1
|
Hawkey J, Monk JM, Billman-Jacobe H, Palsson B, Holt KE. Impact of insertion sequences on convergent evolution of Shigella species. PLoS Genet 2020; 16:e1008931. [PMID: 32644999 PMCID: PMC7373316 DOI: 10.1371/journal.pgen.1008931] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 07/21/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Shigella species are specialised lineages of Escherichia coli that have converged to become human-adapted and cause dysentery by invading human gut epithelial cells. Most studies of Shigella evolution have been restricted to comparisons of single representatives of each species; and population genomic studies of individual Shigella species have focused on genomic variation caused by single nucleotide variants and ignored the contribution of insertion sequences (IS) which are highly prevalent in Shigella genomes. Here, we investigate the distribution and evolutionary dynamics of IS within populations of Shigella dysenteriae Sd1, Shigella sonnei and Shigella flexneri. We find that five IS (IS1, IS2, IS4, IS600 and IS911) have undergone expansion in all Shigella species, creating substantial strain-to-strain variation within each population and contributing to convergent patterns of functional gene loss within and between species. We find that IS expansion and genome degradation are most advanced in S. dysenteriae and least advanced in S. sonnei; and using genome-scale models of metabolism we show that Shigella species display convergent loss of core E. coli metabolic capabilities, with S. sonnei and S. flexneri following a similar trajectory of metabolic streamlining to that of S. dysenteriae. This study highlights the importance of IS to the evolution of Shigella and provides a framework for the investigation of IS dynamics and metabolic reduction in other bacterial species.
Collapse
Affiliation(s)
- Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
| | - Helen Billman-Jacobe
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- The London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| |
Collapse
|
2
|
Mesquita I, Varela P, Belinha A, Gaifem J, Laforge M, Vergnes B, Estaquier J, Silvestre R. Exploring NAD+ metabolism in host-pathogen interactions. Cell Mol Life Sci 2016; 73:1225-36. [PMID: 26718485 PMCID: PMC11108276 DOI: 10.1007/s00018-015-2119-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.
Collapse
Affiliation(s)
- Inês Mesquita
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Varela
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Belinha
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Gaifem
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Baptiste Vergnes
- MIVEGEC (IRD 224-CNRS 5290-Université Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, 75006, Paris, France.
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, G1V 4G2, Canada.
| | - Ricardo Silvestre
- Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Prosseda G, Di Martino ML, Campilongo R, Fioravanti R, Micheli G, Casalino M, Colonna B. Shedding of genes that interfere with the pathogenic lifestyle: the Shigella model. Res Microbiol 2012; 163:399-406. [DOI: 10.1016/j.resmic.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/08/2012] [Indexed: 12/31/2022]
|
4
|
Li Z, Bouckaert J, Deboeck F, De Greve H, Hernalsteens JP. Nicotinamide dependence of uropathogenic Escherichia coli UTI89 and application of nadB as a neutral insertion site. Microbiology (Reading) 2012; 158:736-745. [DOI: 10.1099/mic.0.052043-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Zhaoli Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, HVRI, Harbin 150001, PR China
- Viral Genetics Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionelle, UMR8576 du CNRS, Université de Lille 1, Avenue Mendeleiev, 59655 Villeneuve d’Ascq, France
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Francine Deboeck
- Viral Genetics Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Henri De Greve
- Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | |
Collapse
|
5
|
Prunier AL, Schuch R, Fernández RE, Maurelli AT. Genetic structure of the nadA and nadB antivirulence loci in Shigella spp. J Bacteriol 2007; 189:6482-6. [PMID: 17586625 PMCID: PMC1951923 DOI: 10.1128/jb.00525-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparison of nadA and nadB in 14 Shigella strains and enteroinvasive Escherichia coli versus E. coli showed that at least one locus is altered in all strains. These observations explain the characteristic nicotinic acid auxotrophy of Shigella organisms and are consistent with the previously identified antivirulence nature of these genes for these pathogens.
Collapse
Affiliation(s)
- Anne-Laure Prunier
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | | | | | |
Collapse
|
6
|
Bergthorsson U, Roth JR. Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. J Bacteriol 2005; 187:400-3. [PMID: 15601727 PMCID: PMC538839 DOI: 10.1128/jb.187.1.400-403.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nicotinic acid is required by most isolates of Salmonella enterica (serovar Dublin), a pathogen of cattle. A single nadA missense mutation causes the nutritional requirement of all serovar Dublin isolates tested. Models for persistence of this allele are tested and discussed.
Collapse
|