micro-organisms with distinct physiologies, yielding insights into the successive changes that occur in microbial populations in the human gut after antibiotic treatments. Additionally, our framework leverages microbial signatures shared among human subjects to automatically design optimal experiments to interrogate dynamic properties of the microbiota in new studies. Overall, our approach provides a powerful, general-purpose framework for understanding the dynamic behaviors of complex microbial ecosystems, which we believe will prove instrumental for future studies in this field. Microbes colonize the human body soon after birth and propagate to form rich ecosystems. These ecosystems play essential roles in health and disease. Recent advances in DNA sequencing technologies make possible comprehensive studies of the time-dependent behavior of microbes throughout the body. Sophisticated computer-based methods are essential for the analysis and interpretation of these complex datasets. We present a computational method that models how human microbial ecosystems respond over time to perturbations, such as when subjects in a study are treated with a drug. When applied to a large publicly available dataset, our method yields new insights into the diversity of dynamic responses to antibiotics among microbes in the human body. We find that within an individual, sub-populations of microbes that share certain physiological roles also share coordinated responses. Moreover, we find that these responses are similar across different people. We use this information to improve the experimental design of the previously conducted study, and to develop strategies for optimal design of future studies. Our work provides an integrated computer-based method for automatically discovering patterns of change over time in the microbiota, and for designing future experiments to identify changes that impact human health and disease.
Collapse
Affiliation(s)
- Georg K. Gerber
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew B. Onderdonk
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lynn Bry
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ghebremedhin B. Bacterial Infections in the Elderly Patient: Focus on Sitafloxacin. ACTA ACUST UNITED AC 2012. [DOI: 10.4137/cmt.s7435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sitafloxacin (DU-6859a) is a new-generation oral fluoroquinolone with in vitro activity against a broad range of Gram-positive and -negative bacteria, including anaerobic bacteria, as well as against atypical bacterial pathogens. Particularly in Japan this antibiotic was approved in 2008 for treatment of a number of bacterial infections caused by Gram-positive cocci and Gram-negative cocci and rods, including anaerobia atypical bacterial pathogens. As compared to oral levofloxacin sitafloxacin was non-inferior in the treatment of community-acquired pneumonia and non-inferior in the treatment of complicated urinary tract infections, according to the results of randomized, double-blind, multicentre, non-inferiority trials. Non-comparative studies demonstrated the efficacy of oral sitafloxacin in otorhinolaryngological infections, urethritis in men, cervicitis in women and odontogenic infections. Most common adverse reactions were gastrointestinal disorders and laboratory abnormalities in patients receiving oral sitafloxacin; diarrhea and liver enzyme elevations were among the common. In the Japanese population sitafloxacin covers broad spectrum of bacteria as compared to carbapenems, whereas in the Caucasians its use is currently limited due to the potential for ultraviolet A phototoxicity. Sitafloxacin is a promising therapeutic agent which merits further investigation in randomized clinical trials of elderly patients.
Collapse
|
31
|
Tanouchi Y, Pai A, Buchler NE, You L. Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol 2012; 8:626. [PMID: 23169002 PMCID: PMC3531911 DOI: 10.1038/msb.2012.57] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/09/2012] [Indexed: 11/22/2022] Open
Abstract
Programmed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is 'altruistic': the killing of some cells can benefit the survivors through release of 'public goods'. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, we determined such conditions by engineering tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. We further predicted that altruistic death could generate the 'Eagle effect', a counter-intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. Our findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment.
Collapse
Affiliation(s)
- Yu Tanouchi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Anand Pai
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicolas E Buchler
- Department of Physics, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
- Center for Systems Biology, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Systems Biology, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
| |
Collapse
|
32
|
Conkle JL, White JR. An initial screening of antibiotic effects on microbial respiration in wetland soils. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1381-1390. [PMID: 22571526 DOI: 10.1080/10934529.2012.672315] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Antibiotics are biologically active compounds that are routinely detected in the environment and usually associated with treated wastewater discharge. Due to their high biological activity, antibiotics may have more environmental impacts than other pharmaceuticals. Wetlands are often used to treat or polish wastewater, with the goals of reducing nutrient and carbon loading into the environment. Nitrogen and carbon processing in wetlands is largely associated with microbial activity, however impacts to microbial activity due to antibiotic loading into treatment wetlands is relatively unknown. Two wetland soils (mineral and peat) were individually spiked with ciprofloxacin, sulfamethoxazole or tetracycline ranging from 1-1000 ppb to examine effects on microbial mediated evolution of CH(4), CO(2) and N(2). The antibiotics both positively and negatively affected microbial respiration (a proxy for microbial activity) rates in the two wetland soils depending on soil properties and concentration. Sulfamethoxazole reduced CO(2) and N(2)O respiration rates at higher concentrations (500, 1000 ppb) in the mineral soil. However, the CO(2) rates recovered within 48 hours, while N(2)O suppression continued through the end of the incubation. Ciprofloxacin and sulfamethoxazole also demonstrated the ability to suppress respiration at low spiking concentrations (1, 50 ppb) for several treatments. The results demonstrate the ability of antibiotics to impact soil respiration at environmentally relevant concentrations. Parameters that appear to affect the impacts of antibiotics were sorption, length of exposure and soil carbon content. Future studies are needed to provide further insight into antibiotic effects to microbial community structure.
Collapse
Affiliation(s)
- Jeremy L Conkle
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | | |
Collapse
|
33
|
Pharmacodynamic modeling of in vitro activity of marbofloxacin against Escherichia coli strains. Antimicrob Agents Chemother 2010; 55:756-61. [PMID: 21078933 DOI: 10.1128/aac.00865-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mathematical pharmacodynamic model was developed to describe the bactericidal activity of marbofloxacin against Escherichia coli strains with reduced susceptibility levels (determined using MICs) under optimal and intestinal growth conditions. Model parameters were estimated using nonlinear least-square curve-fitting procedures for each E. coli strain. Parameters related to bactericidal activity were subsequently analyzed using a maximum-effect (E(max)) model adapted to account for a direct and a delayed effect. While net growth rates did not vary significantly with strain susceptibility, culture medium had a major effect. The bactericidal activity of marbofloxacin was closely associated with the concentration and the duration of exposure of the bacteria to the antimicrobial agent. The value of the concentration inducing a half-maximum effect (C(50)) was highly correlated with MIC values (R(2) = 0.87 and R(2) = 0.94 under intestinal and optimal conditions, respectively). Our model reproduced the time-kill kinetics with good accuracy (R(2) of >0.90) and helped explain observed regrowth.
Collapse
|
34
|
Abstract
Large-scale, systems biology approaches now allow us to systematically map synergistic and antagonistic interactions between drugs. Consequently, drug antagonism is emerging as a powerful tool to study biological function and relatedness between cellular components as well as to uncover mechanisms of drug action. Furthermore, theoretical models and new experiments suggest that antagonistic interactions between antibiotics can counteract the evolution of drug resistance.
Collapse
Affiliation(s)
- Pamela J Yeh
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
35
|
Murillo O, Eugenia Pachón M, Euba G, Verdaguer R, Tubau F, Cabellos C, Cabo J, Gudiol F, Ariza J. High doses of levofloxacin vs moxifloxacin against staphylococcal experimental foreign-body infection: The effect of higher MIC-related pharmacokinetic parameters on efficacy. J Infect 2009; 58:220-6. [DOI: 10.1016/j.jinf.2009.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/02/2008] [Accepted: 01/15/2009] [Indexed: 11/16/2022]
|
36
|
Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother 2009; 63:745-57. [PMID: 19218572 DOI: 10.1093/jac/dkn554] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the functional relationship between the density of bacteria and the pharmacodynamics of antibiotics, and the potential consequences of this inoculum effect on the microbiological course of antibiotic treatment of Staphylococcus aureus infections. METHODS In vitro time-kill, MIC estimation and antibiotic bioassay experiments were performed with S. aureus ATCC 25923 to ascertain the functional relationship between rates of kill and the MICs of six classes of antibiotics and the density of bacteria exposed. The potential consequences of the observed inoculum effects on the microbiological course of antibiotic treatment are explored with a mathematical model. RESULTS Modest or substantial inoculum effects on efficacy were observed for all six antibiotics studied, such as density-dependent declines in the rate and extent of antibiotic-mediated killing and increases in MIC. Although these measures of antibiotic efficacy declined with inoculum, this density effect did not increase monotonically. At higher densities, the rate of kill of ciprofloxacin and oxacillin declined with the antibiotic concentration. For daptomycin and vancomycin, much of this inoculum effect is due to density-dependent reductions in the effective concentration of the antibiotic. For the other four antibiotics, this density effect is primarily associated with a decrease in per-cell antibiotic concentration. With parameters in the range estimated, our mathematical model predicts that the course of antibiotic treatment can be affected by cell density; treatment protocols based on conventional (density-independent) MICs can fail to clear higher density infections. CONCLUSIONS The MICs used for pharmacokinetic/pharmacodynamic indices should be functions of the anticipated densities of the infecting population.
Collapse
Affiliation(s)
- Klas I Udekwu
- Department of Biology, Emory University, Atlanta, GA 30307, USA
| | | | | | | | | |
Collapse
|
37
|
Antagonistic effect of rifampin on the efficacy of high-dose levofloxacin in staphylococcal experimental foreign-body infection. Antimicrob Agents Chemother 2008; 52:3681-6. [PMID: 18676888 DOI: 10.1128/aac.00458-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since levofloxacin at high doses was more active than levofloxacin at conventional doses and was the best therapy alone in a rat model of staphylococcal foreign-body infection, in this study we tested how these differences affect the activities of their respective combinations with rifampin in vitro and in vivo. In vitro studies were performed in the log and stationary phases. By using this model, rifampin at 25 mg/kg of body weight/12 h, levofloxacin at 100 mg/kg/day, levofloxacin at 100 mg/kg/day plus rifampin, levofloxacin at 50 mg/kg/day, levofloxacin at 50 mg/kg/day plus rifampin, or a control treatment was administered for 7 days; and therapy with for levofloxacin at 100 mg/kg/day alone and rifampin alone was prolonged to 14 days. We screened for the appearance of resistant strains. Killing curves in the log phase showed a clear antagonism with levofloxacin at concentrations >or=2x MIC and rifampin and tended to occur in the stationary phase. At the end of 7 days of therapy, levofloxacin at 100 mg/kg/day was the best treatment and decreased the bacterial counts from tissue cage fluid (P < 0.05 compared with the results for groups except those receiving rifampin alone). At the end of 14 days of therapy with levofloxacin at 100 mg/kg/day, levofloxacin at 100 mg/kg/day plus rifampin, and the control treatment, the bacterial counts on the coverslips were 2.24 (P < 0.05 compared with the results with the combined therapy), 3.36, and 5.4 log CFU/ml, respectively. No rifampin or levofloxacin resistance was detected in any group except that receiving rifampin alone. In conclusion, high-dose levofloxacin was the best treatment and no resistant strains appeared; the addition of rifampin showed an antagonistic effect. The efficacy of the rifampin-levofloxacin combination is not significantly improved by the dosage of levofloxacin.
Collapse
|
38
|
Córdova-Kreylos AL, Scow KM. Effects of ciprofloxacin on salt marsh sediment microbial communities. ISME JOURNAL 2007; 1:585-95. [DOI: 10.1038/ismej.2007.71] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother 2006; 51:28-34. [PMID: 17043118 PMCID: PMC1797672 DOI: 10.1128/aac.00739-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Quinolone activity against Escherichia coli was examined during aerobic growth, aerobic treatment with chloramphenicol, and anaerobic growth. Nalidixic acid, norfloxacin, ciprofloxacin, and PD161144 were lethal for cultures growing aerobically, and the bacteriostatic activity of each quinolone was unaffected by anaerobic growth. However, lethal activity was distinct for each quinolone with cells treated aerobically with chloramphenicol or grown anaerobically. Nalidixic acid failed to kill cells under both conditions; norfloxacin killed cells when they were grown anaerobically but not when they were treated with chloramphenicol; ciprofloxacin killed cells under both conditions but required higher concentrations than those required with cells grown aerobically; and PD161144, a C-8-methoxy fluoroquinolone, was equally lethal under all conditions. Following pretreatment with nalidixic acid, a shift to anaerobic conditions or the addition of chloramphenicol rapidly blocked further cell death. Formation of quinolone-gyrase-DNA complexes, observed as a sodium dodecyl sulfate (SDS)-dependent drop in cell lysate viscosity, occurred during aerobic and anaerobic growth and in the presence and in the absence of chloramphenicol. However, lethal chromosome fragmentation, detected as a drop in viscosity in the absence of SDS, occurred with nalidixic acid treatment only under aerobic conditions in the absence of chloramphenicol. With PD161144, chromosome fragmentation was detected when the cells were grown aerobically and anaerobically and in the presence and in the absence of chloramphenicol. Thus, all quinolones tested appear to form reversible bacteriostatic complexes containing broken DNA during aerobic growth, during anaerobic growth, and when protein synthesis is blocked; however, the ability to fragment chromosomes and to rapidly kill cells under these conditions depends on quinolone structure.
Collapse
Affiliation(s)
- Muhammad Malik
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | |
Collapse
|
40
|
Malik M, Drlica K. Moxifloxacin lethality against Mycobacterium tuberculosis in the presence and absence of chloramphenicol. Antimicrob Agents Chemother 2006; 50:2842-4. [PMID: 16870782 PMCID: PMC1538652 DOI: 10.1128/aac.00250-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The C-8-methoxy fluoroquinolone moxifloxacin was more lethal against chloramphenicol-treated Mycobacterium tuberculosis than Bay y3114, a C-8-H cognate of moxifloxacin, and two C-8-methoxy fluoroquinolones, gatifloxacin and BMS-433368, which have different C-7 substituents. Thus, an optimal combination of C-7 and C-8 substituents is likely to be important for killing nongrowing M. tuberculosis.
Collapse
Affiliation(s)
- Muhammad Malik
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | |
Collapse
|
41
|
Pellet T, Gicquel-Bruneau M, Sanders P, Laurentie M. Comparison of faecal and optimal growth conditions on in vitro pharmacodynamic activity of marbofloxacin against Escherichia coli. Res Vet Sci 2005; 80:324-35. [PMID: 16126240 DOI: 10.1016/j.rvsc.2005.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 05/13/2005] [Accepted: 07/04/2005] [Indexed: 11/24/2022]
Abstract
The objective of the study was to compare the in vitro activity of marbofloxacin against Escherichia coli (E. coli) strains with differing marbofloxacin susceptibility levels under optimal growth conditions and under condition mimicking faecal environment in time-kill kinetic studies. Under optimal growth conditions, marbofloxacin exerted a bactericidal concentration-dependent activity against all E. coli strains with bactericidal concentrations equal to 1 or 4 times MIC. Under faecal growth conditions, marbofloxacin maintained a bactericidal concentration-dependent activity but a 4- to 16-fold increase in bactericidal concentration was required to produce a similar magnitude of effect at 8 h. The bactericidal activity decreased between 8 and 24 h and allowed a residual bacterial population to subsist with a significant regrowth for some of them. Under no-growth conditions, marbofloxacin produced a very low decrease of non-dividing bacteria during a short time. No concentration produced a reduction > or = 3log10 in viable count excepted for two susceptible strains at concentration > or = 64 x MIC after 4 h exposure. The pharmacodynamic parameters from time-kill kinetic studies provide a useful means of studying antimicrobial activity. The importance of using different growth conditions is indicated by the difference in the killing of E. coli in the absence of active dividing cells and in the presence of autoclaved faecal content, both of which have a detrimental effect on the activity of marbofloxacin.
Collapse
Affiliation(s)
- T Pellet
- Agence Française de Sécurité Sanitaire des Aliments, LERMVD, Unité Pharmacocinétique-Pharmacodynamie, La Haute Marche, BP 90203, 35 302 Fougères, France
| | | | | | | |
Collapse
|
42
|
Appelbaum PC, Gillespie SH, Burley CJ, Tillotson GS. Antimicrobial selection for community-acquired lower respiratory tract infections in the 21st century: a review of gemifloxacin. Int J Antimicrob Agents 2005; 23:533-46. [PMID: 15194123 DOI: 10.1016/j.ijantimicag.2004.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Community-acquired lower respiratory tract infections (LRTIs) are more prevalent in the elderly than in children and younger adults and form a significant proportion of all consultations and hospital admissions in this older age group. Furthermore, in a world of increasing life expectancy the trend seems unlikely to be reversed. Antimicrobial treatment of community-acquired pneumonia (CAP) must cover Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis, and in many circumstances should also cover the intracellular (atypical) pathogens. In contrast, acute exacerbations of chronic bronchitis (AECB) are mainly associated with H. influenzae and S. pneumoniae and not with atypical bacteria: in severe cases, other Gram-negative bacteria may be involved. Frequently in LRTIs, the aetiology of the infection cannot be identified from the laboratory specimens and treatment has to be empirical. In such situations it is important to not only to use an antibiotic that covers all likely organisms, but also one that has good activity against these organisms given the local resistance patterns. Gemifloxacin is a new quinolone antibiotic that targets pneumococcal DNA gyrase and topoisomerase IV and is highly active against S. pneumoniae including penicillin-, macrolide- and many ciprofloxacin-resistant strains, as well as H. influenzae and the atypical pathogens. In clinical trials in CAP and AECB, gemifloxacin has been shown to be as effective a range of comparators and demonstrated an adverse event profile that was in line with the comparator agents. In one long-term study in AECB significantly more patients receiving gemifloxacin than clarithromycin remained free of recurrence after 26 weeks. The improved potency, broad spectrum of activity and proven clinical and bacteriological efficacy and safety profile should make it a useful agent in the 21st century battle against community-acquired LRTIs.
Collapse
Affiliation(s)
- P C Appelbaum
- Department of Pathology, Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
43
|
Dolcino M, Zoratti A, Debbia EA, Schito GC, Marchese A. Postantibiotic effect and delay of regrowth in strains carrying mutations that save proteins or RNA. Antimicrob Agents Chemother 2002; 46:4022-5. [PMID: 12435717 PMCID: PMC132785 DOI: 10.1128/aac.46.12.4022-4025.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The postantibiotic effect (PAE) values found for proteinase-defective (Lon(-)) Escherichia coli and RNase-defective E. coli exposed to antibiotics were reduced (31 to 60% and 35 to 50%, respectively) in comparison with the control (AB1157), and in the recA13 mutant these values were about 0.4 h with all drugs. Nalidixic acid, under anaerobic conditions, induced no PAE (0 to 0.1 h) in AB1157. A delay in regrowth (0.2 to 0.26 h) was noted with dnaA46(Ts), gyrA43(Ts), and gyrB41(Ts) mutants cultured for 2 h at 43 degrees C. These findings suggest that when proteins and RNA are saved, the cell rapidly resumes the original growth rate.
Collapse
Affiliation(s)
- Marzia Dolcino
- Institute of Microbiology C.A. Romanzi, University of Genoa, Italy
| | | | | | | | | |
Collapse
|
44
|
Wright DH, Gunderson BW, Hovde LB, Ross GH, Ibrahim KH, Rotschafer JC. Comparative pharmacodynamics of three newer fluoroquinolones versus six strains of staphylococci in an in vitro model under aerobic and anaerobic conditions. Antimicrob Agents Chemother 2002; 46:1561-3. [PMID: 11959599 PMCID: PMC127187 DOI: 10.1128/aac.46.5.1561-1563.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Six strains of staphylococci were exposed to levofloxacin, moxifloxacin, or trovafloxacin in an in vitro pharmacodynamic model under both aerobic and anaerobic conditions. Each agent demonstrated a rapid 3-log(10) kill versus susceptible isolates regardless of condition. Against clinical isolates with reduced susceptibility, regrowth occurred by 24 h and was frequently associated with further increases in MICs.
Collapse
Affiliation(s)
- David H Wright
- University of Minnesota College of Pharmacy, Department of Experimental and Clinical Pharmacology, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 2001; 32 Suppl 1:S9-S15. [PMID: 11249823 DOI: 10.1086/319370] [Citation(s) in RCA: 316] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Five bacterial targets have been exploited in the development of antimicrobial drugs: cell wall synthesis, protein synthesis, ribonucleic acid synthesis, deoxyribonucleic acid (DNA) synthesis, and intermediary metabolism. Because resistance to drugs that interact with these targets is widespread, new antimicrobials and an understanding of their mechanisms of action are vital. The fluoroquinolones are the only direct inhibitors of DNA synthesis; by binding to the enzyme-DNA complex, they stabilize DNA strand breaks created by DNA gyrase and topoisomerase IV. Ternary complexes of drug, enzyme, and DNA block progress of the replication fork. Cytotoxicity of fluoroquinolones is likely a 2-step process involving (1) conversion of the topoisomerase-quinolone-DNA complex to an irreversible form and (2) generation of a double-strand break by denaturation of the topoisomerase. The molecular factors necessary for the transition from step 1 to step 2 remain unclear, but downstream pathways for cell death may overlap with those used by other bactericidal antimicrobials. Studies of fluoroquinolone-resistant mutants and purified topoisomerases indicate that many quinolones have differing activities against the two targets. Drugs with similar activities against both targets may prove less likely to select de novo resistance.
Collapse
Affiliation(s)
- D C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114-2696, USA.
| |
Collapse
|
46
|
Gradelski E, Kolek B, Bonner DP, Valera L, Minassian B, Fung-Tomc J. Activity of gatifloxacin and ciprofloxacin in combination with other antimicrobial agents. Int J Antimicrob Agents 2001; 17:103-7. [PMID: 11165113 DOI: 10.1016/s0924-8579(00)00317-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The influence of non-quinolone antimicrobial agents on the antibacterial activities of gatifloxacin and ciprofloxacin was determined using chequerboard, fractional inhibitory concentration, (FIC) and time-kill analysis methods. In the chequerboard method, the quinolones were tested in combination with ten antimicrobial agents (macrolides, aminoglycosides, beta-lactams, vancomycin, rifampicin and chloramphenicol) against five bacterial strains (one strain each of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Streptococcus pneumoniae). In no incidence was antagonism (FIC > or = 4) or synergy (FIC < or = 0.5) observed; all dual drug combinations involving gatifloxacin or ciprofloxacin showed additivity/indifference (FIC > 0.5, < 4). By time-kill analysis, the strains were tested at a quinolone concentration equal to 8 x MIC in combination with a second antibiotic at 0.5xits MIC. These combinations killed non-enterococcal strains at rates similar to those with quinolones alone. However, rifampicin and chloramphenicol were often antagonistic (100-fold lesser killing) to the lethal action of gatifloxacin and ciprofloxacin against E. faecalis. These findings indicate that, with the exception of E. faecalis, the antibacterial activities of quinolones are generally additive/indifferent to those of other antimicrobial agents.
Collapse
Affiliation(s)
- E Gradelski
- Department of Microbiology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06457, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The accumulation of norfloxacin by Bacteroides fragilis NCTC 9343 was determined by the modified fluorescence method. The time required to achieve a steady-state concentration (SSC) after allowing B. fragilis to accumulate norfloxacin in an aerobic or an anaerobic environment was approximately 2 min; the SSC achieved in air was 90.28 +/- 9.32 ng of norfloxacin/mg (dry weight) of cells, and that achieved anaerobically was 98.45 +/- 3.7 ng of norfloxacin/mg (dry weight) of cells. Initial rates of accumulation were determined with a range of external concentrations, as up to 8 microg/ml the concentration of norfloxacin accumulated increased proportionally to the external concentration, 12.13 ng/mg (dry weight) of cells per microg of exogenous norfloxacin per ml. At concentrations above 10 microg/ml no increase in the rate of norfloxacin accumulation was observed. From the kinetic data, a Lineweaver-Burk plot calculated a K(m) of 5.03 microg/ml and a V(max) of 25.1 ng of norfloxacin/s. With an increase in temperature of between 0 and 30 degrees C, the concentration of norfloxacin accumulated also increased proportionally at 4.722 ng of norfloxacin/mg (dry weight) of cells/ degrees C. At low concentrations of glucose (<0.2%; 11 mM), the concentration of norfloxacin accumulated was decreased. With the addition of 100 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP) the mean SSC of norfloxacin was increased to 116 +/- 7.01 ng of norfloxacin/mg (dry weight) of cells; glucose had no significant effect in the presence of CCCP. Magnesium chloride (20 mM) decreased the SSC of norfloxacin to 40.5 +/- 3.76 ng of norfloxacin per mg (dry weight) of cells. These data suggest that the mechanism of accumulation of norfloxacin by B. fragilis is similar to that of aerobic bacteria and that the fluoresence procedure is suitable for use with an anaerobic bacterium.
Collapse
Affiliation(s)
- V Ricci
- Antimicrobial Agents Research Group, Division of Immunity and Infection, University of Birmingham, United Kingdom
| | | |
Collapse
|
48
|
Segatore B, Setacci D, Perilli M, Franceschini N, Marchetti F, Amicosante G. Bactericidal activity of levofloxacin and ciprofloxacin on clinical isolates of different phenotypes of Pseudomonas aeruginosa. Int J Antimicrob Agents 2000; 13:223-6. [PMID: 10724029 DOI: 10.1016/s0924-8579(99)00119-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Levofloxacin has been reported to have in vitro activity against both gram-positive and gram-negative bacteria. A recent survey carried out at our Institution showed clinical isolates of Pseudomonas aeruginosa to be more susceptible to levofloxacin than to ciprofloxacin. The in vitro activity of the two fluoroquinolones was evaluated further by looking at their bactericidal activity against two strains of each of the following antibio-phenotypes of P. aeruginosa: levofloxacin- and ciprofloxacin-susceptible, levofloxacin-susceptible/ciprofloxacin-resistant, levofloxacin-susceptible/ciprofloxacin-susceptible and ceftazidime-resistant, (National Committee for Clinical Laboratory Standards susceptibility breakpoints were used). MIC and MBC values were measured and time-kill experiments were carried out. Drugs were used at susceptibility or resistance breakpoint concentrations in the time-kill experiments and results were recorded over 12 h in an attempt to link in vitro results with the clinical situation The polypeptide profiles of outer membrane preparations of the six strains were examined by gel electrophoresis. Levofloxacin was shown to be more bactericidal than ciprofloxacin in the time-kill experiments. No differences were observed between the outer membrane proteins of the six strains. Levofloxacin showed greater bactericidal activity against P. aeruginosa clinical isolates than ciprofloxacin.
Collapse
Affiliation(s)
- B Segatore
- Department of Sciences and Biomedical Technologies, School of Medicine, University of L'Aquila, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Pendland SL, Diaz-Linares M, Garey KW, Woodward JG, Ryu S, Danziger LH. Bactericidal activity and postantibiotic effect of levofloxacin against anaerobes. Antimicrob Agents Chemother 1999; 43:2547-9. [PMID: 10508042 PMCID: PMC89518 DOI: 10.1128/aac.43.10.2547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bactericidal activity and postantibiotic effect (PAE) of levofloxacin against nine anaerobes were determined. Levofloxacin at concentrations of the MIC and twice the MIC was bactericidal at 24 h to five of nine and nine of nine strains, respectively. The PAE of levofloxacin following a 2-h exposure ranged from 0.06 to 2.88 h.
Collapse
Affiliation(s)
- S L Pendland
- Microbiology Research Laboratory, The University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Mitsuyama J. Structures of existing and new quinolones and relationship to bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother 1999; 44:201-7. [PMID: 10473226 DOI: 10.1093/jac/44.2.201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The in-vitro bactericidal profiles of a number of quinolones against Streptococcus pneumoniae were investigated. Tosufloxacin was found to be the most bactericidal quinolone at the optimum bactericidal:MIC ratio (OBMR), followed by levofloxacin, ciprofloxacin and sparfloxacin, in order of potency. After exposure at the OBMR of each quinolone for 2 h, tosufloxacin showed a post-antibiotic effect (PAE) about 2.3-2.6 times longer than the other quinolones. Compounds with a 2,4-difluorophenyl group at the N-1 position in the quinolone nucleus had the greatest bactericidal activity and PAE. This activity exceeded that found with substitution of the quinolone nucleus at the C-7 position. Although the bactericidal activities of the quinolones correlated well with their PAEs, they were not always consistent with their MICs. These results suggest that bactericidal activity and PAE are governed by factors other than those which determine the MIC values, and a 2,4-difluorophenyl group at the N-1 position in the quinolone nucleus may play an important role in the expression of bactericidal activity and PAE against S. pneumoniae.
Collapse
Affiliation(s)
- J Mitsuyama
- Research Laboratories of Toyama Chemical Co., Ltd, Japan.
| |
Collapse
|