1
|
Lai TF, Ford RM, Huwiler SG. Advances in cellular and molecular predatory biology of Bdellovibrio bacteriovorus six decades after discovery. Front Microbiol 2023; 14:1168709. [PMID: 37256055 PMCID: PMC10225642 DOI: 10.3389/fmicb.2023.1168709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Since its discovery six decades ago, the predatory bacterium Bdellovibrio bacteriovorus has sparked recent interest as a potential remedy to the antibiotic resistance crisis. Here we give a comprehensive historical overview from discovery to progressive developments in microscopy and molecular mechanisms. Research on B. bacteriovorus has moved from curiosity to a new model organism, revealing over time more details on its physiology and fascinating predatory life cycle with the help of a variety of methods. Based on recent findings in cryo-electron tomography, we recapitulate on the intricate molecular details known in the predatory life cycle including how this predator searches for its prey bacterium, to how it attaches, grows, and divides all from within the prey cell. Finally, the newly developed B. bacteriovorus progeny leave the prey cell remnants in the exit phase. While we end with some unanswered questions remaining in the field, new imaging technologies and quantitative, systematic advances will likely help to unravel them in the next decades.
Collapse
Affiliation(s)
- Ting F. Lai
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rhian M. Ford
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Simona G. Huwiler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ezzedine JA, Desdevises Y, Jacquet S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit Rev Microbiol 2021; 48:428-449. [PMID: 34595998 DOI: 10.1080/1040841x.2021.1979464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.
Collapse
Affiliation(s)
- Jade A Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France.,Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Yves Desdevises
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
3
|
Hoshiko Y, Nishiyama Y, Moriya T, Kadokami K, López-Jácome LE, Hirano R, García-Contreras R, Maeda T. Quinolone Signals Related to Pseudomonas Quinolone Signal-Quorum Sensing Inhibits the Predatory Activity of Bdellovibrio bacteriovorus. Front Microbiol 2021; 12:722579. [PMID: 34566925 PMCID: PMC8461301 DOI: 10.3389/fmicb.2021.722579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Bdellovibrio bacteriovorus is one of the predatory bacteria; therefore, it can act as a novel “living antibiotic,” unlike the current antibiotics. Here the predation of Escherichia coli by B. bacteriovorus was inhibited in the presence of Pseudomonas aeruginosa. This study investigated whether P. aeruginosa-induced predation inhibition is associated with bacterial quorum sensing (QS). Each las, rhl, or pqs QS mutant in P. aeruginosa was used to check the predatory activity of E. coli cells using B. bacteriovorus. As a result, the predatory activity of B. bacteriovorus increased in a mutant pqs QS system, whereas wild-type PA14 inhibited the predatory activity. Moreover, the addition of 4-hydroxy-2-heptylquinoline (HHQ) or the analog triggered the low predatory activity of B. bacteriovorus and killed B. bacteriovorus cells. Therefore, a defensive action of P. aeruginosa against B. bacteriovorus is activated by the pqs QS system, which produces some quinolone compounds such as HHQ.
Collapse
Affiliation(s)
- Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yoshito Nishiyama
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Tae Moriya
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Kitakyushu, Japan
| | - Luis Esaú López-Jácome
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City, Mexico.,Laboratory of Infectology, National Institute of Rehabilitation Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ryutaro Hirano
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
4
|
Bodor A, Bounedjoum N, Feigl G, Duzs Á, Laczi K, Szilágyi Á, Rákhely G, Perei K. Exploitation of extracellular organic matter from Micrococcus luteus to enhance ex situ bioremediation of soils polluted with used lubricants. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125996. [PMID: 33992922 DOI: 10.1016/j.jhazmat.2021.125996] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Chronic pollution by used lubricant oils (ULOs) poses a serious challenge to the environment. Under stress conditions, microorganisms, including potential degraders, can enter a viable but non-culturable (VBNC) state, complicating the bioremediation of ULO-polluted areas. Resuscitation-promoting factors (Rpfs) can reverse this transition and/or enhance the biodegradation performance of both native and augmented strains. Here, Rpf-containing extracellular organic matter (EOM) from Micrococcus luteus was used to enhance the ex situ ULO removal in biostimulated and bioaugmented (with Rhodococcus qingshengii KAG C, R. erythropolis PR4) soils. ULO bioconversion, microbial activity, and CFUs were significantly higher in EOM-treated soils compared to corresponding control soils. After 60 days, the initial ULO concentration (52,500 mg kg-1) was reduced by 37% and 45% with EOM-supplemented biostimulation and bioaugmentation, respectively. Based on high-throughput 16S rRNA analysis, the enhancement was attributable both to the reactivation of EOM-responsive hydrocarbonoclastic bacterial genera (e.g., Pseudomonas, Comamonas, Stenotrophomonas, Gordonia) and to the long-term positive effect of EOM on the degradative efficacy of the introduced rhodococci. Ecotoxicological responses revealed that reduced ULO concentration did not correlate with decreased soil toxicity. Our findings provide an insight into the applicability of EOM in bioremediation and its effects on the soil microbial activity and community composition.
Collapse
Affiliation(s)
- Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Ágnes Duzs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes. Front Microbiol 2020; 11:662. [PMID: 32351487 PMCID: PMC7174725 DOI: 10.3389/fmicb.2020.00662] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 02/01/2023] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria that selectively prey on a broad range of Gram-negative bacteria, including multidrug-resistant human pathogens. Due to their unique lifestyle, they have been long recognized as a potential therapeutic and biocontrol agent. Research on BALOs has rapidly grown over the recent decade, resulting in many publications concerning molecular details of bacterial predation as well as applications thereof in medicine and biotechnology. This review summarizes the current knowledge on biotechnological potential of obligate predatory bacteria and their secreted enzymes.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tilde Andersson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ewa Bukowska-Faniband
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Mitchell RJ, Mun W, Mabekou SS, Jang H, Choi SY. Compounds affecting predation by and viability of predatory bacteria. Appl Microbiol Biotechnol 2020; 104:3705-3713. [DOI: 10.1007/s00253-020-10530-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
|
7
|
Cho G, Kwon J, Soh SM, Jang H, Mitchell RJ. Sensitivity of predatory bacteria to different surfactants and their application to check bacterial predation. Appl Microbiol Biotechnol 2019; 103:8169-8178. [PMID: 31407038 DOI: 10.1007/s00253-019-10069-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
We evaluated the toxicity of surfactants against different predatory bacteria. Tests with Bdellovibrio bacteriovorus HD100 and SDS, an anionic surfactant, showed the predator was very sensitive; 0.02% SDS completely killed the predatory population (7-log loss; < 10 PFU/ml remaining) both when free-swimming or within the bdelloplast, i.e., intraperiplasmic. Similar results were also observed with B. bacteriovorus 109J and Peredibacter starrii. In contrast, none of the prey (E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, or Pseudomonas sp. DSM 50906) viabilities were negatively affected by SDS. Triton X-100, a nonionic surfactant, was slightly less toxic towards B. bacteriovorus HD100 (viability loss of only 4-log), while two cationic surfactants, i.e., benzalkonium chloride (BZC) and cetyltrimethylammonium bromide (CTAB), were toxic towards both the predator and prey. Based on the above findings, we tested the potential use of SDS as a means to control predation. Addition of 0.02% SDS immediately halted predation based upon the prey bioluminescence, which leveled off and remained steady. This was confirmed using the predator viabilities; no predators were found in any of the samples where SDS was added. Consequently, low concentrations of SDS can be used as a simple means to control B. bacteriovorus HD100 activities.
Collapse
Affiliation(s)
- Gayoung Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jisoo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sandrine Mabekou Soh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
8
|
Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME JOURNAL 2016; 11:386-393. [PMID: 27824344 DOI: 10.1038/ismej.2016.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
To cope with heterogeneous environments and resource distributions, filamentous fungi have evolved a spatially extensive growth enabling their hyphae to penetrate air-water interfaces and pass through air-filled pores. Such mycelia are also known to act as dispersal networks for the mobilisation of bacteria ('fungal highways') and connection of microbial microhabitats. Hitherto, however, nothing is known about the effect of mycelia-based dispersal on interactions between bacterial predators and their prey and concomitant effects on biomass formation. We here hypothesise that mycelia enable the contact between predators and their prey and shape a prey's population. We investigated the impact of predation by Bdellovibrio bacteriovorus 109J on the growth of its potential prey Pseudomonas fluorescens LP6a in the presence of mycelia. Our data give evidence that hyphae increase the accessibility of the prey to B. bacteriovorus 109J and, hence, allow for efficient foraging and shaping of prey populations not seen in the absence of mycelia. To test our hypothesis tailored microbial landscapes were used for better reduction of emerging properties in complex systems. Our data suggest that mycelia have substantial influence on prey-predator relationship and hereby may promote the structure of prey and predator populations and, hence, may be a determinant for biomass formation in heterogeneous environments.
Collapse
|
9
|
Monnappa AK, Bari W, Choi SY, Mitchell RJ. Investigating the Responses of Human Epithelial Cells to Predatory Bacteria. Sci Rep 2016; 6:33485. [PMID: 27629536 PMCID: PMC5024164 DOI: 10.1038/srep33485] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
One beguiling alternative to antibiotics for treating multi-drug resistant infections are Bdellovibrio-and-like-organisms (BALOs), predatory bacteria known to attack human pathogens. Consequently, in this study, the responses from four cell lines (three human and one mouse) were characterized during an exposure to different predatory bacteria, Bdellovibrio bacteriovorus HD100, Bacteriovorus BY1 and Bacteriovorax stolpii EB1. TNF-α levels were induced in Raw 264.7 mouse macrophage cultures with each predator, but paled in comparison to those obtained with E. coli. This was true even though the latter strain was added at an 11.1-fold lower concentration (p < 0.01). Likewise, E. coli led to a significant (54%) loss in the Raw 264.7 murine macrophage viability while the predatory strains had no impact. Tests with various epithelial cells, including NuLi-1 airway, Caco2, HT29 and T84 colorectal cells, gave similar results, with E. coli inducing IL-8 production. The viabilities of the NuLi-1 and Caco-2 cells were slightly reduced (8%) when exposed to the predators, while T84 viability remained steady. In no cases did the predatory bacteria induce actin rearrangement. These results clearly demonstrate the gentle natures of predatory bacteria and their impacts on human cells.
Collapse
Affiliation(s)
- Ajay K Monnappa
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| | - Wasimul Bari
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| | - Seong Yeol Choi
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| | - Robert J Mitchell
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 44919, South Korea
| |
Collapse
|
10
|
|
11
|
Sockett RE, Lambert C. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2004; 2:669-75. [PMID: 15263901 DOI: 10.1038/nrmicro959] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- R Elizabeth Sockett
- Institute of Genetics, School of Biology, University of Nottingham Medical School, UK.
| | | |
Collapse
|
12
|
|
13
|
Evaluation of the effect of ecologically hazardous pollutants on the bacteriolytic activity of the predatory bacteriumBdellovibrio. Microbiology (Reading) 2000. [DOI: 10.1007/bf02756816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Duxbury T. Ecological Aspects of Heavy Metal Responses in Microorganisms. ADVANCES IN MICROBIAL ECOLOGY 1985. [DOI: 10.1007/978-1-4615-9412-3_5] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Hastings JW, Potrikus CJ, Gupta SC, Kurfürst M, Makemson JC. Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol 1985; 26:235-91. [PMID: 3913293 DOI: 10.1016/s0065-2911(08)60398-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|