1
|
Pillai V, Buck L, Lari E. Scavenging of reactive oxygen species mimics the anoxic response in goldfish pyramidal neurons. J Exp Biol 2021; 224:268949. [PMID: 34047778 DOI: 10.1242/jeb.238147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Goldfish are one of a few species able to avoid cellular damage during month-long periods in severely hypoxic environments. By suppressing action potentials in excitatory glutamatergic neurons, the goldfish brain decreases its overall energy expenditure. Coincident with reductions in O2 availability is a natural decrease in cellular reactive oxygen species (ROS) generation, which has been proposed to function as part of a low-oxygen signal transduction pathway. Using live-tissue fluorescence microscopy, we found that ROS production decreased by 10% with the onset of anoxia in goldfish telencephalic brain slices. Employing whole-cell patch-clamp recording, we found that, similar to severe hypoxia, the ROS scavengers N-acetyl cysteine (NAC) and MitoTEMPO, added during normoxic periods, depolarized membrane potential (severe hypoxia -73.6 to -61.4 mV, NAC -76.6 to -66.2 mV and MitoTEMPO -71.5 mV to -62.5 mV) and increased whole-cell conductance (severe hypoxia 5.7 nS to 8.0 nS, NAC 6.0 nS to 7.5 nS and MitoTEMPO 6.0 nS to 7.6 nS). Also, in a subset of active pyramidal neurons, these treatments reduced action potential firing frequency (severe hypoxia 0.18 Hz to 0.03 Hz, NAC 0.27 Hz to 0.06 Hz and MitoTEMPO 0.35 Hz to 0.08 Hz). Neither severe hypoxia nor ROS scavenging impacted action potential threshold. The addition of exogenous hydrogen peroxide could reverse the effects of the antioxidants. Taken together, this supports a role for a reduction in [ROS] as a low-oxygen signal in goldfish brain.
Collapse
Affiliation(s)
- Varshinie Pillai
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada, M3A 3A7
| | - Leslie Buck
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada, M3A 3A7
| | - Ebrahim Lari
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada, M3A 3A7
| |
Collapse
|
2
|
Inui TA, Yasuda M, Hirano S, Ikeuchi Y, Kogiso H, Inui T, Marunaka Y, Nakahari T. Enhancement of ciliary beat amplitude by carbocisteine in ciliated human nasal epithelial cells. Laryngoscope 2019; 130:E289-E297. [PMID: 31294840 DOI: 10.1002/lary.28185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Carbocisteine (CCis), a mucoactive agent, is used to improve the symptoms of sinonasal diseases. However, the effect of CCis on nasal ciliary beating remains uncertain. We examined the effects of CCis on ciliary beat distance (CBD, an index of amplitude), and ciliary beat frequency (CBF) in ciliated human nasal epithelial cells (cHNECs) in primary culture. METHODS The cHNECs were prepared from the nasal tissue resected from patients required surgery for chronic sinusitis (CS) or allergic rhinitis (AR). CBD and CBF were measured using videomicroscopy equipped with a high-speed camera. RESULTS CCis increased CBD by 30%, but not CBF, and decreased intracellular Cl- concentration ([Cl- ]i ) in cHNECs. The CCis' actions were mimicked by the Cl- -free NO3 - solution. In contrast, prior treatment of NPPB (20 μM) or CFTR(inh)-172 (1 μM), which increased [Cl- ]i by 20%, decreased CBF by 10% and CBD by 25% and inhibited the CCis' actions. However, prior treatment of T16Ainh-A01 (10 μM) did not inhibit the CCis' actions, although it decreased [Cl- ]i by 10% and CBD by 15%. Thus, CCis stimulates Cl- channels including cystic fibrosis transmembrane conductance regulator (CFTR). Moreover, CCis enhanced the transport of microbeads driven by the beating cilia in cHNECs. The CCis actions were similar in cHNECs from both types of pateints. CONCLUSION CCis increased CBD by 30% in cHNECs via an [Cl- ]i decrease stimulated by activation of Cl- channels, including CFTR. CCis may stimulate nasal mucociliary clearance by increasing CBD in patients contracting CS or AR. LEVEL OF EVIDENCE NA. Laryngoscope, 130:E289-E297, 2020.
Collapse
Affiliation(s)
- Taka-Aki Inui
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Ikeuchi
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Haruka Kogiso
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshio Inui
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu, Japan.,Saisei Mirai Clinics, Moriguchi, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan
| | - Takashi Nakahari
- Research Laboratory for Epithelial Physiology, Research Organization of Science and Technology, BKC, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
3
|
Ikeuchi Y, Kogiso H, Hosogi S, Tanaka S, Shimamoto C, Matsumura H, Inui T, Marunaka Y, Nakahari T. Carbocisteine stimulated an increase in ciliary bend angle via a decrease in [Cl -] i in mouse airway cilia. Pflugers Arch 2018; 471:365-380. [PMID: 30291431 DOI: 10.1007/s00424-018-2212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Carbocisteine (CCis), a mucoactive agent, is widely used to improve respiratory diseases. This study demonstrated that CCis increases ciliary bend angle (CBA) by 30% and ciliary beat frequency (CBF) by 10% in mouse airway ciliary cells. These increases were induced by an elevation in intracellular pH (pHi; the pHi pathway) and a decrease in the intracellular Cl- concentration ([Cl-]i; the Cl- pathway) stimulated by CCis. The Cl- pathway, which is independent of CO2/HCO3-, increased CBA by 20%. This pathway activated Cl- release via activation of Cl- channels, leading to a decrease in [Cl-]i, and was inhibited by Cl- channel blockers (5-nitro-2-(3-phenylpropylamino) benzoic acid and CFTR(inh)-172). Under the CO2/HCO3--free condition, the CBA increase stimulated by CCis was mimicked by the Cl--free NO3- solution. The pHi pathway, which depends on CO2/HCO3-, increased CBF and CBA by 10%. This pathway activated HCO3- entry via Na+/HCO3- cotransport (NBC), leading to a pHi elevation, and was inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid. The effects of CCis were not affected by a protein kinase A inhibitor (1 μM PKI-A) or Ca2+-free solution. Thus, CCis decreased [Cl-]i via activation of Cl- channels including CFTR, increasing CBA by 20%, and elevated pHi via NBC activation, increasing CBF and CBA by 10%.
Collapse
Affiliation(s)
- Yukiko Ikeuchi
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Haruka Kogiso
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shigekuni Hosogi
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Saori Tanaka
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Chikao Shimamoto
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Hitoshi Matsumura
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Toshio Inui
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Takashi Nakahari
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, BKC, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
4
|
Oh DH, Kim MJ, Jeon SO, Seo JE, Jeong SH, Kang JW, Choi YW, Lee S. Strategic approaches for enhancement of in vivo transbuccal peptide drug delivery in rabbits using iontophoresis and chemical enhancers. Pharm Res 2014; 32:929-40. [PMID: 25231009 DOI: 10.1007/s11095-014-1507-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate the feasibility of iontophoresis and the combination effects with chemical enhancers on in vivo hypocalcemic effect of transbuccally delivered salmon calcitonin (sCT). METHODS N-acetyl-L-cysteine (NAC), sodium deoxyglycocholate (SDGC), and ethanol were used as chemical enhancers; and 0.5 mA/cm(2) fixed electric current was employed as a physical enhancer. sCT hydrogel was applied to rabbit buccal mucosa, and blood samples were obtained via the central auricular artery. Blood calcium level was measured by calcium kit and the conformational changes of buccal mucosa were investigated with FT-IR spectroscopy. Hematoxylin/eosin staining was used for the histological evaluation of buccal mucosa. RESULTS Iontophoresis groups except iontophoresis-NAC group showed significant hypocalcemic effect compared to negative control, in particular iontophoresis-SDGC combination group showed fast onset of action as well as sustained hypocalcemic effect (p < 0.05). FT-IR result demonstrated the reduction of buccal barrier function, and the histological study showed a decrease in buccal thickness as well as minor damage to the dermal-epidermal junctions in the enhancing method groups; however, the damaged tissues virtually recovered within 24 h after the removal of electrodes. CONCLUSIONS Iontophoresis and combination with SDGC were found to be safe and potential strategies for transbuccal peptide delivery in vivo.
Collapse
Affiliation(s)
- Dong-Ho Oh
- Department of Smart Foods and Drugs, Graduate School, Inje University, 197 Inje-ro, Gimhae-si, Gyeongsangnam-Do, 621-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Leonard A, Lubamba B, Dhooghe B, Noel S, Wallemacq P, Lebecque P, Leal T. Comparative Variability of Nasal Potential Difference Measurements in Human and Mice. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojrd.2012.22007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Oh DH, Chun KH, Jeon SO, Kang JW, Lee S. Enhanced transbuccal salmon calcitonin (sCT) delivery: effect of chemical enhancers and electrical assistance on in vitro sCT buccal permeation. Eur J Pharm Biopharm 2011; 79:357-63. [PMID: 21683790 DOI: 10.1016/j.ejpb.2011.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 05/13/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
This study investigates the combined effect of absorption enhancers and electrical assistance on transbuccal salmon calcitonin (sCT) delivery, using fresh swine buccal tissue. We placed 200 IU (40 μg/mL) of each sCT formulation--containing various concentrations of ethanol, N-acetyl-L-cysteine (NAC), and sodium deoxyglycocholate (SDGC)--onto the donor part of a Franz diffusion cell. Then, 0.5 mA/cm(2) of fixed anodal current was applied alone or combined with chemical enhancers. The amount of permeated sCT was analyzed using an ELISA kit, and biophysical changes of the buccal mucosa were investigated using FT-IR spectroscopy, and hematoxylin-eosin staining methods were used to evaluate histological alteration of the buccal tissues. The flux (J(s)) of sCT increased with the addition of absorption enhancer groups, but it was significantly enhanced by the application of anodal iontophoresis (ITP). FT-IR study revealed that all groups caused an increase in lipid fluidity but only the groups containing SDGC showed statistically significant difference. Although the histological data of SDGC groups showed a possibility for tissue damage, the present enhancing methods appear to be safe. In conclusion, the combination of absorption enhancers and electrical assistance is a potential strategy for the enhancement of transbuccal sCT delivery.
Collapse
Affiliation(s)
- Dong-Ho Oh
- Department of Smart Foods and Drugs, Inje University, Gyeongnam, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
The effect ofN-acetylcysteine on chloride efflux from airway epithelial cells. Cell Biol Int 2010; 34:245-52. [DOI: 10.1042/cbi20090007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Guizzardi F, Rodighiero S, Binelli A, Saino S, Bononi E, Dossena S, Garavaglia ML, Bazzini C, Bottà G, Conese M, Daffonchio L, Novellini R, Paulmichl M, Meyer G. S-CMC-Lys-dependent stimulation of electrogenic glutathione secretion by human respiratory epithelium. J Mol Med (Berl) 2005; 84:97-107. [PMID: 16283140 DOI: 10.1007/s00109-005-0720-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 08/11/2005] [Indexed: 11/26/2022]
Abstract
Glutathione (GSH) is one of the most important defense mechanisms against oxidative stress in the respiratory epithelial lining fluid. Considering that GSH secretion in respiratory cells has been postulated to be at least partially electrogenic, and that the mucoregulator S-carbocysteine lysine salt monohydrate (S-CMC-Lys) can cause an activation of epithelial Cl(-) conductance, the purpose of this study was to verify whether S-CMC-Lys is able to stimulate GSH secretion. Experiments have been performed by patch-clamp technique, by high-performance liquid chromatography (HPLC) assay, and by Western blot analysis on cultured lines of human respiratory cells (WI-26VA4 and CFT1-C2). In whole-cell configuration, after cell exposure to 100 microM S-CMC-Lys, a current due to an outward GSH flux was observed, which was inhibitable by 5-nitro-2-(3-phenylpropylamino)-benzoate and glibenclamide. This current was not observed in CFT1-C2 cells, where a functional cystic fibrosis transmembrane conductance regulator (CFTR) is lacking. Inside-out patch-clamp experiments (GSH on the cytoplasm side, Cl(-) on the extracellular side) showed the activity of a channel, which was able to conduct current in both directions: the single channel conductance was 2-4 pS, and the open probability (P(o)) was low and voltage-independent. After preincubation with 100 microM S-CMC-Lys, there was an increase in P(o), in the number of active channels present in each patch, and in the relative permeability to GSH vs Cl(-). Outwardly directed efflux of GSH could also be increased by protein kinase A, adenosine 5'-triphosphate, and cyclic adenosine monophosphate (cAMP) added to the cytoplasmic side (whole-cell configuration). The increased secretion of GSH observed in the presence of S-CMC-Lys or 8-bromoadenosine-3',5'-cyclic monophosphate was also confirmed by HPLC assay of GSH on a confluent monolayer of respiratory cells. Western blot analysis confirmed the presence of CFTR in WI-26VA4 cells. This study suggests that S-CMC-Lys is able to stimulate a channel-mediated GSH secretion by human respiratory cells: electrophysiological and pharmacological characteristics of this channel are similar to those of the CFTR channel.
Collapse
Affiliation(s)
- F Guizzardi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kerem E. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy. Pediatr Pulmonol 2005; 40:183-96. [PMID: 15880796 DOI: 10.1002/ppul.20200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CFTR mutations cause defects of CFTR protein production and function by different molecular mechanisms. Mutations can be classified according to the mechanisms by which they disrupt CFTR function. This understanding of the different molecular mechanisms of CFTR dysfunction provides the scientific basis for the development of targeted drugs for mutation-specific therapy of cystic fibrosis (CF). Class I mutations are nonsense mutations that result in the presence of a premature stop codon that leads to the production of unstable mRNA, or the release from the ribosome of a short, truncated protein that is not functional. Aminoglycoside antibiotics can suppress premature termination codons by disrupting translational fidelity and allowing the incorporation of an amino acid, thus permitting translation to continue to the normal termination of the transcript. Class II mutations cause impairment of CFTR processing and folding in the Golgi. As a result, the mutant CFTR is retained in the endoplasmic reticulum (ER) and eventually targeted for degradation by the quality control mechanisms. Chemical and molecular chaperones such as sodium-4-phenylbutyrate can stabilize protein structure, and allow it to escape from degradation in the ER and be transported to the cell membrane. Class III mutations disrupt the function of the regulatory domain. CFTR is resistant to phosphorylation or adenosine tri-phosphate (ATP) binding. CFTR activators such as alkylxanthines (CPX) and the flavonoid genistein can overcome affected ATP binding through direct binding to a nucleotide binding fold. In patients carrying class IV mutations, phosphorylation of CFTR results in reduced chloride transport. Increases in the overall cell surface content of these mutants might overcome the relative reduction in conductance. Alternatively, restoring native chloride pore characteristics pharmacologically might be effective. Activators of CFTR at the plasma membrane may function by promoting CFTR phosphorylation, by blocking CFTR dephosphorylation, by interacting directly with CFTR, and/or by modulation of CFTR protein-protein interactions. Class V mutations affect the splicing machinery and generate both aberrantly and correctly spliced transcripts, the levels of which vary among different patients and among different organs of the same patient. Splicing factors that promote exon inclusion or factors that promote exon skipping can promote increases of correctly spliced transcripts, depending on the molecular defect. Inconsistent results were reported regarding the required level of corrected or mutated CFTR that had to be reached in order to achieve normal function.
Collapse
Affiliation(s)
- Eitan Kerem
- Department of Pediatrics and Cystic Fibrosis Center, Hadassah University Hospital, Jerusalem, Israel.
| |
Collapse
|
10
|
Dousset E, Carrega L, Steinberg JG, Clot-Faybesse O, Jouirou B, Sauze N, Devaux C, Autier Y, Jammes Y, Martin-Eauclaire MF, Guieu R. Evidence that free radical generation occurs during scorpion envenomation. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:221-6. [PMID: 15907767 DOI: 10.1016/j.cca.2005.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
Although it is well established that symptomatology, morbidity and death following scorpion envenomation are due to increases in neurotransmitter release secondary to toxins binding to voltage-sensitive sodium channels, the mechanism by which venom action is involved in damaging heart, liver, lungs and kidneys remains unclear. We hypothesized that scorpion toxins could induce the generation of high levels of free radicals responsible for membrane damage in organs targeted by venom action. We have investigated lipid peroxidation in different organs, through the evaluation of thiobarbituric acid reactive substances (TBARS), after experimental envenomation of rats by toxic fractions of Androctonus australis Hector venom. We have shown that scorpion toxins cause considerable lipid peroxidation in most vital organs. We also evaluated the protective effects of antioxidants in mice injected with lethal doses of toxins. Among the drugs tested, N-acetylcysteine (NAC) was effective in protecting the mice when injected prior to toxin application. However, the free radical scavenging properties of NAC seem less implicated in these protective effects than its ability to increase the fluidity of bronchial secretions. We therefore conclude that free radical generation only plays a minor role in the toxicity of scorpion venom.
Collapse
Affiliation(s)
- E Dousset
- Laboratoire des Déterminants Physiologiques de l'Activité Physique (UPRES EA 3285), Institut Fédératif de Recherche E-J Marey (IFR 107), Faculté des Sciences du Sport, Université de la Méditerranée (Aix-Marseille II), Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rochat T, Lacroix JS, Jornot L. N-acetylcysteine inhibits Na+ absorption across human nasal epithelial cells. J Cell Physiol 2004; 201:106-16. [PMID: 15281093 DOI: 10.1002/jcp.20066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
N-acetylcysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders. The mechanism of action is based on rupture of the disulfide bridges of the high molecular glycoproteins present in the mucus, resulting in smaller subunits of the glycoproteins and reduced viscosity of the mucus. Because Na(+) absorption regulates airway surface liquid volume and thus the efficiency of mucociliary clearance, we asked whether NAC affects the bioelectric properties of human nasal epithelial cells. A 24-h basolateral treatment with 10 mM of NAC decreased the transepithelial potential difference and short-circuit current (I(SC)) by 40%, and reduced the amiloride-sensitive current by 50%, without affecting the transepithelial resistance. After permeabilization of the basolateral membranes of cells with amphotericin B in the presence of a mucosal-to-serosal Na(+) gradient (135:25 mM), NAC inhibited 45% of the amiloride-sensitive current. The Na(+)-K(+)-ATPase pump activity and the basolateral K(+) conductance were not affected by NAC treatment. NAC did not alter total cell mRNA and protein levels of alpha-epithelial Na(+) channel (EnaC) subunit, but reduced abundance of alpha-ENaC subunits in the apical cell membrane as quantified by biotinylation. This effect can be ascribed to the sulphydryl (SH) group of NAC, since N-acetylserine and S-carboxymethyl-l-cysteine were ineffective. Given the importance of epithelial Na(+) channels in controlling the thin layer of fluid that covers the surface of the airways, the increase in the fluidity of the airway mucus following NAC treatment in vivo might be in part related to downregulation of Na(+) absorption and consequently water transport.
Collapse
Affiliation(s)
- Thierry Rochat
- Respiratory Division, Clinic of Otorhinolaryngology, University Hospitals, Geneva, Switzerland
| | | | | |
Collapse
|
12
|
Schreiber R, Boucherot A, Mürle B, Sun J, Kunzelmann K. Control of Epithelial Ion Transport by Cl− and PDZ Proteins. J Membr Biol 2004; 199:85-98. [PMID: 15383919 DOI: 10.1007/s00232-004-0679-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 03/29/2004] [Indexed: 10/26/2022]
Abstract
Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl- for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+ / H+ -exchanger regulator factor (NHERF) controls expression of CFTR in mouse collecting duct cells. Inhibition of NHERF largely attenuates CFTR expression, which is paralleled by enhanced Ca(2+) -dependent Cl- secretion and augmented Na+ absorption by the ENaC. It is further demonstrated that epithelial Na+ absorption and ENaC are inhibited by cytosolic Cl- and that stimulation by secretagogues enhances the intracellular Cl- concentration. Thus, the data provide a clue to the question, how epithelial cells can operate as both absorptive and secretory units: Increase in intracellular Cl- during activation of secretion will inhibit ENaC and switch epithelial transport from salt absorption to Cl- secretion.
Collapse
Affiliation(s)
- R Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Fischer H, Schwarzer C, Illek B. Vitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel. Proc Natl Acad Sci U S A 2004; 101:3691-6. [PMID: 14993613 PMCID: PMC373524 DOI: 10.1073/pnas.0308393100] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vitamin C (l-ascorbate) is present in the respiratory lining fluid of human lungs, and local deficits occur during oxidative stress. Here we report a unique function of vitamin C on the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), a cAMP-dependent Cl channel that regulates epithelial surface fluid secretion. Vitamin C (100 microM) induced the openings of CFTR Cl channels by increasing its average open probability from 0 to 0.21 +/- 0.08, without a detectable increase in intracellular cAMP levels. Exposure of the apical airway surface to vitamin C stimulated the transepithelial Cl secretion to 68% of forskolin-stimulated currents. The average half-maximal stimulatory constant was 36.5 +/- 2.9 microM, which corresponds to physiological concentrations. When vitamin C was instilled into the nasal epithelium of human subjects, it effectively activated Cl transport in vivo. In CF epithelia, previous treatment of the underlying trafficking defect with trimethylamine oxide or expression of WT CFTR restored the activation of Cl transport by vitamin C. Sodium dependency and phloretin sensitivity, as well as the expression of transcripts for sodium-dependent vitamin C transporter (SVCT)-1 and SVCT2, support a model in which an apical vitamin C transporter is central for relaying the effect of vitamin C to CFTR. We conclude that cellular vitamin C is a biological regulator of CFTR-mediated Cl secretion in epithelia. The pool of vitamin C in the respiratory tract represents a potential nutraceutical and pharmaceutical target for the complementary treatment of sticky airway secretions by enhancing epithelial fluid secretion.
Collapse
Affiliation(s)
- Horst Fischer
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | |
Collapse
|
14
|
Harrington MA, Kopito RR. Cysteine residues in the nucleotide binding domains regulate the conductance state of CFTR channels. Biophys J 2002; 82:1278-92. [PMID: 11867445 PMCID: PMC1301931 DOI: 10.1016/s0006-3495(02)75484-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gating of cystic fibrosis transmembrane conductance regulator (CFTR) channels requires intermolecular or interdomain interactions, but the exact nature and physiological significance of those interactions remains uncertain. Subconductance states of the channel may result from alterations in interactions among domains, and studying mutant channels enriched for a single conductance type may elucidate those interactions. Analysis of CFTR channels in inside-out patches revealed that mutation of cysteine residues in NBD1 and NBD2 affects the frequency of channel opening to the full-size versus a 3-pS subconductance. Mutating cysteines in NBD1 resulted in channels that open almost exclusively to the 3-pS subconductance, while mutations of cysteines in NBD2 decreased the frequency of subconductance openings. Wild-type channels open to both size conductances and make fast transitions between them within a single open burst. Full-size and subconductance openings of both mutant and wild-type channels are similarly activated by ATP and phosphorylation. However, the different size conductances open very differently in the presence of a nonhydrolyzable ATP analog, with subconductance openings significantly shortened by ATPgammaS, while full-size channels are locked open. In wild-type channels, reducing conditions increase the frequency and decrease the open time of subconductance channels, while oxidizing conditions decrease the frequency of subconductance openings. In contrast, in the cysteine mutants studied, altering redox potential has little effect on gating of the subconductance.
Collapse
|
15
|
Lambert G, Becker B, Schreiber R, Boucherot A, Reth M, Kunzelmann K. Control of cystic fibrosis transmembrane conductance regulator expression by BAP31. J Biol Chem 2001; 276:20340-5. [PMID: 11274174 DOI: 10.1074/jbc.m011209200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is stringently controlled by molecular chaperones participating in formation of the quality control system. It has been shown that about 75% of all CFTR protein and close to 100% of the [DeltaPhe(508)] CFTR variant are rapidly degraded before leaving the endoplasmic reticulum (ER). B cell antigen receptor-associated proteins (BAPs) are ubiquitously expressed integral membrane proteins that may control association with the cytoskeleton, vesicular transport, or retrograde transport from the cis Golgi to the ER. The present study delivers evidence for cytosolic co-localization of both BAP31 and CFTR and for the control of expression of recombinant CFTR in Chinese hamster ovary (CHO) cells and Xenopus oocytes by BAP31. Antisense inhibition of BAP31 in various cell types increased expression of both wild-type CFTR and [DeltaPhe(508)]CFTR and enabled cAMP-activated Cl(-) currents in [DeltaPhe(508)]CFTR-expressing CHO cells. Coexpression of CFTR together with BAP31 attenuated cAMP-activated Cl(-) currents in Xenopus oocytes. These data therefore suggest association of BAP31 with CFTR that may control maturation or trafficking of CFTR and thus expression in the plasma membrane.
Collapse
Affiliation(s)
- G Lambert
- Physiologisches Institut, Universität Zürich Irchel, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Wu JV, Joo NS, Krouse ME, Wine JJ. Cystic fibrosis transmembrane conductance regulator gating requires cytosolic electrolytes. J Biol Chem 2001; 276:6473-8. [PMID: 11112782 DOI: 10.1074/jbc.m009305200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), which causes cystic fibrosis when nonfunctional, is an anion channel and a member of the ATP binding cassette superfamily. After phosphorylation, CFTR gates by binding and hydrolyzing ATP. We show that CFTR open probability (P(o)) also depends on the electrolyte concentration of the cytosol. Inside-out patches from Calu-3 cells were transiently exposed to solutions of 160 mm salt or solutions in which up to 90% of the salt was replaced by nonionic osmolytes such as sucrose. In lowered salt solutions, CFTR P(o) declined within 1 s to a stable lower value that depended on the electrolyte concentration, (K(1/2) approximately 80 mm NaCl). P(o) was rapidly restored in normal salt concentrations without regard to the electrolyte species. Reducing external electrolytes did not affect CFTR P(o). The same results were obtained when CFTR was stably phosphorylated with adenosine 5'-O-(thiotriphosphate). The decrease in P(o) resulted entirely from an increase in mean closed time. Increasing ATP levels up to 20-fold did not counteract the effect of low electrolytes. The same effect was observed for CFTR expressed in C127 cells but not for a different species of anion channel. Cytosolic electrolytes are an unsuspected, essential cofactor for CFTR gating.
Collapse
Affiliation(s)
- J V Wu
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | |
Collapse
|
17
|
Kunzelmann K. The cystic fibrosis transmembrane conductance regulator and its function in epithelial transport. Rev Physiol Biochem Pharmacol 1999; 137:1-70. [PMID: 10207304 DOI: 10.1007/3-540-65362-7_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CF is a well characterized disease affecting a variety of epithelial tissues. Impaired function of the cAMP activated CFTR Cl- channel appears to be the basic defect detectable in epithelial and non-epithelial cells derived from CF patients. Apart from cAMP-dependent Cl- channels also Ca2+ and volume activated Cl- currents may be changed in the presence of CFTR mutations. This is supported by recent additional findings showing that different intracellular messengers converge on the CFTR Cl- channel. Analysis of the ion transport in CF airways and intestinal epithelium identified additional defects in Na+ transport. It became clear recently that mutations of CFTR may also affect the activity of other membrane conductances including epithelial Na+ channels, KvLQT-1 K+ channels and aquaporins (Fig. 7). Several additional, initially unexpected effects of CFTR on cellular functions, such as exocytosis, mucin secretion and regulation of the intracellular pH were reported during the past. Taken together, these results clearly indicate that CFTR not only acts as a cAMP regulated Cl- channel, but may fulfill several other cellular functions, particularly by regulating other membrane conductances. Failure in CFTR dependent regulation of these membrane conductances is likely to contribute to the defects observed in CF. Currently, no general concept is available that can explain how CFTR controls this variety of cellular functions. Further studies will have to verify whether direct protein interaction, specific effects on membrane turnover, changes of the intracellular ion concentration or additional proteins are involved in these regulatory loops. At the end of this review one cannot share the provocative and reassuring title "CFTR!" of a review written a few years ago [114]. Today one might rather finish with the statement "CFTR?".
Collapse
Affiliation(s)
- K Kunzelmann
- Physiologisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
18
|
Beck S, Kühr J, Schütz VV, Seydewitz HH, Brandis M, Greger R, Kunzelmann K. Lack of correlation between CFTR expression, CFTR Cl- currents, amiloride-sensitive Na+ conductance, and cystic fibrosis phenotype. Pediatr Pulmonol 1999; 27:251-9. [PMID: 10230924 DOI: 10.1002/(sici)1099-0496(199904)27:4<251::aid-ppul5>3.0.co;2-b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystic fibrosis (CF) is characterized by defective Cl- and enhanced Na+ conductance, both due to malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in airway epithelial cells. In the present study we examined whether expression of CFTR mRNA (CFTR messenger ribonucleic acid) is different in airway epithelia derived from either CF patients or healthy volunteers. Moreover, we tried to correlate differences in epithelial Cl- and Na+ conductance with the level of CFTR mRNA expression and studied whether these properties correlate to the clinical phenotype of CF patients. To that end, CFTR mRNA was determined by means of quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and cyclic adenosine monophosphate (cAMP)-activated Cl- and epithelial Na+ conductances were examined in airway epithelial cells using microelectrode techniques. Complementary in vitro data were obtained from cultured CF and non-CF airway epithelial cell lines. Genotype and Shwachman score were assessed for each patient. We found variable levels of CFTR mRNA expression in airway cells of both CF patients and healthy volunteers. As expected, epithelial Na+ conductance was enhanced and CFTR Cl- conductance was absent in airway cells from CF patients. However, CFTR mRNA expression did not correlate with either electrophysiological properties or Shwachman scores obtained from CF patients. In addition, CFTR mRNA expression did not correlate to Cl- conductance in cultured CF and non-CF airway epithelial cells. These results indicate a lack of correlation between levels of CFTR mRNA and CFTR function, and that only small amounts of CFTR are required for expression of the CFTR Cl- conductance.
Collapse
Affiliation(s)
- S Beck
- Children's Hospital, University of Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Cloutier MM, Schramm CM, Guernsey L. Tannin inhibits the cAMP-beta-adrenergic receptor pathway in bovine tracheal epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L252-7. [PMID: 9486210 DOI: 10.1152/ajplung.1998.274.2.l252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tannin, isolated from cotton bracts, inhibits chloride secretion in airway epithelium. In bovine tracheal epithelial cells, tannin (25 micrograms/ml) blunted isoproterenol (Iso)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) accumulation. Inhibition was time and dose dependent, with 52 +/- 5% (mean +/- SE, n = 6) inhibition at 60 min and 82 +/- 9% (n = 3) inhibition at 8 h. Inhibition was reversible starting at 4 h. Low-molecular-mass tannin (1,000-5,000 Da) had no effect on Iso-stimulated cAMP accumulation, whereas N-acetylcysteine, which interacts with cysteine residues, blocked the effects of tannin on Iso-stimulated cAMP accumulation. Tannin exposure (25 micrograms/ml for 30 min) had no effect on the dissociation constant (Kd) for [3H]dihydroalprenolol (DHA) (0.41 +/- 0.03 nM, n = 3) but decreased maximal binding from 252 +/- 32 to 162 +/- 36 fmol/mg protein. Using single-point analysis and [3H]CGP-12177, we determined that tannin (25 micrograms/ml for 4 h) decreased surface beta-adrenergic receptor density from 26.4 +/- 4.3 (n = 12) to 11.9 +/- 3.0 fmol/mg protein and that the decrease was dose dependent. Agonist binding affinity by Iso displacement of DHA demonstrated a two-site model (Kd values = 27 +/- 9 and 2,700 +/- 600 nM) and a ratio of high- to low-affinity receptors of 1:1. Tannin (25 micrograms/ml) steepened the curve and shifted it to the right, as did Gpp(NH)p. Gpp(NH)p had no further effect on the shape or position of the displacement curve in the presence of tannin. In contrast, when polymer length was decreased by oxidation, tannin had no effect on the DHA displacement curve. These data demonstrate that tannin reversibly desensitizes bovine tracheal epithelial cells to Iso, decreases beta-adrenergic receptor density, and uncouples the receptor from its stimulatory G protein. These data also suggest that the polymer length of tannin and its interaction with cysteine residues are important for these effects. These studies provide additional evidence for the role of tannin in the occupational lung disease byssinosis.
Collapse
Affiliation(s)
- M M Cloutier
- Pediatric Pulmonary Division, University of Connecticut Health Center, Farmington 06030, USA
| | | | | |
Collapse
|