1
|
Abstract
Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.
Collapse
|
2
|
Liu Q, Tan G, Levenkova N, Li T, Pugh EN, Rux JJ, Speicher DW, Pierce EA. The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 2007; 6:1299-317. [PMID: 17494944 PMCID: PMC2128741 DOI: 10.1074/mcp.m700054-mcp200] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Primary cilia play critical roles in many aspects of biology. Specialized versions of primary cilia are involved in many aspects of sensation. The single photoreceptor sensory cilium (PSC) or outer segment elaborated by each rod and cone photoreceptor cell of the retina is a classic example. Mutations in genes that encode cilia components are common causes of disease, including retinal degenerations. The protein components of mammalian primary and sensory cilia have not been defined previously. Here we report a detailed proteomics analysis of the mouse PSC complex. The PSC complex comprises the outer segment and its cytoskeleton, including the axoneme, basal body, and ciliary rootlet, which extends into the inner segment of photoreceptor cells. The PSC complex proteome contains 1968 proteins represented by three or more unique peptides, including approximately 1500 proteins not detected in cilia from lower organisms. This includes 105 hypothetical proteins and 60 proteins encoded by genes that map within the critical intervals for 23 inherited cilia-related disorders, increasing their priority as candidate genes. The PSC complex proteome also contains many cilia proteins not identified previously in photoreceptors, including 13 proteins produced by genes that harbor mutations that cause cilia disease and seven intraflagellar transport proteins. Analyses of PSC complexes from rootletin knock-out mice, which lack ciliary rootlets, confirmed that 1185 of the identified PSC complex proteins are derived from the outer segment. The mass spectrometry data, benchmarked by 15 well characterized outer segment proteins, were used to quantify the copy number of each protein in a mouse rod outer segment. These results reveal mammalian cilia to be several times more complex than the cilia of unicellular organisms and open novel avenues for studies of how cilia are built and maintained and how these processes are disrupted in human disease.
Collapse
Affiliation(s)
- Qin Liu
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Babinger P, Völkl R, Cakstina I, Maftei A, Schmitt R. Maintenance DNA methyltransferase (Met1) and silencing of CpG-methylated foreign DNA in Volvox carteri. PLANT MOLECULAR BIOLOGY 2007; 63:325-36. [PMID: 17033890 DOI: 10.1007/s11103-006-9091-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 09/10/2006] [Indexed: 05/12/2023]
Abstract
DNA methylation plays an important role in the gene-silencing network of higher eukaryotes. We have analyzed the 21.5-kb maintenance methyltransferase (M-MTase) gene, met1, of the multicellular green alga Volvox carteri. The met1 transcript was detected only during the period when DNA replication and cell division are taking place. It encodes a 238 kDa protein containing eight C-terminal activity domains typical of M-MTases, plus upstream DNA-binding domains including the ProDom domain PD003757, which experimental analyses in animal systems have indicated is required for targeting the enzyme to DNA-replication foci. Several insertions of unknown function make Volvox Met1 the largest known member of the Met1/Dnmt1 family. Here we also show that several endogenous transposon families are CpG-methylated in Volvox, which we think causes them to be inactive. This view is supported by the observation that an in vitro CpG-methylated gene introduced into Volvox was maintained in the methylated and silent state over >100 generations. Thus, we believe that Met1 recognizes and perpetuates the in vitro methylation signal, and that the silencing machinery is then able to transduce such a methylation-only signal into a stable heterochromatic (and silent) state.
Collapse
Affiliation(s)
- P Babinger
- Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
4
|
Cardol P, González-Halphen D, Reyes-Prieto A, Baurain D, Matagne RF, Remacle C. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. PLANT PHYSIOLOGY 2005; 137:447-59. [PMID: 15710684 PMCID: PMC1065347 DOI: 10.1104/pp.104.054148] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/25/2004] [Accepted: 11/25/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms , Institute of Plant Biology B22, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | |
Collapse
|
5
|
van Lis R, González-Halphen D, Atteia A. Divergence of the mitochondrial electron transport chains from the green alga Chlamydomonas reinhardtii and its colorless close relative Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:23-34. [PMID: 15949981 DOI: 10.1016/j.bbabio.2004.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 11/26/2004] [Accepted: 12/20/2004] [Indexed: 11/29/2022]
Abstract
Compelling evidence exists that the colorless algae of the genus Polytomella arose from a green Chlamydomonas-like ancestor by losing its functional photosynthetic apparatus. Due to the close relationship between the colorless and the green chlorophyte, Polytomella sp. appeared as a useful indicative framework for structural studies of Chlamydomonas reinhardtii mitochondria. However, comparative studies reported here unexpectedly revealed significant differences between the mitochondrial respiratory systems of the two algae. Two-dimensional blue native/SDS-PAGE of isolated mitochondria indicated that cytochrome-containing respiratory complexes III and IV in the two chlorophytes contrast in size, subunit composition and relative abundance. Complex IV in Polytomella is smaller than its counterpart in C. reinhardtii and occurs in two forms that differ presumably in the presence of subunit COXIII. The cytochrome c and the iron-sulfur Rieske protein of both chlorophytes revealed structural differences on the amino acid sequence level. Under comparable culture conditions, the colorless alga exhibits lower levels of cytochrome c and complex IV but a higher respiratory activity than the green alga. Cytochrome c levels were also found to be differently regulated by the growth conditions in both algae. The divergence between the respiratory systems in the two related chlorophytes can be viewed as a consequence of the loss of photosynthetic activity and/or of the adaptation to the environment via the acquisition of a more flexible, heterotrophic metabolism. Our understanding of mitochondrial function and evolution is expected to be greatly enhanced via further parallel studies of photosynthetic/non-photosynthetic algae, for which this study forms an incentive.
Collapse
Affiliation(s)
- Robert van Lis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., 04510, Mexico
| | | | | |
Collapse
|
6
|
Abstract
Volvox carteri is a spherical alga with a complete division of labor between around 2000 biflagellate somatic cells and 16 asexual reproductive cells (gonidia). It provides an attractive system for studying how a molecular genetic program for cell-autonomous differentiation is encoded within the genome. Three types of genes have been identified as key players in germ-soma differentiation: a set of gls genes that act in the embryo to shift cell-division planes, resulting in asymmetric divisions that set apart the large-small sister-cell pairs; a set of lag genes that act in the large gonidial initials to prevent somatic differentiation; and the regA gene, which acts in the small somatic initials to prevent reproductive development. Somatic-cell-specific expression of regA is controlled by intronic enhancer and silencer elements.
Collapse
Affiliation(s)
- Rüdiger Schmitt
- Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
7
|
Funes S, Davidson E, Claros MG, van Lis R, Pérez-Martínez X, Vázquez-Acevedo M, King MP, González-Halphen D. The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem 2002; 277:6051-8. [PMID: 11744727 DOI: 10.1074/jbc.m109993200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The atp6 gene, encoding the ATP6 subunit of F(1)F(0)-ATP synthase, has thus far been found only as an mtDNA-encoded gene. However, atp6 is absent from mtDNAs of some species, including that of Chlamydomonas reinhardtii. Analysis of C. reinhardtii expressed sequence tags revealed three overlapping sequences that encoded a protein with similarity to ATP6 proteins. PCR and 5'- and 3'-RACE were used to obtain the complete cDNA and genomic sequences of C. reinhardtii atp6. The atp6 gene exhibited characteristics of a nucleus-encoded gene: Southern hybridization signals consistent with nuclear localization, the presence of introns, and a codon usage and a polyadenylation signal typical of nuclear genes. The corresponding ATP6 protein was confirmed as a subunit of the mitochondrial F(1)F(0)-ATP synthase from C. reinhardtii by N-terminal sequencing. The predicted ATP6 polypeptide has a 107-amino acid cleavable mitochondrial targeting sequence. The mean hydrophobicity of the protein is decreased in those transmembrane regions that are predicted not to participate directly in proton translocation or in intersubunit contacts with the multimeric ring of c subunits. This is the first example of a mitochondrial protein with more than two transmembrane stretches, directly involved in proton translocation, that is nucleus-encoded.
Collapse
Affiliation(s)
- Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pérez-Martínez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d'Alayer J, Claros MG, Davidson E, King MP, González-Halphen D. Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 2001; 276:11302-9. [PMID: 11094061 DOI: 10.1074/jbc.m010244200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genomes of Chlamydomonad algae lack the cox2 gene that encodes the essential subunit COX II of cytochrome c oxidase. COX II is normally a single polypeptide encoded by a single mitochondrial gene. In this work we cloned two nuclear genes encoding COX II from both Chlamydomonas reinhardtii and Polytomella sp. The cox2a gene encodes a protein, COX IIA, corresponding to the N-terminal portion of subunit II of cytochrome c oxidase, and the cox2b gene encodes COX IIB, corresponding to the C-terminal region. The cox2a and cox2b genes are located in the nucleus and are independently transcribed into mRNAs that are translated into separate polypeptides. These two proteins assemble with other cytochrome c oxidase subunits in the inner mitochondrial membrane to form the mature multi-subunit complex. We propose that during the evolution of the Chlorophyte algae, the cox2 gene was divided into two mitochondrial genes that were subsequently transferred to the nucleus. This event was evolutionarily distinct from the transfer of an intact cox2 gene to the nucleus in some members the Leguminosae plant family.
Collapse
Affiliation(s)
- X Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F. Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Felitti SA, Chan RL, Sierra MG, Gonzalez DH. The cytochrome c gene from the green alga Chlamydomonas reinhardtii. Structure and expression in wild-type cells and in obligate photoautotrophic (dk) mutants. PLANT & CELL PHYSIOLOGY 2000; 41:1149-56. [PMID: 11148274 DOI: 10.1093/pcp/pcd044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The expression of the Chlamydomonas reinhardtii cytochrome c gene was studied at the steady-state mRNA level. The inclusion of acetate under illumination produced a marked increase in cytochrome c transcripts. This effect was not affected by two inhibitors of mitochondrial energy metabolism. Three different obligate photoautotrophic mutants with defective mitochondria showed normal levels of induction, suggesting that utilization of acetate for respiration is not required for this process. Light, in the presence or absence of acetate, also promoted an increase in cytochrome c transcript levels. This effect could be abolished by treatment of the cells with an inhibitor of the photosynthetic electron transport chain, suggesting that light acts through photosynthesis to promote the induction. In addition, a genomic clone encompassing the Chlamydomonas cytochrome c gene has been isolated and analyzed. The gene contains three introns, two of which are located at positions similar to those in the rice and Arabidopsis cytochrome c genes, indicating the existence of an evolutionary link. It is concluded that the cytochrome c gene from C. reinhardtii is subject to metabolic regulation through a mechanism that responds to the intracellular level of either acetate or a compound derived from its metabolization through a pathway different from mitochondrial respiration.
Collapse
Affiliation(s)
- S A Felitti
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | | |
Collapse
|
10
|
Pérez-Martínez X, Vazquez-Acevedo M, Tolkunova E, Funes S, Claros MG, Davidson E, King MP, González-Halphen D. Unusual location of a mitochondrial gene. Subunit III of cytochrome C oxidase is encoded in the nucleus of Chlamydomonad algae. J Biol Chem 2000; 275:30144-52. [PMID: 10899162 DOI: 10.1074/jbc.m003940200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The algae of the family Chlamydomonadaceae lack the gene cox3 that encodes subunit III of cytochrome c oxidase in their mitochondrial genomes. This observation has raised the question of whether this subunit is present in cytochrome c oxidase or whether the corresponding gene is located in the nucleus. Cytochrome c oxidase was isolated from the colorless chlamydomonad Polytomella spp., and the existence of subunit III was established by immunoblotting analysis with an antibody directed against Saccharomyces cerevisiae subunit III. Based partly upon the N-terminal sequence of this subunit, oligodeoxynucleotides were designed and used for polymerase chain reaction amplification, and the resulting product was used to screen a cDNA library of Chlamydomonas reinhardtii. The complete sequences of the cox3 cDNAs from Polytomella spp. and C. reinhardtii are reported. Evidence is provided that the genes for cox3 are encoded by nuclear DNA, and the predicted polypeptides exhibit diminished physical constraints for import as compared with mitochondrial-DNA encoded homologs. This indicates that transfer of this gene to the nucleus occurred before Polytomella diverged from the photosynthetic Chlamydomonas lineage and that this transfer may have occurred in all chlamydomonad algae.
Collapse
Affiliation(s)
- X Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Atteia A, van Lis R, Ramírez J, González-Halphen D. Polytomella spp. growth on ethanol. Extracellular pH affects the accumulation of mitochondrial cytochrome c550. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2850-8. [PMID: 10806382 DOI: 10.1046/j.1432-1327.2000.01288.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A defined medium with ethanol as sole carbon source was devised for growth of the colorless, unicellular alga Polytomella spp. Cell density on this carbon source was related to extracellular pH. An acidic pH was required for ethanol utilization; best yields were obtained at pH 3.7. Spectroscopic analysis of the cells showed that the concentration of cytochrome c per cell was 40% higher than at pH 6.0; the concentrations of cytochrome a606 (cytochrome c oxidase) and b566 (cytochrome bc1 complex) were the same. A soluble cytochrome c550 was purified from cells grown at pH 3.7 and characterized by peptide sequencing as the 12-kDa cytochrome c550 of the mitochondrial respiratory chain. Immunoblots of total cell proteins showed higher accumulation of cytochrome c550 at pH 3.7 than at pH 6.0. RNA blot analysis gave clear evidence of the abundance of c550 transcript in cells grown at pH 3.7. The amount of mitochondrial proteins obtained from cells grown at pH 3.7 was twofold higher than that of cells grown at pH 6.0. Mitochondria isolated from both cell types readily oxidized succinate, malate or ethanol. The rates of oxygen uptake were 20-25% higher in mitochondria from cells grown at pH 3.7. Cyanide and antimycin A inhibited respiration with succinate up to 95% in both types of mitochondria. The participation of cytochrome c550 in mitochondrial electron transport from succinate to oxygen was shown by spectral measurements.
Collapse
Affiliation(s)
- A Atteia
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México.
| | | | | | | |
Collapse
|
12
|
Abstract
To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 x 10(-10) and 3.29 x 10(-10) substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi-plant or algae-higher plant divergence times were used as reference points and 191 Myr when the rice-barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times.
Collapse
Affiliation(s)
- J Zhou
- Department of Genetics and Cell Biology, Washington State University, Pullman 99164-6420, USA
| | | |
Collapse
|
13
|
Affiliation(s)
- A Hudson
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| |
Collapse
|
14
|
Sharpe JA, Day A. Structure, evolution and expression of the mitochondrial ADP/ATP translocator gene from Chlamydomonas reinhardtii. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:134-44. [PMID: 8455552 DOI: 10.1007/bf00282794] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The first AUG in the Chlamydomonas reinhardtii ADP/ATP translocator (CRANT) mRNA initiates an open reading frame (ORF) which is very similar (51-79% amino acid identity) to other ANT proteins. In contrast to higher plants, no evidence for a long amino-terminal extension was obtained. The 5' non-transcribed region of the single-copy CRANT gene contains sequence motifs present in other C. reinhardtii nuclear genes. Four introns, whose positions are not conserved in other ANT genes, interrupt the protein coding region. A short heat shock specifically reduces CRANT mRNA levels. CRANT mRNA levels were unaffected by a mutation in photosynthesis. In a dark/light regime CRANT mRNA levels are high in the dark phase and low in the early light phase. Data on translation initiation sites, splice junctions and the codon preferences of C. reinhardtii nuclear genes were compiled. With the exception of two rare codons, ACA and GGA, the CRANT gene exhibits the biased codon usage of C. reinhardtii nuclear genes that are highly expressed during normal vegetative growth.
Collapse
Affiliation(s)
- J A Sharpe
- Genetics Laboratory, Biochemistry Department, Oxford, UK
| | | |
Collapse
|
15
|
Fabry S, Nass N, Huber H, Palme K, Jaenicke L, Schmitt R. The yptV1 gene encodes a small G-protein in the green alga Volvox carteri: gene structure and properties of the gene product. Gene 1992; 118:153-62. [PMID: 1511889 DOI: 10.1016/0378-1119(92)90184-q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small G-proteins encoded by ras-like genes are ubiquitous in eukaryotic cells. These G-proteins are believed to play a role in central processes, such as signal transduction, cell differentiation and membrane vesicle transport. By screening genomic and cDNA libraries of the colonial alga, Volvox carteri f. nagariensis, with ypt DNA probes from Zea mays, we have identified the first member of a ypt gene family, yptV1, within a green alga. The 1538-bp yptV1 gene of V. carteri consists of nine exons and eight introns and has three potential polyadenylation sites 210, 420 and 500 bp downstream from the UGA stop codon. The derived 203-amino-acid polypeptide, YptV1, exhibits 81% similarity with Ypt1 from mouse, with the corresponding genes sharing four identical intron positions. Recombinant YptV1 (reYptV1) produced in Escherichia coli retains the ability to bind GTP after SDS-PAGE and immobilization on nitrocellulose. Immunological studies using polyclonal antibodies against reYptV1 indicate that the protein is present in the membrane fraction of a V. carteri extract and is expressed throughout the whole life-cycle of the alga. Similar to other Ras-like proteins, YptV1 contains two conserved C-terminal cysteine residues suggesting post-translational modification(s), such as isoprenylation or palmitoylation, required for membrane anchoring. The presumptive role of YptV1 in cytoplasmic vesicle transport is briefly discussed.
Collapse
Affiliation(s)
- S Fabry
- Universität Regensburg, Lehrstuhl für Genetik, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Schmitt R, Fabry S, Kirk DL. In search of molecular origins of cellular differentiation in Volvox and its relatives. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 139:189-265. [PMID: 1428677 DOI: 10.1016/s0074-7696(08)61413-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R Schmitt
- Lehrstuhl für Genetik, Universität Regensburg, Germany
| | | | | |
Collapse
|
17
|
Identification of mitochondrial proteins in membrane preparations from Chlamydomonas reinhardtii. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48483-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Ambler RP, Kamen MD, Bartsch RG, Meyer TE. Amino acid sequences of Euglena viridis ferredoxin and cytochromes c. Biochem J 1991; 276 ( Pt 1):47-52. [PMID: 1645532 PMCID: PMC1151141 DOI: 10.1042/bj2760047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Order Euglenida comprises many species and perhaps 40 genera, but almost all biochemical and genetic studies have been limited to a single species. Euglena gracilis, because of its ease of growth in the laboratory. Sequence studies of chloroplast and mitochondrial proteins from E. gracilis show that they have diverged widely from other eukaryotic lines. In the present paper we report the sequences of three proteins from another euglenoid, Euglena viridis, using material isolated from a natural bloom. The mitochondrial cytochrome c shows more than 90% sequence identity with that from E. gracilis, and contains the same characteristic features. The chloroplast cytochrome c6 has diverged to a greater extent and shows only 77% identity. The chloroplast ferredoxin from E. viridis is similar in sequence to those of cyanobacteria and algal chloroplasts, with sequence identities of up to 75%. Details of the purification, analysis and sequence determination experiments on the peptides have been deposited as Supplementary Publication SUP 50163 (32 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1991) 273, 5.
Collapse
Affiliation(s)
- R P Ambler
- Department of Molecular Biology, University of Edinburgh, Scotland, U.K
| | | | | | | |
Collapse
|
19
|
Merchant S, Hill K, Kim JH, Thompson J, Zaitlin D, Bogorad L. Isolation and characterization of a complementary DNA clone for an algal pre-apoplastocyanin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38356-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Franzén LG, Rochaix JD, von Heijne G. Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and higher plant chloroplast presequences. FEBS Lett 1990; 260:165-8. [PMID: 2404796 DOI: 10.1016/0014-5793(90)80094-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii have been analyzed and compared with chloroplast transit peptides from higher plants and mitochondrial targeting peptides from yeast, Neurospora and higher eukaryotes. In terms of length and amino acid composition, chloroplast transit peptides from C. reinhardtii are more similar to mitochondrial targetting peptides than to chloroplast transit peptides from higher plants. They also contain the potential amphiphilic alpha-helix characteristic of mitochondrial presequences. However, in similarity with chloroplast transit peptides from higher plants, they contain a C-terminal region with the potential to form an amphiphilic beta-strand. As in higher plants, transit peptides that route proteins to the thylakoid lumen consist of an N-terminal domain similar to stroma-targeting transit peptides attached to a C-terminal apolar domain that share many characteristics with secretory signal peptides.
Collapse
Affiliation(s)
- L G Franzén
- Department of Biochemistry, Arrhenius laboratories, University of Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Wallace CJA, Mascagni P, Chait BT, Collawn JF, Paterson Y, Proudfoot AEI, Kent SBH. Substitutions engineered by chemical synthesis at three conserved sites in mitochondrial cytochrome c. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84810-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Franzén LG, Frank G, Zuber H, Rochaix JD. Isolation and characterization of cDNA clones encoding the 17.9 and 8.1 kDa subunits of Photosystem I from Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1989; 12:463-474. [PMID: 24272906 DOI: 10.1007/bf00017585] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1988] [Accepted: 02/02/1989] [Indexed: 06/02/2023]
Abstract
cDNA clones encoding two Photosystem I subunits of Chlamydomonas reinhardtii with apparent molecular masses of 18 and 11 kDa (thylakoid polypeptides 21 and 30; P21 and P30 respectively) were isolated using oligonucleotides, the sequences of which were deduced from the N-terminal amino acid sequences of the proteins. The cDNAs were sequenced and used to probe Southern and Northern blots. The Southern blot analysis indicates that both proteins are encoded by single-copy genes. The mRNA sizes of the two components are 1400 and 740 nucleotides, respectively. Comparison between the open reading frames of the cDNAs and the N-terminal amino acid sequences of the proteins indicates that the molecular masses of the mature proteins are 17.9 (P21) and 8.1 kDa (P30). Analysis of the deduced protein sequences predicts that both subunits are extrinsic membrane proteins with net positive charges. The amino acid sequences of the transit peptides suggest that P21 and P30 are routed towards the lumenal and stromal sides of the thylakoid membranes, respectively.
Collapse
Affiliation(s)
- L G Franzén
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|