1
|
Kelly SC, Patel NN, Eccardt AM, Fisher JS. Glucose-dependent trans-plasma membrane electron transport and p70 S6k phosphorylation in skeletal muscle cells. Redox Biol 2018; 27:101075. [PMID: 30578122 PMCID: PMC6859557 DOI: 10.1016/j.redox.2018.101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/05/2022] Open
Abstract
The reduction of extracellular oxidants by intracellular electrons is known as trans-plasma membrane electron transport (tPMET). The goal of this study was to characterize a role of tPMET in the sensing of glucose as a physiological signal. tPMET from C2C12 myotubes was monitored using a cell-impermeable extracellular electron acceptor, water-soluble tetrazolium salt-1 (WST-1). Superoxide dismutase in the incubation medium or exposure to an NADPH oxidase (NOX) isoform 1/4 inhibitor suppressed WST-1 reduction by 70%, suggesting a role of NOXs in tPMET. There was a positive correlation between medium glucose concentration and WST-1 reduction, suggesting that tPMET is a glucose-sensing process. WST-1 reduction was also decreased by an inhibitor of the pentose phosphate pathway, dehydroepiandrosterone. In contrast, glycolytic inhibitors, 3PO and sodium fluoride, did not affect WST-1 reduction. Thus, it appears that glucose uptake and processing in the pentose phosphate pathway drives NOX-dependent tPMET. Western blot analysis demonstrated that p70S6k phosphorylation is glucose-dependent, while the phosphorylation of AKT and MAPK did not differ in the presence or absence of glucose. Further, phosphorylation of p70S6k was dependent upon NOX enzymes. Finally, glucose was required for full stimulation of p70S6k by insulin, again in a fashion prevented by NOX inhibition. Taken together, the data suggest that muscle cells have a novel glucose-sensing mechanism dependent on NADPH production and NOX activity, culminating in increased p70S6k phosphorylation.
Collapse
Affiliation(s)
- Shannon C Kelly
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Neej N Patel
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Amanda M Eccardt
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Jonathan S Fisher
- Department of Biology, Saint Louis University, St. Louis, MO, United States.
| |
Collapse
|
2
|
Kelly SC, Eccardt AM, Fisher JS. Measuring Trans-Plasma Membrane Electron Transport by C2C12 Myotubes. J Vis Exp 2018. [PMID: 29782017 DOI: 10.3791/57565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trans-plasma membrane electron transport (tPMET) plays a role in protection of cells from intracellular reductive stress as well as protection from damage by extracellular oxidants. This process of transporting electrons from intracellular reductants to extracellular oxidants is not well defined. Here we present spectrophotometric assays by C2C12 myotubes to monitor tPMET utilizing the extracellular electron acceptors: water-soluble tetrazolium salt-1 (WST-1) and 2,6-dichlorophenolindophenol (DPIP or DCIP). Through reduction of these electron acceptors, we are able to monitor this process in a real-time analysis. With the addition of enzymes such as ascorbate oxidase (AO) and superoxide dismutase (SOD) to the assays, we can determine which portion of tPMET is due to ascorbate export or superoxide production, respectively. While WST-1 was shown to produce stable results with low background, DPIP was able to be re-oxidized after the addition of AO and SOD, which was demonstrated with spectrophotometric analysis. This method demonstrates a real-time, multi-well, quick spectrophotometric assay with advantages over other methods used to monitor tPMET, such as ferricyanide (FeCN) and ferricytochrome c reduction.
Collapse
|
3
|
Homocysteine is a potent modulator of plasma membrane electron transport systems. J Bioenerg Biomembr 2008; 40:45-51. [DOI: 10.1007/s10863-008-9127-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/12/2007] [Indexed: 12/22/2022]
|
4
|
Crane FL, Low H. Plasma membrane redox and control of sirtuin. AGE (DORDRECHT, NETHERLANDS) 2005; 27:147-152. [PMID: 23598621 PMCID: PMC3458503 DOI: 10.1007/s11357-005-1631-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 06/13/2005] [Indexed: 06/02/2023]
Abstract
We consider possible contributions of plasma membrane redox systems to Aging control by sirtuin (SIR). Reported changes in plasma membrane redox introduced by calorie restriction (CR) may lead to activation of SIR. The most obvious effect would lie in the increase of NAD+ as a result of NADH oxidation. So the question arises, do the observed changes herald an increase in NADH oxidase under CR? The other possibility is an increase in expression of SIR by activation of plasma membrane oxidase. Previous experiments have shown that activation of the plasma membrane redox system can increase cellular NAD+ concentration. The plasma membrane redox systems are also involved in control of protein kinase activity through oxygen radical generation. This activity may be related to control of SIR expression.
Collapse
Affiliation(s)
- Frederick L. Crane
- Department of Biological Science, Purdue University, W. Lafayette, Indiana USA
- 610 Countryside Drive, Metamora, IL 61548 USA
| | - Hans Low
- Department of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Malik SG, Vaillant F, Lawen A. Plasma membrane NADH-oxidoreductase in cells carrying mitochondrial DNA G11778A mutation and in cells devoid of mitochondrial DNA (rho0). Biofactors 2004; 20:189-98. [PMID: 15706055 DOI: 10.1002/biof.5520200402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian plasma membrane (PM) NADH-oxidoreductase (PMOR) system is a multi-enzyme complex located in the plasma membrane of all eukaryotic cells, harboring at least two distinct activities, the plasma membrane NADH-ferricyanide reductase and the NADH-oxidase. To assess the behaviour of the two activities of the PMOR system, we measured the NADH-ferricyanide reductase and NADH-oxidase activities in fibroblast cell lines derived from patients carrying a mitochondrial DNA (mtDNA) G11778A mutation. We also measured the two activities in other cell lines, the HL-60 and HeLa (S3) lines, as well as in rho0 cells (cells devoid of mtDNA) generated from those lines and the fibroblast cells. These rho0 cells consequently lack oxidative phosphorylation and rely on anaerobic glycolysis for their ATP need. We have proposed that in rho0 cells, at least in part, up-regulation of the PMOR is a necessity to maintain the NAD+/NADH ratio, and a pre-requisite for cell growth and viability. We show here that the PM NADH-ferricyanide reductase activity was up-regulated in HL-AV2 (HL-60 rho0) cell lines, but not in the other rho0 and mtDNA mutant lines. The plasma membrane NADH oxidase activity was found to be up-regulated in both HL-AV2 and HeLa rho0 cell lines, but not significantly in the fibroblast rho0 and G11778A lines.
Collapse
Affiliation(s)
- Safarina G Malik
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Wellington Road, Melbourne, VIC 3800, Australia
| | | | | |
Collapse
|
6
|
Baker MA, Lawen A. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antioxid Redox Signal 2000; 2:197-212. [PMID: 11229526 DOI: 10.1089/ars.2000.2.2-197] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The observation in the early 1970s that ferricyanide can replace transferrin as a growth factor highlighted the major role plasma membrane proteins can play within a mammalian cell. Ferricyanide, being impermeant to the cell, was assumed to act at the level of the plasma membrane. Since that time, several enzymes isolated from the plasma membrane have been described, which, using NADH as the intracellular electron donor, are capable of reducing ferricyanide. However, their exact modes of action, and their physiological substrates and functions have not been solved to date. Numerous hypotheses have been proposed for the role of such redox enzymes within the plasma membrane. Examples include the regulation of cell signaling, cell growth, apoptosis, proton pumping, and ion channels. All of these roles may be a result of the function of these enzymes as cellular redox sensors. The emergence of many diverse roles for ferricyanide utilizing redox enzymes present in the plasma membrane might also, in part, be due to the numerous redox enzymes present within the membrane; the poor molecular characterization of the enzymes may be the reason for some of the diverging results reported in the literature as various researchers may be working on different enzymes. Here we review the diverse proposals given for structure and function to the plasma membrane NADH-oxidoreductase system(s) with a specific focus on those enzyme activities which can couple ferricyanide and NADH. Although they are still ill-defined enzymes, evidence is rising that they are of utmost significance for cellular regulation.
Collapse
Affiliation(s)
- M A Baker
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
7
|
Abstract
Cell membrane redox systems carry electrons from intracellular donors and transport them to extracellular acceptors. This phenomenon appears to be universal. Numerous reviews have emphasized not only the bioenergetic mechanisms of redox systems but also the antioxidant defense mechanisms in which they participate. Moreover, significant progress has been made in the modulation of the membrane redox systems on cell proliferation. Because membrane redox systems play a key role in the regulation of cell growth, they need to be somehow linked into the signaling pathways resulting in either controlled or unregulated growth by both internal and external signals. Ultimately, these sequential events lead to either normal cell proliferation or cancer cell formation. However, much less is known about the involvement of membrane redox in transformation or tumorgenesis. In this review, the facts and ideas are summarized concerning the redox systems and tumorgenesis in several aspects, such as the regulation of cell growth and the effect on cell differentiation and on signaling pathways. In addition, information on a unique tumor-associated nicotinamide adenine dinucleotide (NADH) oxidase (tNOX) protein is reviewed.
Collapse
Affiliation(s)
- P J Chueh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Rodríguez-Caso L, Sánchez-Jiménez F, Medina MA. Putrescine and chlorpheniramine inhibit Ehrlich ascites tumor cell plasma membrane ferricyanide reductase activity. Cancer Lett 1998; 132:165-8. [PMID: 10397469 DOI: 10.1016/s0304-3835(98)00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of putrescine or chlorpheniramine in the incubation medium of Ehrlich ascites tumor cells starved for 1 h significantly inhibits the rate of ferricyanide reduction by their plasma membrane redox system. Freshly harvested cells, without depletion of their intracellular pools of polyamines, and cells preincubated under conditions arranged to increase ornithine decarboxylase activity also reduced externally added ferricyanide at a lower rate than those cells starved for 1 h. All these data seems to indicate that the presence of putrescine is enough to significantly inhibit Ehrlich cell plasma membrane redox system activity.
Collapse
Affiliation(s)
- L Rodríguez-Caso
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Málaga, Spain
| | | | | |
Collapse
|
9
|
Ekmekcioglu C, Marktl W. The effect of differentiation on the brush border membrane ferric reductase activity in Caco-2 cells. In Vitro Cell Dev Biol Anim 1998; 34:674-6. [PMID: 9794217 DOI: 10.1007/s11626-998-0061-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Medina MA, del Castillo-Olivares A, Núñez de Castro I. Multifunctional plasma membrane redox systems. Bioessays 1997; 19:977-84. [PMID: 9394620 DOI: 10.1002/bies.950191107] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
All the biological membranes contain oxidoreduction systems actively involved in their bioenergetics. Plasma membrane redox systems seem to be ubiquitous and they have been related to several important functions, including not only their role in cell bioenergetics, but also in cell defense through the generation of reactive oxygen species, in iron uptake, in the control of cell growth and proliferation and in signal transduction. In the last few years, an increasing number of mechanistic and molecular studies have deeply widened our knowledge on the function of these plasma membrane redox systems. The aim of this review is to summarize what is currently known about the components and physiological roles of these systems.
Collapse
Affiliation(s)
- M A Medina
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | |
Collapse
|
11
|
del Castillo-Olivares A, Esteban del Valle A, Márquez J, Núñez de Castro I, Medina MA. Effects of protein kinase C and phosphoprotein phosphatase modulators on Ehrlich cell plasma membrane redox system activity. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:157-60. [PMID: 8781563 DOI: 10.1016/0167-4889(96)00062-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diacyl glycerols and phorbol esters, which activate protein kinases C, stimulated Ehrlich ascites tumor cell ferricyanide reductase activity. On the contrary, selective inhibition of active protein kinases C with bis-indolyl maleimide did not change the rate of ferricyanide reduction by Ehrlich cells. Selective inhibitors of phosphoprotein phosphatases, okadaic acid and cyclosporin A, also stimulated plasma membrane redox system. Taking all these data together, protein kinases or phosphoprotein phosphatases seemed to be involved in the multiple and complex regulation of Ehrlich cell plasma membrane redox system.
Collapse
Affiliation(s)
- A del Castillo-Olivares
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | |
Collapse
|