1
|
Yang Q, Zhao D, Zhang C, Sreenivasulu N, Sun SSM, Liu Q. Lysine biofortification of crops to promote sustained human health in the 21st century. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1258-1267. [PMID: 34723338 DOI: 10.1093/jxb/erab482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Crop biofortification is pivotal in preventing malnutrition, with lysine considered the main limiting essential amino acid (EAA) required to maintain human health. Lysine deficiency is predominant in developing countries where cereal crops are the staple food, highlighting the need for efforts aimed at enriching the staple diet through lysine biofortification. Successful modification of aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) feedback inhibition has been used to enrich lysine in transgenic rice plants without yield penalty, while increases in the lysine content of quality protein maize have been achieved via marker-assisted selection. Here, we reviewed the lysine metabolic pathway and proposed the use of metabolic engineering targets as the preferred option for fortification of lysine in crops. Use of gene editing technologies to translate the findings and engineer lysine catabolism is thus a pioneering step forward.
Collapse
Affiliation(s)
- Qingqing Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Chuangquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding Innovation Platform, International Rice Research Institute, Los Banos, Philippines
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Wang W, Xu M, Wang G, Galili G. New insights into the metabolism of aspartate-family amino acids in plant seeds. PLANT REPRODUCTION 2018; 31:203-211. [PMID: 29399717 DOI: 10.1007/s00497-018-0322-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 05/03/2023]
Abstract
Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.
Collapse
Affiliation(s)
- Wenyi Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Department of Plant Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mengyun Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Gad Galili
- Department of Plant Science, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
3
|
Abstract
To feed the world’s growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops. In the present report, we describe the recent advances in the enhancement of essential amino acids in horticultural plants and possible future directions towards their bio-fortification.
Collapse
|
4
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
5
|
Matthews BF, Hughes CA. Nutritional improvement of the aspartate family of amino acids in edible crop plants. Amino Acids 2013; 4:21-34. [PMID: 24190554 DOI: 10.1007/bf00805798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1992] [Accepted: 10/07/1992] [Indexed: 10/26/2022]
Abstract
Plants are the primary source of protein for man and livestock, however, not all plants produce proteins which contain a balance of amino acids for the diet to ensure proper growth of livestock and humans. Alteration of the amino acid composition of plants may be accomplished using techniques of molecular biology and genetic engineering. Genes encoding key enzymes regulating the synthesis of lysine and threonine have been cloned from plants andE. coli and are available for modification and transformation into plants. Genes encoding seed storage proteins have been cloned and modified to encode more lysine residues for developing transgenic plants with higher seed lysine. Genes encoding seed storage proteins naturally higher in methionine have been cloned and expressed in transgenic plants, increasing methionine levels of the seed. These and other approaches hold great promise in their application to increasing the content of essential amino acids in plants.
Collapse
Affiliation(s)
- B F Matthews
- Agricultural Research Service, Plant Molecular Biology Laboratory, U.S. Department of Agriculture, Bldg 006, Rm 118, 20705, Beltsville, MD, USA
| | | |
Collapse
|
6
|
Sands DC, Pilgeram AL. Methods for selecting hypervirulent biocontrol agents of weeds: why and how. PEST MANAGEMENT SCIENCE 2009; 65:581-587. [PMID: 19288472 DOI: 10.1002/ps.1739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A considerable number of plant pathogens have been studied for their possible use in weed control. Some have proven virulent enough to control weed species and to compete commercially with chemical herbicides. However, most pathogens of weeds are not useful in their wild form because they are not sufficiently host-specific and/or virulent. The authors believe that these barriers can be overcome. The present research has focused on the inhibitory effects of certain amino acids on the growth and development of specific plants. Pathogens that overproduce these selected amino acids can be easily selected from a pool of spontaneous mutants. Such mutants can have increased pathogenicity to their target weed and enhanced field performance as biocontrol agents. Enhancement of biocontrol efficacy in three separate pathogen-host systems, two with Fusarium and one with Pseudomonas, has already been reported. It is proposed to use the same technology to enhance the biocontrol efficacy of the two species of Fusarium that are host-specific pathogens of the broomrape group of parasitic weeds. The stepwise approach outlined can lead to obtaining enhanced biocontrol agents capable of producing inhibitory levels of selected amino acids in situ. It is proposed that these approaches, in combination with other methods of virulence enhancement, will lead to sustainable systems of biological control of parasitic weeds.
Collapse
Affiliation(s)
- David C Sands
- Montana State University, 119 Plant Bioscience Building, Bozeman, MT 59717-3150, USA.
| | | |
Collapse
|
7
|
Hacham Y, Matityahu I, Schuster G, Amir R. Overexpression of mutated forms of aspartate kinase and cystathionine gamma-synthase in tobacco leaves resulted in the high accumulation of methionine and threonine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:260-71. [PMID: 18208521 DOI: 10.1111/j.1365-313x.2008.03415.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Methionine and threonine are two essential amino acids, the levels of which limit the nutritional quality of plants. Both amino acids diverge from the same branch of the aspartate family biosynthesis pathway; therefore, their biosynthesis pathways compete for the same carbon/amino substrate. To further elucidate the regulation of methionine biosynthesis and seek ways of increasing the levels of these two amino acids, we crossed transgenic tobacco plants overexpressing the bacterial feedback-insensitive aspartate kinase (bAK), containing a significantly higher threonine level, with plants overexpressing Arabidopsis cystathionine gamma-synthase (AtCGS), the first unique enzyme of methionine biosynthesis. Plants co-expressing bAK and the full-length AtCGS (F-AtCGS) have significantly higher methionine and threonine levels compared with the levels found in wild-type plants, but the methionine level does not increase beyond that found in plants expressing F-AtCGS alone. This finding can be explained through the feedback inhibition regulation mediated by the methionine metabolite on the transcript level of AtCGS. To test this assumption, plants expressing bAK were crossed with plants expressing two mutated forms of AtCGS in which the domains responsible for the feedback regulation have been deleted. Indeed, significantly higher methionine contents and its metabolites levels accumulated in the newly produced plants, and the levels of threonine were also significantly higher than in the wild-type plants. The transcript level of the two mutated forms of AtCGS significantly increased when there was a high content of threonine in the plants, suggesting that threonine modulates, probably indirectly, the transcript level of AtCGS.
Collapse
Affiliation(s)
- Yael Hacham
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12 100, Israel
| | | | | | | |
Collapse
|
8
|
Amira G, Ifat M, Tal A, Hana B, Shmuel G, Rachel A. Soluble methionine enhances accumulation of a 15 kDa zein, a methionine-rich storage protein, in transgenic alfalfa but not in transgenic tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2443-52. [PMID: 16061510 DOI: 10.1093/jxb/eri237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With the general aim of elevating the content of the essential amino acid methionine in vegetative tissues of plants, alfalfa (Medicago sativa L.) and tobacco plants, as well as BY2 tobacco suspension cells, were transformed with a beta-zein::3HA gene under the 35S promoter of cauliflower mosaic virus encoding a rumen-stable methionine-rich storage protein of 15 kDa zein. To examine whether soluble methionine content limited the accumulation of the 15 kDa zein::3HA, methionine was first added to the growth medium of the different transgenic plants and the level of the alien protein was determined. Results demonstrated that the added methionine enhanced the accumulation of the 15 kDa zein::3HA in transgenic alfalfa and tobacco BY2 cells, but not in whole transgenic tobacco plants. Next, the endogenous levels of methionine were elevated in the transgenic tobacco and alfalfa plants by crossing them with plants expressing the Arabidopsis cystathionine gamma-synthase (AtCGS) having significantly higher levels of soluble methionine in their leaves. Compared with plants expressing only the 15 kDa zein::3HA, transgenic alfalfa co-expressing both alien genes showed significantly enhanced levels of this protein concurrently with a reduction in the soluble methionine content, thus implying that soluble methionine was incorporated into the 15 kDa zein::3HA. Similar phenomena also occurred in tobacco, but were considerably less pronounced. The results demonstrate that the accumulation of the 15 kDa zein::3HA is regulated in a species-specific manner and that soluble methionine plays a major role in the accumulation of the 15 kDa zein in some plant species but less so in others.
Collapse
Affiliation(s)
- Golan Amira
- Plant Science Laboratory, Migal-Galilee Technology Center, PO Box 831, Kiryat Shmona, 11016, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Avraham T, Badani H, Galili S, Amir R. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine gamma-synthase gene. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:71-9. [PMID: 17168900 DOI: 10.1111/j.1467-7652.2004.00102.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With the aim of increasing the methionine level in alfalfa (Medicago sativa L.) and thus improving its nutritional quality, we produced transgenic alfalfa plants that expressed the Arabidopsis cystathionine gamma-synthase (AtCGS), the enzyme that controls the synthesis of the first intermediate metabolite in the methionine pathway. The AtCGS cDNA was driven by the Arabidopsis rubisco small subunit promoter to obtain expression in leaves. Thirty transgenic plants were examined for the transgene protein expression, and four lines with a high expression level were selected for further work. In these lines, the contents of methionine, S-methylmethionine (SMM), and methionine incorporated into the water-soluble protein fraction increased up to 32-fold, 19-fold, and 2.2-fold, respectively, compared with that in wild-type plants. Notably, in these four transgenic lines, the levels of free cysteine (the sulphur donor for methionine synthesis), glutathione (the cysteine storage and transport form), and protein-bound cysteine increased up to 2.6-fold, 5.5-fold, and 2.3-fold, respectively, relative to that in wild-type plants. As the transgenic alfalfa plants over-expressing AtCGS had significantly higher levels of both soluble and protein-bound methionine and cysteine, they may represent a model and target system for improving the nutritional quality of forage crops.
Collapse
Affiliation(s)
- Tal Avraham
- Plant Science Laboratory, Migal-Galilee Technology Center, PO Box 831, Kiryat Shmona 11016, Israel.
| | | | | | | |
Collapse
|
10
|
Wang X, Larkins BA. Genetic analysis of amino acid accumulation in opaque-2 maize endosperm. PLANT PHYSIOLOGY 2001; 125:1766-77. [PMID: 11299357 PMCID: PMC88833 DOI: 10.1104/pp.125.4.1766] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Accepted: 12/21/2000] [Indexed: 05/18/2023]
Abstract
The opaque-2 mutation in maize (Zea mays) is associated with an increased level of free amino acids (FAA) in the mature endosperm. In particular, there is a high concentration of lysine, the most limiting essential amino acid. To investigate the basis for the high-FAA phenotype of opaque-2 maize, we characterized amino acid accumulation during endosperm development of several wild-type and opaque-2 inbreds. Oh545o2 was found to have an exceptionally high level of FAA, in particular those derived from aspartate (Asp) and intermediates of glycolysis. The FAA content in Oh545o2 is 12 times greater than its wild-type counterpart, and three and 10 times greater than in Oh51Ao2 and W64Ao2, respectively. We crossed Oh545o2 to Oh51Ao2 and analyzed the F(2:3) progeny to identify genetic loci linked with the high FAA level in these mutants. Quantitative trait locus mapping identified four significant loci that account for about 46% of the phenotypic variance. One locus on the long arm of chromosome 2 is coincident with genes encoding a monofunctional Asp kinase 2 and a bifunctional Asp kinase-homo-Ser dehydrogenase-2, whereas another locus on the short arm of chromosome 3 is linked with a cytosolic triose phosphate isomerase 4. The results suggest an alternation of amino acid and carbon metabolism leads to overproduction and accumulation of FAA in opaque-2 mutants.
Collapse
Affiliation(s)
- X Wang
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
11
|
Wang X, Stumpf DK, Larkins BA. Aspartate kinase 2. A candidate gene of a quantitative trait locus influencing free amino acid content in maize endosperm. PLANT PHYSIOLOGY 2001; 125:1778-87. [PMID: 11299358 PMCID: PMC88834 DOI: 10.1104/pp.125.4.1778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2000] [Revised: 01/04/2001] [Accepted: 01/25/2001] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays) Oh545o2 inbred accumulates an exceptionally high level of free amino acids, especially lysine (Lys), threonine (Thr), methionine, and iso-leucine. In a cross between Oh545o2 and Oh51Ao2, we identified several quantitative trait loci linked with this phenotype. One of these is on the long arm of chromosome 2 and is linked with loci encoding aspartate (Asp) kinase 2 and Asp kinase (AK)-homoserine dehydrogenase (HSDH) 2. To investigate whether these enzymes can contribute to the high levels of Asp family amino acids, we measured their specific activity and feedback inhibition properties, as well as activities of several other key enzymes involved in Lys metabolism. We did not find a significant difference in total activity of dihydrodipicolinate synthase, HSDH, and Lys ketoglutarate reductase between these inbreds, and the feedback inhibition properties of HSDH and dihyrodipicolinate synthase by Lys and/or Thr were similar. The most significant difference we found between Oh545o2 and Oh51Ao2 is feedback inhibition of AK by Lys but not Thr. AK activity in Oh545o2 is less sensitive to Lys inhibition than that in Oh51Ao2, with a Lys I50 twice that of Oh51Ao2. AK activity in Oh545o2 endosperm is also higher than in Oh51Ao2 at 15 d after pollination, but not 20 d after pollination. The results indicate that the Lys-sensitive Asp kinase 2, rather than the Thr-sensitive AK-HSDH2, is the best candidate gene for the quantitative trait locus affecting free amino acid content in Oh545o2.
Collapse
Affiliation(s)
- X Wang
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
12
|
Craciun A, Jacobs M, Vauterin M. Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms. FEBS Lett 2000; 487:234-8. [PMID: 11150516 DOI: 10.1016/s0014-5793(00)02303-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In plants, the amino acids lysine, threonine, methionine and isoleucine have L-aspartate-beta-semialdehyde (ASA) as a common precursor in their biosynthesis pathways. How this ASA precursor is dispersed among the different pathways remains vague knowledge. The proportional balances of free and/or protein-bound lysine, threonine, isoleucine and methionine are a function of protein synthesis, secondary metabolism and plant physiology. Some control points determining the flux through the distinct pathways are known, but an adequate explanation of how the competing pathways share ASA in a fine-tuned amino acid biosynthesis network is yet not available. In this article we discuss the influence of lysine biosynthesis on the adjacent pathways of threonine and methionine. We report the finding of an Arabidopsis thaliana dihydrodipicolinate synthase T-DNA insertion mutant displaying lower lysine synthesis, and, as a result of this, a strongly enhanced synthesis of threonine. Consequences of these cross-pathway regulations are discussed.
Collapse
Affiliation(s)
- A Craciun
- Laboratorium voor Plantengenetica, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640, Sint Genesius Rode, Belgium
| | | | | |
Collapse
|
13
|
Denby KJ, Last RL. Diverse regulatory mechanisms of amino acid biosynthesis in plants. GENETIC ENGINEERING 2000; 21:173-89. [PMID: 10822497 DOI: 10.1007/978-1-4615-4707-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- K J Denby
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
14
|
Ranocha P, Bourgis F, Ziemak MJ, Rhodes D, Gage DA, Hanson AD. Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. J Biol Chem 2000; 275:15962-8. [PMID: 10747987 DOI: 10.1074/jbc.m001116200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants synthesize S-methylmethionine (SMM) from S-adenosylmethionine (AdoMet), and methionine (Met) by a unique reaction and, like other organisms, use SMM as a methyl donor for Met synthesis from homocysteine (Hcy). These reactions comprise the SMM cycle. Two Arabidopsis cDNAs specifying enzymes that mediate the SMM --> Met reaction (SMM:Hcy S-methyltransferase, HMT) were identified by homology and authenticated by complementing an Escherichia coli yagD mutant and by detecting HMT activity in complemented cells. Gel blot analyses indicate that these enzymes, AtHMT-1 and -2, are encoded by single copy genes. The deduced polypeptides are similar in size (36 kDa), share a zinc-binding motif, lack obvious targeting sequences, and are 55% identical to each other. The recombinant enzymes exist as monomers. AtHMT-1 and -2 both utilize l-SMM or (S,S)-AdoMet as a methyl donor in vitro and have higher affinities for SMM. Both enzymes also use either methyl donor in vivo because both restore the ability to utilize AdoMet or SMM to a yeast HMT mutant. However, AtHMT-1 is strongly inhibited by Met, whereas AtHMT-2 is not, a difference that could be crucial to the control of flux through the HMT reaction and the SMM cycle. Plant HMT is known to transfer the pro-R methyl group of SMM. This enabled us to use recombinant AtHMT-1 to establish that the other enzyme of the SMM cycle, AdoMet:Met S-methyltransferase, introduces the pro-S methyl group. These opposing stereoselectivities suggest a way to measure in vivo flux through the SMM cycle.
Collapse
Affiliation(s)
- P Ranocha
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | |
Collapse
|
15
|
Galili S, Guenoune D, Wininger S, Hana B, Schupper A, Ben-Dor B, Kapulnik Y. Enhanced levels of free and protein-bound threonine in transgenic alfalfa (Medicago sativa L.) expressing a bacterial feedback-insensitive aspartate kinase gene. Transgenic Res 2000; 9:137-44. [PMID: 10951697 DOI: 10.1023/a:1008991625001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Threonine, lysine, methionine, and tryptophan are essential amino acids for humans and monogastric animals. Many of the commonly used diet formulations, particularly for pigs and poultry, contain limiting amounts of these amino acids. One approach for raising the level of essential amino acids is based on altering the regulation of their biosynthetic pathways in transgenic plants. Here we describe the first production of a transgenic forage plant, alfalfa (Medicago sativa L.) with modified regulation of the aspartate-family amino acid biosynthetic pathway. This was achieved by over-expressing the Escherichia coli feedback-insensitive aspartate kinase (AK) in transgenic plants. These plants showed enhanced levels of both free and protein-bound threonine. In many transgenic plants the rise in free threonine was accompanied by a significant reduction both in aspartate and in glutamate. Our data suggest that in alfalfa, AK might not be the only limiting factor for threonine biosynthesis, and that the free threonine pool in this plant limits its incorporation into plant proteins.
Collapse
Affiliation(s)
- S Galili
- Agronomy and Natural Resources Department, Volcani Center, Dagan, Israel.
| | | | | | | | | | | | | |
Collapse
|
16
|
Azevedo RA, Arruda P, Turner WL, Lea PJ. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. PHYTOCHEMISTRY 1997; 46:395-419. [PMID: 9332022 DOI: 10.1016/s0031-9422(97)00319-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential amino acids lysine, threonine, methionine and isoleucine are synthesised in higher plants via a common pathway starting with aspartate. The regulation of the pathway is discussed in detail, and the properties of the key enzymes described. Recent data obtained from studies of regulation at the gene level and information derived from mutant and transgenic plants are also discussed. The herbicide target enzyme acetohydroxyacid synthase involved in the synthesis of the branched chain amino acids is reviewed.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Universidade de São Paulo, Piracicaba, SP, Brasil
| | | | | | | |
Collapse
|
17
|
Muehlbauer GJ, Gengenbach BG, Somers DA, Donovan CM. Genetic and amino-acid analysis of two maize threonine-overproducing, lysine-insensitive aspartate kinase mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 89:767-774. [PMID: 24178023 DOI: 10.1007/bf00223717] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/1994] [Accepted: 04/29/1994] [Indexed: 06/02/2023]
Abstract
The aspartate-derived amino-acid pathway leads to the production of the essential amino-acids lysine, methionine, threonine and isoleucine. Aspartate kinase (AK) is the first enzyme in this pathway and exists in isoforms that are feedback inhibited by lysine and threonine. Two maize (Zea mays L.) threonine-overproducing, lysine-insensitive AK mutants (Ask1-LT19 and Ask2-LT20) were previously isolated. The present study was conducted to determine the map location of Ask2 and to examine the amino-acid profiles of the Ask mutants. The threonine-overproducing trait conferred by Ask2-LT20 was mapped to the long arm of chromosome 2. Both mutants exhibited increased free threonine concentrations (nmol/mg dry weight) over wild-type. The percent free threonine increased from approximately 2% in wild-type kernels to 37-54% of the total free amino-acid pool in homozygous mutant kernels. Free methionine concentrations also increased significantly in homozygous mutants. Free lysine concentrations were increased but to a much lesser extent than threonine or methionine. In contrast to previous studies, free aspartate concentrations were observed to decrease, indicating a possible limiting factor in threonine synthesis. Total (free plus protein-bound) amino-acid analyses demonstrated a consistent, significant increase in threonine, methionine and lysine concentrations in the homozygous mutants. Significant increases in protein-bound (total minus free) threonine, methionine and lysine were observed in the Ask mutants, indicating adequate protein sinks to incorporate the increased free amino-acid concentrations. Total amino-acid contents (nmol/kernel) were approximately the same for mutant and wild-type kernels. In five inbred lines both Ask mutations conferred the threonine-overproducing phenotype, indicating high expressivity in different genetic backgrounds. These analyses are discussed in the context of the regulation of the aspartate-derived amino-acid pathway.
Collapse
Affiliation(s)
- G J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St. Paul, MN, USA
| | | | | | | |
Collapse
|
18
|
Ghislain M, Frankard V, Vandenbossche D, Matthews BF, Jacobs M. Molecular analysis of the aspartate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1994; 24:835-851. [PMID: 8204822 DOI: 10.1007/bf00014439] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gene encoding Arabidopsis thaliana aspartate kinase (ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) was isolated from genomic DNA libraries using the carrot ak-hsdh gene as the hybridizing probe. Two genomic libraries from different A. thaliana races were screened independently with the ak probe and the hsdh probe. Nucleotide sequences of the A. thaliana overlapping clones were determined and encompassed 2 kb upstream of the coding region and 300 bp downstream. The corresponding cDNA was isolated from a cDNA library made from poly(A)(+)-mRNA extracted from cell suspension cultures. Sequence comparison between the Arabidopsis gene product and an AK-HSDH bifunctional enzyme from carrot and from the Escherichia coli thrA and metL genes shows 80%, 37.5% and 31.4% amino acid sequence identity, respectively. The A. thaliana ak-hsdh gene is proposed to be the plant thrA homologue coding for the AK isozyme feedback inhibited by threonine. The gene is present in A. thaliana in single copy and functional as evidenced by hybridization analyses. The apoprotein-coding region is interrupted by 15 introns ranging from 78 to 134 bp. An upstream chloroplast-targeting sequence with low sequence similarity with the carrot transit peptide was identified. A signal sequence is proposed starting from a functional ATG initiation codon to the first exon of the apoprotein. Two additional introns were identified: one in the 5' non-coding leader sequence and the other in the putative chloroplast targeting sequence. 5' sequence analysis revealed the presence of several possible promoter elements as well as conserved regulatory motifs. Among these, an Opaque2 and a yeast GCN4-like recognition element might be relevant for such a gene coding for an enzyme limiting the carbon-flux entry to the biosynthesis of several essential amino acids. 3' sequence analysis showed the occurrence of two polyadenylation signals upstream of the polyadenylation site. This work is the first report of the molecular cloning of a plant ak-hsdh genomic sequence. It describes a promoter element that may bring new insights to the regulation of the biosynthesis of the aspartate family of amino acids.
Collapse
Affiliation(s)
- M Ghislain
- Laboratory for Plant Genetics, Vrije Universiteit Brussel, Belgium
| | | | | | | | | |
Collapse
|
19
|
Shaul O, Galili G. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. PLANT MOLECULAR BIOLOGY 1993; 23:759-68. [PMID: 8251629 DOI: 10.1007/bf00021531] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The essential amino acids lysine and threonine are synthesized in higher plants by two separate branches of a common pathway. This pathway is primarily regulated by three key enzymes, namely aspartate kinase (AK), dihydrodipicolinate synthase (DHPS) and homoserine dehydrogenase (HSD), but how these enzymes operate in concert is as yet unknown. Addressing this issue, we have expressed in transgenic tobacco plants high levels of bacterial AK and DHPS, which are much less sensitive to feedback inhibition by lysine and threonine than their plant counterparts. Such expression of the bacterial DHPS by itself resulted in a substantial overproduction of lysine, whereas plants expressing only the bacterial AK overproduced threonine. When both bacterial enzymes were expressed in the same plant, the level of free lysine exceeded by far the level obtained by the bacterial DHPS alone. This increase, however, was accompanied by a significant reduction in threonine accumulation compared to plants expressing the bacterial AK alone. Our results suggested that in tobacco plants the synthesis of both lysine and threonine is under a concerted regulation exerted by AK, DHPS, and possibly also by HSD. We propose that the balance between lysine and threonine synthesis is determined by competition between DHPS and HSD on limiting amounts of their common substrate 3-aspartic semialdehyde, whose level, in turn, is determined primarily by the activity of AK. The potential of this molecular approach to increase the nutritional quality of plants is discussed.
Collapse
Affiliation(s)
- O Shaul
- Department of Plant Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|